UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE FÍSICA

Evolução empírica da Faixa de instabilidade das estrelas ZZ Ceti *

Alex Fabiano Murillo da Costa

Tese realizada sob orientação do Dr. Kepler de Souza Oliveira Filho, apresentada ao Instituto de Física da UFRGS em preenchimento parcial dos requisitos para obtenção do título de Doutor em Física.

Porto Alegre 2007

^{*} Trabalho financiado pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Para Dorila, Rejane, Matheus e Gabriel

AGRADECIMENTOS

- Primeiramente, ao Kepler pela orientação desde de a época de iniciação científica.
- A minha familia, minha mãe, esposa e filhos a quem dedico este trabalho.
- Ao Bila, por tanto tempo de colaboração, em vários trabalhos e pelos ensinamentos na parte experimental deste trabalho.
- Ao amigo e colega de trabalho Nóbrega, pelas oportunidades de trabalho.
- Aos amigos do cinerevista, Adriano e Miguel.
- Aos colegas e amigos Mesquita e Moisés.
- E por fim obrigado Abelão por fazer feliz a nação colorada.

SUMÁRIO

1.	Intro	dução
	1.1	Aspectos históricos
	1.2	Massa de Chandrasekhar
	1.3	Espectroscopia
		1.3.1 Alargamento natural
		1.3.2 Alargamento Doppler térmico
	1.4	Observações de Anãs Brancas 12
	1.5	Classificação das anãs brancas
	1.6	Evolução da composição química das anãs brancas 15
	1.7	Anãs brancas pulsantes
	1.8	Estrelas ZZ Cetis
	1.9	Teoria de Pulsação 29
2.	Obse	ervações
	2.1	Fotometria Rápida
	2.2	Observações
	2.3	Como Funciona a Fotometria CCD?
	2.4	Seleção de candidatas a DAV
		2.4.1 Hamburg Quasar Survey e Hamburg ESO Survey 41
		2.4.2 Edimburgh Cape Survey
	2.5	Transformada de Fourier
	2.6	Novas ZZ Cetis
	2.7	Prováveis ZZ Cetis
	2.8	Espectroscopia Ótica
	2.9	Observações
	2.10	Procedimentos de redução
3.	Dete	rminação de Temperatura efetiva e Gravidade
	3.1	Noções Teóricas
	3.2	Espectros sintéticos
	3.3	Cálculo dos Parâmetros Atmosféricos da Amostra
	3.4	Modelos para determinação da massa

4.	Estre	elas do Catálogo Sloan Digital Sky Survey
	4.1	Mais estrelas do SDSS
	4.2	Informações estatísticas
5.	Estre	elas do catálogo 2df
6.	Com	parações de resultados
	6.1	Comparação: Mukadam et al. (2004a)
	6.2	Comparação: Bergeron et al. (2001)
	6.3	Comparação dos resultados deste trabalho e Liebert et al. (2005). 124
	6.4	Comparação dos resultados deste trabalho e Gianninas et al. (2005) 127
	6.5	Comparação dos resultados deste trabalho e Lajoie et al. (2007) . 129
	6.6	Comparação dos resultados deste trabalho e Kepler et al. (2007) . 131
7.	Dist	ribuição de massa
	7.1	Relação Massa inicial - Massa final
	7.2	Distribuição de Massa
	7.3	Distribuição de massa das 2467 estrelas do dr1 - SDSS 143
	7.4	Distribuição de massa de 466 espectros do catálogo 2df 144
	7.5	Comparação com outras distribuições de massa
8.	Faix	a de Instabilidade
	8.1	Faixa de instabilidade das estrelas do SDSS
	8.2	Discussão dos Resultados
9.	Con	clusão
10	. Apê	ndice A
11	. Apê	ndice B - Resultados 2df

LISTA DE FIGURAS

1.1	Imagem de Sirius A, a estrela mais brilhante e a anã branca Sírius	
	B, proposta primeiramente por Friedrich Bessel em 1844, porém	
	somente visualizada por Alvan Graham Clark em 1862. A seta	
	indica Sírius B	4
1.2	Diagrama cor-magnitude (H-R) para as anãs brancas em termos	
	de M_V e (B – V). Estas informações foram obtidas do catálogo	
	de McCook e Sion (1987); a linha sólida é a seqüência principal,	
	e o Sol é representado por \odot	6
1.3	Nesta figura podemos perceber a significativa diferença entre um	
	espectro de estrela do tipo A, no painel superior, e o espectro	
	de uma anã branca (no painel inferior). Ressalto que a maior	
	diferença referente ao alargamento das linhas de Balmer ocorre	
	fundamentalmente porque o efeito Doppler Stark é de maior in-	
	tensidade nas anãs brancas que nas estrelas do tipo A. A estrela	
	do painel superior é a ID0220-3423 conforme Ortiz et al. 2007, e	
	a estrela no painel inferior é a PG 1022+050 deste trabalho	13
1.4	Esquema de evolução da composição química das anãs brancas	
	DAs e DBs	16
1.5	Diagrama H-R onde é mostrado na forma esquemática o fenômeno	
	Born Again	17
1.6	Esta figura nos mostra uma representação da faixa de instabilidade	
	com base nos índices de cor (b - y) versus (u - b) de Strömgren; os	
	círculos fechado representam as estrelas não-variáveis e os círculos	
	aberto as estrelas ZZ Ceti.	21
1.7	Esta figura mostra a correlação entre Temperatura efetiva e período	
	de pulsação das estrelas ZZ Ceti conhecidas. Observe que quanto	
	maior a período de pulsação, menor a T_{ef} . Os dados da figura são	•
1.0	os períodos dominantes mostrados na tabela 1.2	30
1.8	Esta figura mostra a correlação entre Temperatura e as amplitudes	
1.0	dos períodos dominantes de pulsação.	31
1.9	Esta figura mostra a relação entre $I_{ef} e \log g$, a faixa de instabili-	
	dade das ZZ Cetis com os dados da Tabela 1.2. Os pontos indicam	22
	parametros atmosfericos das estrelas ZZ Cetis conhecidas até hoje.	32

1.10	Estas figuras mostram a estatística quando a períodos, amplitudes, $T_{ef} e \log (g)$ das estrelas ZZ Cetis conhecidas. Os dados da figura, períodos, amplitudes, $T_{ef} e \log (g)$ foram os mesmos mostrados na tabela 1.2	33 35
2.1	Curvas de luz a esquerda e transformada de Fourier das estrelas que observamos com a técnica de fotometria rápida. Nos gráficos da esquerda, o eixo x temos tempo em segundos e no eixo y a intensidade fracional sobre a média. Nos gráficos à direita,	
2.2	freqüência em Hz e amplitude em mma	50
2.3	Curvas de luz a esquerda e transformada de Fourier das estrelas que observamos com a técnica de fotometria rápida.Nos gráficos da esquerda, o eixo x temos tempo em segundos e no eixo y a intensidade fracional sobre a média. Nos gráficos à direita, freqüência em Hz e amplitude em mma.	52
2.4	Curvas de luz a esquerda e transformada de Fourier das estrelas que observamos com a técnica de fotometria rápida.Nos gráficos da esquerda, o eixo x temos tempo em segundos e no eixo y a intensidade fracional sobre a média. Nos gráficos à direita, fragüência em Hz o amplitudo em mus	52
2.5	Curvas de luz a esquerda e transformada de Fourier das estrelas que observamos com a técnica de fotometria rápida.Nos gráficos da esquerda, o eixo x temos tempo em segundos e no eixo y a intensidade fracional sobre a média. Nos gráficos à direita	33
	freqüência em Hz e amplitude em mma.	54

2.6	Curvas de luz a esquerda e transformada de Fourier das estrelas	
	que observamos com a técnica de fotometria rápida.Nos gráficos	
	da esquerda, o eixo x temos tempo em segundos e no eixo y	
	a intensidade fracional sobre a média. Nos gráficos à direita,	
	freqüência em Hz e amplitude em mma.	55
2.7	Curvas de luz a esquerda e transformada de Fourier das estrelas	
	que observamos com a técnica de fotometria rápida.Nos gráficos	
	da esquerda, o eixo x temos tempo em segundos e no eixo y	
	a intensidade fracional sobre a média. Nos gráficos à direita,	
	freqüência em Hz e amplitude em mma.	56
2.8	Curvas de luz a esquerda e transformada de Fourier das estrelas	
	que observamos com a técnica de fotometria rápida.Nos gráficos	
	da esquerda, o eixo x temos tempo em segundos e no eixo y	
	a intensidade fracional sobre a média. Nos gráficos à direita,	
	freqüência em Hz e amplitude em mma.	57
2.9	Curvas de luz a esquerda e transformada de Fourier das estrelas	
	que observamos com a técnica de fotometria rápida.Nos gráficos	
	da esquerda, o eixo x temos tempo em segundos e no eixo y	
	a intensidade fracional sobre a média. Nos gráficos à direita.	
	freqüência em Hz e amplitude em mma.	58
2.10	Curva de luz da estrela WD0000-0046 e sua transformada de Fou-	
	rier. A linha pontilhada representa 3σ .	59
2.11	Curva de luz da estrela WD1650+3010 e sua transformada de Fou-	
	rier. A linha pontilhada é 1σ	60
2.12	Curva de luz da estrela HS1550+0012 e sua transformada de Fou-	
	rier. Esta estrela foi observada no Telescópio Zeiss do LNA, por	
	1.5 horas e com este tempo de observação foi possível identifi-	
	car pelo menos um período de pulsação de 644 segundos (1553	
	μHz) e amplitude de 20.2mma e $\langle A \rangle = 6.6mma$ (representada	
	pela linha contínua).	61
2.13	Curva de luz da estrela HS2145+2231 e sua transformada de Fou-	
	rier. Esta estrela foi observada no Telescópio de $1.60m$ LNA, por	
	2.2 horas e com este tempo de observação foi possível identificar	
	pelo menos um período de pulsação de 111 segundos (9045 μHz)	
	e amplitude de 3.0 mma.	62
2.14	Nesta figura são mostrados os espectros obtidos durante este tra-	
	balho. O fluxo, eixo vertical, está deslocado para apresentação. O	
	comprimento de onda, eixo horizontal, está em Å.	70
2.15	Nesta figura são mostrados os espectros obtidos durante este tra-	. 0
0	balho. O fluxo, eixo vertical, está deslocado para apresentação. O	
	comprimento de onda, eixo horizontal, está em Å.	71

2.16	Nesta figura são mostrados os espectros obtidos durante este tra- balho. O fluxo, eixo vertical, está deslocado para apresentação. O	
2.17	comprimento de onda, eixo horizontal, está em Å	72
	balho. O fluxo, eixo vertical, está deslocado para apresentação. O	72
2 1 8	Nosto figuro são mostrados os ospectros obtidos durante este tra	13
2.10	halho O fluxo eixo vertical está deslocado para apresentação O	
	comprimento de onda, eixo horizontal, está em Å	74
3.1	Nesta figura podemos observar a dependência em $\log g$ para os	
	modelos de atmosfera, considerando a temperatura de 12 500 K. É	
	visível o alargamento das linhas mais altas H_{δ} , H_{ϵ} e H_8 , enquanto	
	que as linhas mais baixas H_{β} e H_{γ} sofrem pouca influência da	0.2
2 2	gravidade. Us valores de $\log g$ sao $1,0, 1,5, 8,0, 8,5 e 9,0, \ldots$	83
5.2	Nesta ligura podemos notar as variações de I_{ef} sob um determi-	
	6.80 enquanto que os valores de temperatura são de 9.000 K	
	10 000 K 12 000 K 15 000 K e 18 000 K	84
3.3	Nesta figura observamos a largura das linhas H_{α} , H_{α} , H_{δ} e H _c	01
0.0	como função da temperatura, mostrando que o máximo ocorre	
	próximo de 13 000 K. Estes gráficos são para $\log g = 8.0$	85
3.4	Esta figura é do trabalho de Bergeron et al. (1995) e mostra	
	uma comparação entre as temperaturas derivadas por espectros no	
	ultra-violeta (UV) e espectros óticos; utilizando diferentes parametriz	zações
	da MLT. A linha contínua mostra onde $T_{ef}(otico) = T_{ef}(UV)$; as	
	linhas tracejadas, representam a incerteza de 350 K associada às	
~ -	medidas no ótico.	86
3.5	Fitagem das linhas, mostramos os perfis de linhas desde H_{β} em	
	baixo ate H_9 em cima, com um deslocamento vertical fixo para	07
26	Eitagen des linhes mestremes es perfs de linhes desde <i>U</i> en	97
5.0	Fitageni das minas, mostramos os peris de minas desde π_{β} em	
	melhor clareza	98
3.7	Fitagem das linhas, mostramos os perfis de linhas desde H_{β} em	70
	baixo até H_9 em cima, com um deslocamento vertical fixo para	
	melhor clareza.	99
3.8	Fitagem das linhas, mostramos os perfis de linhas desde H_{β} em	
	baixo até H_9 em cima, com um deslocamento vertical fixo para	
	melhor clareza.	100

3.9	Fitagem das linhas, mostramos os perfis de linhas desde H_{β} em baixo até H_0 em cima, com um deslocamento vertical fixo para	
	melhor clareza.	101
3.10	Fitagem das linhas, mostramos os perfis de linhas desde H_{β} em baixo até H_9 em cima, com um deslocamento vertical fixo para	
	melhor clareza.	102
3.11	Modelos evolucionários de Leandro Althaus, cada linha corresponde a um modelo com massa constante, a menor massa é $0, 15M_{\odot}$ e a maior massa é $1, 392M_{\odot}$. $\log[g(cm/s^2)] \in \log[T_{ef}(K)]$.	103
3.12	Comparação entre os modelos evolucionário de Matt Wood e Le- andro Althaus. A linha contínua corresponde aos modelos de Althaus 2002 e os pontos os modelos de Wood 1995. $\log[g(cm/s^2)]$	
	$e \log[T_{ef}(K)]$.	104
4.1	Espectros do SDSS com parâmetros determinados pelo perfil das linhas de Balmer desde Ha inferior até Ha superior com um des-	
	locamento vertical fixo para melhor clareza. A linha contínua cor-	
	responde ao espectro observado e a linha tracejada representa o	111
42	Espectros do SDSS com parâmetros determinados pelo perfil das	111
7.2	linhas de Balmer desde H_{β} inferior até. H_{0} superior, com um des-	
	locamento vertical fixo para melhor clareza. A linha contínua cor-	
	responde ao espectro observado e a linha tracejada representa o	
	modelo que melhor ajusta o espectro	112
4.3	Espectros do SDSS com parâmetros determinados pelo perfil das linhas de Balmer desde H_{β} inferior até, H_9 superior, com um des-	
	locamento vertical fixo para melhor clareza. A linha contínua cor-	
	responde ao espectro observado e a linha tracejada representa o	
1 1	Modelo que melhor ajusta o espectro	113
4.4	(pontos) e o modelo que melhor ajusta o espectro. São 3 espectros	
	selecionados aleatoriamente do catálogo SDSS, de estrelas com	114
15	magnitude $g_{19}, 0, 19, 3, 19, 5$ respectivamente	114
4.3	dos neste trabalho: resultado do ajuste de todo espectro (ALL) A	
	massa média da amostra de 2253 espectros é de 0.613 M_{\odot}	115
4.6	Distribuição de $\log q$ dos espectros do catálogo SDSS utilizados	110
-	neste trabalho; resultado do ajuste de todo espectro. $O \log g$ médio	
	da amostra de 2253 espectros é de 7,818 \pm 0,0173	116

4.7 4.8	Distribuição de temperaturas dos espectros do catálogo SDSS uti- lizados neste trabalho; resultado do ajuste de todo espectro. A Temperatura média da amostra de 2253 espectros é de 19236 K. 117 $T_{ef} e \log g$ para uma amostra de 2253 espectros do SDSS. A linha contínua representa a posição de $\log g$ médio que corresponde a 7,818
5.1	Função resposta para a calibração de fluxo dos objetos do catálogo 2df, conforme proposto por Lewis et al. (2002). Está função foi empregada para a calibração dos espectros 2df analisados nesta seção
5.2	Distribuição de $T_{\rm ef}$ e $\log g$ das 477 estrelas do catálogo 2DF com magnitude g ≤ 19.5
6.1	Comparação de meus resultados com outros trabalhos: Mukadam et al. (2004) no painel superior. Verificamos desvios sistemáticos na comparação com Mukadam et al. (2004). No painel inter- mediário mostramos a comparação de resultados com Bergeron et al. (2001) e, no painel inferior, mostramos a comparação com
6.2	resultados obtidos por Liebert et al. (2005)
6.3	Comparação de meus resultados (LPT) com os apresentados por Kepler et al. (2007)(ALL). A média das diferenças são $T_{\rm ef}$ = 306 K e em log(g) = -0.130, ou seja, que na média minhas determinações de $T_{\rm ef}$ são 306 K maior que as apresentadas por Kepler et al. 2007, assim como para log(g) meus resultados em média são 0.130 menores que os apresentados por Kepler et al. (2007) 135
7.1	Distribuição de magnitudes da nossa amostra de estrelas DA; no painel superior a distribuição de magnitudes das estrelas do SDSS que utilizei no capítulo 4. No painel intermediário, mostramos a distribuição de magnitude das estrelas do 2df discutidas no capítulo 5. E por fim no painel inferior apresento minha distribuição de magnitudes, para as estrelas cujos espectros são de alta razão S/R e foram observados para esta tese

7.2	Distribuição de massa da amostra de 170 estrelas DA observadas
	com alto S/R , e que apresenta massa média de 0.620 M_{\odot} 140
7.3	Distribuição de temperaturas da amostra de 170 estrelas DA ob- servadas. Obtivemos temperatura a média de 12.213 K 141
74	No gráfico acima mostramos a distribuição de massa da sub amos-
/.1	tra de espectros observados que apresentam $T_c < 12000 K$ Esta
	sub amostra apresenta massa média de $\langle M \rangle = 0.671 \pm 0.214 M_{\odot}$
	num total de 74 estrelas. No gráfico inferior apresentamos a distribuição
	de massa da estrelas com $T_c > 12000 K$ em um total de 02 estre-
	las Obtivemos massa média de $\langle M \rangle = 0.573 M_{\odot} \pm 0.182$ Detec-
	tamos portanto uma aumento de massa para baixas T_c similar aos
	observados em Liebert et al. (2005). Kenler et al. (2007). Como
	as anõs branças em 12.000 K só têm menos de 1 Gano, este efeito
	não é devido a evolução das estrelas massivas
75	Distribuição de massa dos 2253 espectros do SDSS Massa média
1.5	obtida é de $(0.613 \pm 0.260)M_{\odot}$ 145
76	Distribuição de massa dos espectros do SDSS separados por $T_{c} >$
7.0	12000 K e 8500 $< T_c < 12000$ K No painel inferior apre-
	sentamos a distribuição de massa dos 1647 espectros com $T_{c} >$
	12000 K. No painel superior mostramos a distribuição de massa
	dos espectros com $8500 < T_{\rm of} < 12000 K$
7.7	Distribuição de massa dos 466 melhores espectros do 2df. Massa
	média obtida é de $(0.654 \pm 0.242)M_{\odot}$
7.8	Distribuição de massa dos espectros do 2df separados por $T_{\rm ef}$ >
	12000 K e $T_{\rm ef}$ < 12000 K. No gráfico superior mostramos as
	estrelas com $T_{\rm ef} < 12000$ K, já no gráfico inferior observamos a
	distribuição de massa das estrelas mais quentes com $T_{\rm ef} \ge 12000$ K.148
7.9	Distribuição de massa dos 332 estrelas do 2df classificados com
	$8500 K \le T_{\rm ef} \le 12000 K$ 149
7.10	Esta figura nos mostra uma comparação entre a distribuição de
	massa dos espectros de alto S/R obtidos para este trabalho (histo-
	gramas hachurados) e outras distribuições de massa da literatura
	(histogramas abertos). WK = Weidemann & Koester (1984); BRB
	= Bragaglia, Renzine & Bergeron (1995); FKB = Finley, Koester
	& Basri (1997); BSL = Bergeron, Saffer & Liebert (1992) 151
7.11	Esta figura nos mostra uma comparação entre a distribuição de
	massa dos espectros de alto S/R obtidos para este trabalho (his-
	togramas hachurados) e outras distribuições de massa da litera-
	tura (histogramas abertos). NGS = Napiwotzki, Green & Saffer
	(1999); Marsh et al.(1997); MacMahan (1989); VTGD = Vennes,
	Thejll, Galvan, Dupuis (1997)

7.12	Esta figura nos mostra uma comparação entre a distribuição de	
	massa dos espectros de alto S/R obtidos para este trabalho (histo-	
	gramas nachurados) e outras distribuições de massa da literatura (histogramas abartos). PLP – Pargaron Laggett & Puiz (2001):	
	(instogramas abertos). $BLR = Bergeron, Leggett & Ruiz (2001),$ LB – Laioje & Bergeron (2007): LBH – Liebert Bergeron & Hol-	
	$\frac{153}{153}$	5
7.13	Esta figura mostra de outra forma o aumento de massa das es-	
	trelas de 8000 $K \leq T_{\rm ef} \leq 12000 K$. No eixo "x"representa a	
	temperatura onde dividimos em intervalos discretos de 14000 K	
	até 8 500 K, e determinamos a massa média das estrelas nestes	
	nestes intervalos. Os círculos representam a massa média das es-	
	trelas que foram observadas neste projeto e os discos indicam os	
	resultados publicados por Liebert et al. 2005	ł
8.1	Esta figura mostra a Faixa de instabilidade onde estão sendo mos-	
	tradas apenas as estrelas que possuímos espectros óticos com S/R	
	> 50. As estrelas ZZ Cetis que definem a faixa de instabilidade	
	sao na borda azul GDI33 e GDI65 e a borda vermelha e definida palas estrelas $P208 = FC1402 = 1446$ som $T_{\rm est}$ a massage respect	
	peras estrelas Kous e EC1402 –1440 com T_{ef} e massas, respec- tivamente 12318 K 12384 K 11089 K 11119 K e $0.492 M_{\odot}$	
	$0.649M_{\odot}, 0.620M_{\odot}, 0.689M_{\odot}, \dots, 0.689M_{\odot}, \dots, 0.610M_{\odot}$	
8.2	Esta figura mostra a comparação entre os valores de T_{ef} e log g	
	publicados por Eisenstein et al. (2006) e Kleinman et al. (2004). 167	1
8.3	Esta figura mostra a comparação entre os valores de T $_{ef}$ e $\log g$	
	obtido com os programas LPT e auto 21	,
8.4	Esta figura mostra a comparação entre os valores de T_{ef} e log g	
05	obtido com os programas LPT e auto 23	,
8.3	Esta ligura mostra a comparação entre os valores de Γ_{ef} e log g obtido com os programas auto 22 Eisenstein et al 2006 170)
8.6	Esta figura mostra a faixa de instabilidade determinada utilizando	'
0.0	os valores determinados por Eisenstein et al. (2006). Observe	
	que com as 68 estrelas detectadas pelo SDSS, a faixa de ins-	
	tabilidade não é pura, em desacordo com as determinações por	
	Bergeron et al. (2004) e Gianninas et al. (2005). Com estas	
	determinações, dentro da faixa de instabilidade surgem algumas	
	estrelas nao-variáveis que Mukadam et al. (2004a) e Mullally et	
	al. (2003) classificaram como NOV (Not Observed Variation). Al-	
	observadas e classificadas como DAV [Castanheira et al. (2007a)] 171	

8.7	Esta figura mostra a Faixa de instabilidade empírica com todas as estrelas que observamos seus espectros e as estrelas do SDSS que temos feita a fotometria de séries temporais. Quando incluímos as estrelas do SDSS a faixa de instabilidade torna-se impura, devido às determinações imprecisas de T_{ef} e log g para os espectros de baixa razão sinal-ruído, e aos limites de deteccão acima de 3 mma.	172
8.8	Esta figura mostra a faixa de instabilidade para as estrelas do SDSS, utilizando as minhas determinações de $T_{ef} e \log(g)$ utilizando a técnica do ajuste o perfíl de linha da série de Balmer	179
8.9	Esta figura mostra a faixa de instabilidade para as estrelas do SDSS, utilizando as minhas determinações de $T_{\rm ef}$ e $\log(g)$ utilizando a técnica do ajuste total do espectro (ALL). Os círculos representam as estrelas ZZ Cetis e os pontos as estrelas classificadas como NOV, segundo Mukadam et al. 2004 e Mullally et al. 2005	181
9.1	Esta é a faixa de instabilidade obtida com espectros de alta razão S/R, com observações feitas especialmente para este trabalho	183
9.2	Esta é a faixa de instabilidade apenas para as estrelas ZZ Ceti apresentada por Bergeron et. (2004), observe que não existem	
9.3	estrelas constantes no interior da Faixa de instabilidade Esta é a faixa de instabilidade apenas para as estrelas ZZ Ceti e algumas estrelas constantes apresentada por Gianninas et. (2007). Nesta figura mostro apenas as estrelas variáveis.	184
9.4	Esta é a faixa de instabilidade apenas para as estrelas ZZ Ceti e al- gumas estrelas constantes pesquisadas na literatura e apresentadas por Gianninas et. (2005), observe que não existem estrelas cons- tantes no interior da Faixa de instabilidade. Todos os resultados são referentes a espectros de alta razão S/R.	186
9.5	Nesta figura fazemos a superposição da faixa apresentada por Gi- anninas et al. (2005) e a faixa de instabilidade resultante deste trabalho com os espectros de alta razão sinal/ruído. A linha con- tinua representa a faixa de instabilidade deste trabalho e a linha tracejada uma possível faixa de instabilidade dos resultados de	100
9.6	Esta figura mostra mais uma faixa de instabilidade contendo todas as estrelas deste trabalho, em verde e com barras de erro, em preto representamos a faixa de instabilidade das estrelas do SDSS, e em vermelho a faixa de instabilidade de Gianninas et al. (2005)	188

Esta figura mostra a relação entre período e amplitude de pulsação
para todas as ZZ Cetis conhecidas Observe que nas bordas (meno-
res e maiores) da faixa de instabilidade dos períodos de pulsação
das ZZ Cetis as amplitudes são bem menores que no centro da
faixa de instabilidade

LISTA DE TABELAS

1.1	Classificação espectral das Anãs Brancas	15
1.2	Lista de Todas as estrelas ZZ Cetis conhecidas com suas coor-	
	denadas, período, amplitudes dominante, \mathbf{T}_{ef} e $\log g$	25
2.1	Dados fotométricos obtidos na literatura	43
2.1	Dados fotométricos obtidos na literatura	44
2.1	Dados fotométricos obtidos na literatura	45
2.2	Tabela de limite de não variabilidade	47
2.3	Diário de observações	64
3.1	Constante numéricas da MLT; eficiência convectiva crescente de cima para baixo	79
3.2	Apresento os valores de $T_{\rm ef}$ e log g ML $2\alpha = 0.6$ usando perfil de linha, massa e idade calculadas usando os modelos de Wood 1995	
3.2	e Althaus et al. 2001	90
	e Althaus et al. 2001	91
3.2	Apresento os valores de T_{ef} e log g ML2 $\alpha = 0.6$ usando perfil de linha, massa e idade calculadas usando os modelos de Wood 1995 e Althaus et al. 2001	92
3.2	Apresento os valores de $T_{\rm ef}$ e log g ML2 $\alpha = 0.6$ usando perfil de linha, massa e idade calculadas usando os modelos de Wood 1995 e Althaus et al. 2001	93
4 1		20
4.1	trelas do SDSS utilizados neste trabalho	107
4.1	Tabela de coordenadas destas estrelas e espectros de algumas es-trelas do SDSS utilizados neste trabalho	108
4.2	Tabela com os valores de $T_{\rm eff}$ e log g ML2/ $\alpha = 0.6$ usando perfil de linha, também é mostrado a massa calculada e a idade calcula-	
	das usando os modelos de Wood (1995)	109

4.2	Tabela com os valores de T_{eff} e log g ML2/ $\alpha = 0.6$ usando perfil de linha, também é mostrado a massa calculada e a idade calculadas usando os modelos de Wood (1995)	110
6.1	Comparação entre os valores de T_{ef} e $\log g$ deste trabalho e Mu- kadam et al. (2004a).	125
6.2	Comparações entre os valores de T_{ef} e $\log g$ deste trabalho e Ber- geron et al. (2001).	126
6.4	Tabela de Comparação entre os resultados obtidos no capítulo	
	3 e os resultados apresentados por Gianninas et al. (2005)	127
6.3	Comparações entre os valores de $T_{\rm ef}$ e $\log g$ deste trabalho e Lie-	100
65	bert et al. (2005). \ldots bert et al. (2005). \ldots	130
0.5	e Lajoie et al. (2007). \ldots	132
7.1	Massa média para amostragem de estrelas com espectros observa-	
	dos para este trabalho	138
7.2	Massa Média para a nossa fitagem LPT de espectros do SDSS	143
7.3	Massa Média para amostragem de espectros do 2df	144
7.4	Resultados estatísticos obtidos neste trabalho e por outros que tra-	1.50
75	tam da distribuição de massa das anas brancas	150
7.5	temperatura.	156
8.1	Estrelas ZZ Cetis que possuímos espectro ótico para análise es- tatística da Faixa de Instabilidade da Estrelas DAs; os valores de $T_{ef} e \log(g)$ são determinados usando a técnica de perfil das linhas	
	de Balmer	160
8.2	Resultados fornecidos pelos auto 21, auto 23 e auto 22	163
8.2	Resultados fornecidos pelos <i>auto 21, auto 23 e auto 22</i>	164
8.2	Resultados fornecidos pelos <i>auto 21, auto 23 e auto 22</i>	165
8.2	Resultados fornecidos pelos <i>auto</i> 21, <i>auto</i> 23 e <i>auto</i> 22 \dots	166
8.3	Espectros do SDSS na região do otico para analise estatística da	
	com perfil de linhas de Balmer	173
83	Espectros do SDSS na região do ótico para análise estatística da	175
0.5	Faixa de Instabilidade, com parâmetros atmosféricos calculados	
	com perfíl de linhas de Balmer.	174
8.3	Espectros do SDSS na região do ótico para análise estatística da	
	Faixa de Instabilidade, com parâmetros atmosféricos calculados	
	com perfíl de linhas de Balmer	175

8.4	Parâmetros atmosféricos calculados para algumas estrelas ZZ Ce- tis e NV do SDSS usando todo espectro (linhas de Balmer e contínuo)176
8.4	Parâmetros atmosféricos calculados para algumas estrelas ZZ Ce- tis e NV do SDSS usando todo espectro (linhas de Balmer e contínuo)177
8.4	Parâmetros atmosféricos calculados para algumas estrelas ZZ Ce- tis e NV do SDSS usando todo espectro (linhas de Balmer e contínuo))178
8.5	Lista de estrelas em que não foram detectadas variações em sua curva de luz, porém apresentam T_{ef} na faixa de instabilidade; resultados publicados por Mukadam et al. (2004) e Mullally et al. (2005).	180
10.1	Tabela de resultados $T_{\rm ef}$ e log g usando modelos com ML $2\alpha = 0.6$	100
10.1	através do ajuste de todo espectro. Total de 2467 espectros Tabela de resultados $T_{\rm ef}$ e log g usando modelos com ML $2\alpha = 0.6$	192
10.1	através do ajuste de todo espectro. Total de 2467 espectros Tabela de resultados $T_{\rm ef}$ e log g usando modelos com ML2 $\alpha = 0.6$	193
10.1	através do ajuste de todo espectro. Total de 2467 espectros Tabela de resultados T_{ef} e log g usando modelos com ML $2\alpha = 0.6$	194
10.1	através do ajuste de todo espectro. Total de 2467 espectros Tabela de resultados T_{c} e log gusando modelos com ML $2\alpha = 0.6$	195
10.1	através do ajuste de todo espectro. Total de 2467 espectros Tabela de resultados T_{ef} e log gusando modelos com ML2 $\alpha = 0.6$	196
10.1	através do ajuste de todo espectro. Total de 2467 espectros	197
10.1	Tabela de resultados $T_{\rm ef}$ e log g usando modelos com ML $2\alpha = 0.6$ através do ajuste de todo espectro. Total de 2467 espectros	198
10.1	Tabela de resultados $T_{\rm ef}$ e log g usando modelos com ML $2\alpha = 0.6$ através do ajuste de todo espectro. Total de 2467 espectros	199
10.1	Tabela de resultados $T_{\rm ef}$ e log g usando modelos com ML $2\alpha = 0.6$ através do ajuste de todo espectro. Total de 2467 espectros	200
10.1	Tabela de resultados $T_{\rm ef}$ e log g usando modelos com ML $2\alpha = 0.6$ através do ajuste de todo espectro. Total de 2467 espectros	201
10.1	Tabela de resultados $T_{\rm ef}$ e log g usando modelos com ML $2\alpha = 0.6$ através do ajuste de todo espectro. Total de 2467 espectros.	202
10.1	Tabela de resultados $T_{\rm ef}$ e log g usando modelos com ML $2\alpha = 0.6$ através do ajuste de todo espectro. Total de 2467 espectros	203
10.1	Tabela de resultados $T_{\rm ef}$ e log g usando modelos com ML2 $\alpha = 0.6$ através de sinete de todo espectro. Total de 2467 espectros.	203
10.1	Tabela de resultados $T_{\rm ef}$ e log g usando modelos com ML $2\alpha = 0.6$	204
10.1	atraves do ajuste de todo espectro. Total de 2467 espectros Tabela de resultados $T_{\rm ef}$ e log g usando modelos com ML $2\alpha = 0.6$	205
	através do ajuste de todo espectro. Total de 2467 espectros	206

10.1	Tabela de resultados $T_{ m ef}$ e log gusando modelos com ML $2\alpha = 0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	207
10.1	Tabela de resultados $T_{\rm ef}$ e log g usando modelos com ML $2\alpha = 0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	208
10.1	Tabela de resultados $T_{\rm ef}$ e log g usando modelos com ML $2\alpha = 0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	209
10.1	Tabela de resultados $T_{\rm ef}$ e log g usando modelos com ML $2\alpha = 0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	210
10.1	Tabela de resultados $T_{\rm ef}$ e log g usando modelos com ML $2\alpha = 0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	211
10.1	Tabela de resultados $T_{\rm ef}$ e log g usando modelos com ML $2\alpha = 0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	212
10.1	Tabela de resultados $T_{\rm ef}$ e log g usando modelos com ML $2\alpha = 0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	213
10.1	Tabela de resultados $T_{ m ef}$ e log g usando modelos com ML2 $lpha=0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	214
10.1	Tabela de resultados $T_{ m ef}$ e log g usando modelos com ML2 $lpha=0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	215
10.1	Tabela de resultados $T_{\rm ef}$ e $\log{\rm g}$ us ando modelos com ML2 $\alpha=0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	216
10.1	Tabela de resultados $T_{\rm ef}$ e $\log{\rm g}$ us ando modelos com ML2 $\alpha=0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	217
10.1	Tabela de resultados $T_{\rm ef}$ e $\log{\rm g}$ us ando modelos com ML2 $\alpha=0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	218
10.1	Tabela de resultados $T_{\rm ef}$ e $\log{\rm g}$ us ando modelos com ML2 $\alpha=0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	219
10.1	Tabela de resultados $T_{\rm ef}$ e $\log {\rm g}$ usando modelos com ML2 $\alpha=0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	220
10.1	Tabela de resultados $T_{\rm ef}$ e $\log {\rm g}$ usando modelos com ML2 $\alpha=0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	221
10.1	Tabela de resultados $T_{\rm ef}$ e $\log {\rm g}$ usando modelos com ML2 $\alpha=0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	222
10.1	Tabela de resultados $T_{\rm ef}$ e $\log {\rm g}$ usando modelos com ML2 $\alpha=0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	223
10.1	Tabela de resultados $T_{\rm ef}$ e $\log {\rm g}$ usando modelos com ML2 $\alpha=0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	224
10.1	Tabela de resultados $T_{\rm ef}$ e $\log {\rm g}$ usando modelos com ML2 $\alpha=0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	225
10.1	Tabela de resultados $T_{\rm ef}$ e $\log {\rm g}$ usando modelos com ML2 $\alpha=0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	226

10.1	Tabela de resultados $T_{\rm ef}$ e $\log {\rm g}$ usando modelos com ML2 $\alpha=0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	227
10.1	Tabela de resultados $T_{\rm ef}$ e log g usando modelos com ML $2\alpha = 0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	228
10.1	Tabela de resultados $T_{\rm ef}$ e log g usando modelos com ML $2\alpha = 0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	229
10.1	Tabela de resultados $T_{\rm ef}$ e log g usando modelos com ML $2\alpha = 0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	230
10.1	Tabela de resultados $T_{\rm ef}$ e log g usando modelos com ML $2\alpha = 0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	231
10.1	Tabela de resultados $T_{\rm ef}$ e log g usando modelos com ML $2\alpha = 0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	232
10.1	Tabela de resultados $T_{ m ef}$ e \log g usando modelos com ML $2\alpha = 0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	233
10.1	Tabela de resultados $T_{\rm ef}$ e $\log{\rm g}$ us ando modelos com ML2 $\alpha=0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	234
10.1	Tabela de resultados $T_{\rm ef}$ e $\log {\rm g}$ usando modelos com ML2 $\alpha=0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	235
10.1	Tabela de resultados $T_{\rm ef}$ e $\log {\rm g}$ usando modelos com ML2 $\alpha=0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	236
10.1	Tabela de resultados $T_{\rm ef}$ e $\log {\rm g}$ usando modelos com ML2 $\alpha=0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	237
10.1	Tabela de resultados $T_{\rm ef}$ e $\log {\rm g}$ usando modelos com ML2 $\alpha=0.6$	
	através do ajuste de todo espectro. Total de 2467 espectros	238
11.1	Tabela $T_{\rm ef}$ e log g com modelo ML $2\alpha = 0.6$ usando perfil de linha	240
11.1	Tabela $T_{\rm ef}$ e log g com modelo ML $2\alpha = 0.6$ usando perfil de linha	241
11.1	Tabela $T_{\rm ef}$ e log g com modelo ML $2\alpha = 0.6$ usando perfil de linha	242
11.1	Tabela $T_{\rm ef}$ e log g com modelo ML $2\alpha = 0.6$ usando perfil de linha	243
11.1	Tabela $T_{\rm ef}$ e log g com modelo ML $2\alpha = 0.6$ us ando perfil de linha	244
11.1	Tabela $T_{\rm ef}$ e log g com modelo ML $2\alpha = 0.6$ us ando perfil de linha	245
11.1	Tabela $T_{\rm ef}$ e log g com modelo ML $2\alpha = 0.6$ us ando perfil de linha	246
11.1	Tabela $T_{\rm ef}$ e log g com modelo ML $2\alpha = 0.6$ us ando perfil de linha	247
11.1	Tabela $T_{\rm ef}$ e \log g com modelo ML 2 $\alpha=0.6$ usando perfil de linha	248

RESUMO

As estrelas ZZ Cetis, também chamadas de DAVs, são anãs brancas com atmosfera de hidrogênio que mostram variabilidade fotométrica. Neste trabalho buscamos estudar a pureza, a existência ou não de variáveis e estrelas constantes com mesmas $T_{\rm ef}$ e log g, e definir com melhor precisão os contornos da faixa de instabilidade das estrelas ZZ Cetis. Para isto realizamos observações de séries temporais fotométricas para identificar novas estrelas do tipo ZZ Ceti, e também obtivemos espectros óticos para determinação dos parâmetros atmosféricos ($T_{\rm ef}$ e $\log q$), utilizando modelos atmosféricos com convecção descrita pela teoria de comprimento de mistura, com ML2/ $\alpha = 0, 6$. Ao longo deste trabalho identificamos 3 novas estrelas do tipo ZZ Ceti, WDJ0000-0046, WDJ2334+0103 e WDJ1650+3010, dentre 67 para as quais não encontramos variabilidade até o nosso limite de detecção, próximo de 2 mma. Além disto estudamos a distribuição de massa através de espectros óticos de 170 estrelas, assim como a comparação destes resultados com outros publicados na literatura. Também analisamos a distribuição de massa de outras amostras de espectros óticos de anãs brancas: 2253 espectros do Sloan Digital Sky Survey e 449 espectros do Two Degree Field. Em todas distribuições estudadas, observamos um aumento na massa das estrelas da faixa de instabilidade e as mais frias, região de temperatura onde aumentam a convecção e o número de partículas neutras. O aumento de massa observado provavelmente não é real, e sim provocado pela forma como são aproximadas as interações de partículas ionizadas com o campo elétrico (efeito Stark) e de partículas neutras (Van der Walls), nos modelos de atmosfera. A razão pela qual não propomos que o aumento de massa seja real é que os mesmos parâmetros atmosféricos, quando determinados pelas cores fotométricas, não apresentam este aumento. Um resultado de nossa análise é que a faixa de instabilidade das estrelas ZZ Cetis, determinada através de espectros óticos de alta razão sinal/ruído, contém apenas estrelas variáveis em seu interior.

Face à descoberta de estrelas variáveis com amplitudes de 1,5 mma, previamente classificadas como não variáveis, será necessário um estudo mais profundo de todas as estrelas classificadas como não observadas como variáveis (NOV) até o momento, reduzindo os limites de detecção para a faixa de 1 mma, para definirmos com precisão as bordas da faixa de instabilidade das ZZ Cetis.

ABSTRACT

ZZ Ceti are hydrogen atmosphere white dwarf stars that show photometric variability. In this work we study the purity and define with better precision the borders of the instability strip of the ZZ Cetis stars. We obtained times series photometric observations to identify new ZZ Ceti stars, and optical spectra for the determination of the atmospheric (T_{eff} and $\log g$) parameters, using atmospheric models with convection described by mixing length theory with ML2/ α = 0.6. We identified 3 new ZZ Ceti stars: WDJ0000-0046, WDJ2334+0103, and WDJ1650+3010, among 67 stars for which we detected no variability up to our detection limit about 2 mma. We analyzed the mass distribution of the 170 stars we observed with $S/N \ge 70$ optical spectra. We also studied the mass distribution of other samples of white dwarfs, 2253 spectra of Sloan Digital Sky Survey and 449 spectra of the Two Degree Field. In all studied distributions, we observed an increase in the mass determined for the stars cooler than the instability strip. This apparent increase occurs in a region where there is an increase in the depth of convection and in the number of neutral particles. We propose the increase in mass is not real, but caused by the form the Stark and Van der Walls broadenings are estimated in the atmospheric models. The reason we do not trust the mass increase is that the determination of masses using photometric colors, for the same stars, do not show such increase.

One result from our research is that we find no constant stars inside the instability strip when we consider only our high S/N spectra. Considering the recent discovery of variable stars with amplitudes down to 1.5 mma, previously classified as not variables, we deem it necessary to restudy all stars not observed to vary around the instability strip, down to limits of 1 mma.

1. INTRODUÇÃO

O céu sempre foi um grande desafio e fonte de inspiração para todos nós; desde os tempos mais remotos vem sendo utilizado como mapa, calendário e relógio. Os chineses, gregos, assírios, babilônios e egípcios, acreditavam existir um ensinamento vindo das estrelas, a posição de certas estrelas no céu servia para indicar períodos de seca ou chuva, estações importantes para o plantio e a colheita. A busca por entender o movimento dos planetas levou à abstração das constelações do Zodíaco. Ao longo do tempo, a astronomia desempenhou importante papel no processo de evolução tecnológica. Foi o comportamento dos planetas que inspirou Newton a formular as três leis que resumem toda a mecânica clássica; além disto suas observações ajudaram a desenvolver uma ferramenta matemática de extrema importância até os dias de hoje, o cálculo diferencial e integral, com aplicações em todas as áreas do conhecimento. O empenho em adquirir mais conhecimento do céu levou o homem em busca de novas tecnologias e a construção de naves espaciais e satélites artificiais, para fins de comunicação, militares e mesmo para a exploração do espaço. A corrida espacial nos levou a descoberta de tecnologias importantes, como os microprocessadores, e propiciou uma série de desenvolvimento em outras tecnologias, dentre eles vestimentas térmicas que auxiliam bombeiros e salvam a vida de bebês prematuros; e também devemos lembrar que graça à vontade de observar mais longe e ter imagens de boa resolução dos mais longínquos objetos celestes, surgiu a técnica da ótica adaptativa que também passou a ser implementada nos diagnósticos oftalmológicos, nas comunicações por fibra ótica, dentre outras inúmeras aplicações. A astronomia é uma ciência de base, de forma que em geral as tecnologia desenvolvidas através desta nem sempre têm aplicações práticas imediatas, e as vezes essas aplicações podem demorar alguns anos para ocorrer. Quem poderia imaginar que os estudos de Maxwell sobre o eletromagnetismo no final do século XIX poderiam ser de tamanha utilidade para desenvolver as tecnologias contemporâneas em telecomunicações? Ou mesmo, que o efeito foto-elétrico que rendeu prêmio Nobel a Einstein seria tão difundido em produtos eletro-eletrônicos? Em fim, para que possamos continuar evoluindo, descobrindo novas tecnologias, é necessário investimento em pesquisa de base.

Neste trabalho tenho como principal objetivo investigar um fenômeno importante que acontece durante a evolução de uma classe de estrelas, chamadas **anãs** **brancas**. Anã branca é o objeto celeste resultante do processo evolutivo de estrelas que iniciam sua vida com até cerca de $10M_{\odot}$, o que significa dizer que cerca de 98% de todas as estrelas evoluirão até a fase de anã branca. Em uma vizinhança de 100 parsecs, a maior parte das estrelas são anãs brancas e anãs vermelhas. Embora inicie sua evolução com até $10M_{\odot}$, quando chega à fase de anã branca tem massa próxima a $0, 6M_{\odot}$. Neste período evolutivo a estrela já queimou o H e He nuclear e não tem temperatura no núcleo suficiente para fundir carbono ou oxigênio, formado em sua evolução anterior, em reações de nucleossíntese, restando apenas a alternativa de lentamente entrar em equilíbrio térmico com o meio interestelar.

Um dos canais evolutivos que permite que a estrela alcance a fase de anã branca é seguir a sequência principal, passando pelo ramos da gigante vermelha, e super gigante, onde ocorre a queima nuclear de Hidrogênio e Hélio e constante perda de massa, a estrela ejeta sua camada externa e forma uma nebulosa planetária, deixando para trás um núcleo composto praticamente de carbono e oxigênio. Embora este núcleo seja inicialmente até mil vezes mais luminoso que o Sol e apresente temperatura efetiva que pode chegar acima de 150 000 K, ele não tem uma fonte de energia nuclear e a partir deste instante gradualmente irradia sua energia e esfria. Durante o ramo das gigantes, o núcleo sofre um colapso gravitacional muito intenso, de forma que seu volume é semelhante ao volume da Terra, e torna-se um material com densidade da ordem de 2000 vezes a densidade da platina, que é o elemento mais denso conhecido na Terra. Entretanto, existem outros possíveis canais evolutivos para a estrela atingir a fase de anã branca; um deles é após a seqüência principal e ramo das gigantes, passando diretamente do ramo horizontal estendido para anã branca. Isso pode acontecer se sua massa inicial for inferior a $0, 8M_{\odot}$. No entanto, isto só ocorre para cerca de 2% das anãs brancas conhecidas. Um terceiro canal evolutivo que pode produzir anãs brancas é através de estrelas binárias interagentes.

No diagrama de Hertzsprung-Russel, as estrelas anãs brancas formam uma seqüência bem definida, cerca de 8 magnitudes menos brilhante do que as estrelas da seqüência principal. O colapso gravitacional da anã branca é equilibrado pela pressão de degenerescência eletrônica. A maior massa de uma anã branca, além da qual a pressão da matéria degenerada não pode mais suportá-la, é em torno de $1, 4M_{\odot}$. Um núcleo com massa maior do que este limite (conhecido como limite de Chandrasekhar) pode explodir em uma supernova.

À medida que esfriam, as anãs brancas passam por períodos de instabilidade, nos quais a estrela torna-se pulsante, cruzando faixas de instabilidade, que acontecem em 3 regiões diferentes do diagrama HR: a primeira delas é quando a pré - anã branca é ainda muito quente, com temperaturas da ordem de 170 000 K a 75 000 K, outra quando a estrela que apresenta atmosfera de He atinge temperatura efetiva da ordem de 25 000 K e, por fim, as estrelas com atmosfera de H que apresentam estas instabilidades por volta dos 12000 K.

Nesta tese estudo de forma sistemática quando inicia e quando termina o fenômeno de instabilidade nas estrelas anãs brancas que possuem atmosfera de Hidrogênio, as mais frias e também as mais numerosas; também pretendo investigar a distribuição de massa das estrelas envolvidas.

No *capítulo 1* é feita uma revisão bibliográfica, onde defino o que é uma anã branca e algumas características físicas importantes desta classe de objetos celestes. No *capítulo* 2 apresento os resultados que obtive durante minha busca por novas estrelas variáveis através de técnica de fotometria rápida e os espectros óticos que usei para terminar os parâmetros atmosféricos de algumas estrelas próximas da faixa de instabilidade. No *capítulo 3* explico como foi que determinei os parâmetros atmosféricos das estrelas selecionadas. No *capítulo 4* faço a mesma determinação para espectros de estrelas do "data release 1"(DR1) do Sloan Digital Sky Survey (SDSS); no capítulo 5 apresento resultados que obtive para outro catálogo de anãs brancas, o 2 degree field (2df). No capítulo 6 faço a comparação de meus resultados com os apresentados em outros trabalhos para as mesmas estrelas. No capítulo 7 calculo a distribuição de massa das estrelas observadas, e que determinei os parâmetros atmosféricos neste trabalho. No capítulo 8 apresento uma discussão a respeito da faixa de instabilidade das estrelas anãs brancas de atmosfera de H (DAs) e, por fim, no capítulo 9 apresento a conclusão. Apresento na forma de apêndices as tabelas de resultados obtidos para os espectros do SDSS e 2df.

1.1 Aspectos históricos

Para os astronômos o termo anã, em geral, se refere a uma estrela pequena. A cor (branca, azul, vermelha) serve para indicar a temperatura superficial. Objetos muito quentes emitem mais energia em comprimentos de onda próximos da cor azul, enquanto que os objetos mais avermelhados, que emitem mais energia na faixa espectral da cor vermelha, são mais frios. As anãs brancas aparecem em um diagrama H-R em um largo intervalo de temperatura efetiva que inicia em 180 000 K e vai até $T_{\rm ef} \geq 3700$ K.

Em 1844, o astrônomo Friedrich Bessel registrou que a estrela Sírius¹ apresentava oscilações em relação às estrelas de fundo, modificando sua posição espacial, e acabou concluindo que deveria existir algum objeto em órbita da estrela, provocando movimentos de Sírius em torno do centro de massa. Este fato foi efetivamente comprovado e solucionado em 1862 por Alvan Graham Clark², que identificou visualmente uma estrela muito fraca, companheira com a qual Sírius

¹ A estrela mais brilhante no céu depois do Sol.

² um fabricante de telescópios, junto com seu pai, Alvan Clark.

Fig. 1.1 Imagem de Sirius A, a estrela mais brilhante e a anã branca Sírius B, proposta primeiramente por Friedrich Bessel em 1844, porém somente visualizada por Alvan Graham Clark em 1862. A seta indica Sírius B.

formava um sistema binário; à estrela nova foi dado o nome Sírius B. Cerca de meio século mais tarde, em torno de 1920, a órbita da estrela companheira de Sírius foi completamente determinada e, portanto, foi possível calcular sua massa aplicando-se as leis de Newton. O resultado foi que a massa da estrela era semelhante à do Sol, embora seu brilho fosse muito menor.

Outra forma já conhecida na época para extração de alguma informação da estrela era através do espectro. Walter S. Adams descobriu que Sírius B era uma *estrela branca*. As medidas espectrais davam conta de que a Sírius B emitia mais na região do azul que no vermelho, apresentando temperatura superficial (T_{ef}) da ordem de 16 000 K. Conhecendo-se o fluxo da estrela (medido através do espectro ou da fotometria), pode-se calcular a luminosidade pela relação $L = F4\pi d^2$ (onde F=fluxo da estrela e d é a distância da Terra até a estrela). Sabendo-se a luminosidade e a T_{ef} , pode-se calcular o raio da estrela a partir da relação $L = 4\pi R^2 \sigma T_{eff}^4$, e o resultado obtido foi de $R \approx 18000$ km, 3 vezes maior que o raio da Terra. Aparentemente Sírius B era uma *estrela anômala*. Três anos depois foram descobertas mais 2 estrelas, 40 Eridani B e Van Maanan 2 que apresentavam características semelhantes à Sírius B, mostrando que Sírius B não se tratava de um simples caso particular, mas representava uma nova classe de estrelas. E esta nova classe tinha como principal característica ser uma centena de vezes menor que uma estrela regular como o Sol, porém com massa aproximadamente semelhante à do Sol.

O que mais intrigava nesta nova classe de estrelas é que o material que a cons-

tituia deveria ter um densidade enorme, algo entre 10^6 e $10^7 g/cm^3$, milhares de vezes a densidade da platina, o elemento químico mais denso conhecido.

Atualmente o termo **anã branca** é utilizado para designar uma vasta variedade de estrelas anãs com temperatura variando entre 180 000 e 3 700 K e luminosidade de 10^3 a $10^{-5} L_{\odot}$, com raio poucas vezes maior que o da Terra.

Sem dúvidas o que chamava muito atenção nesta nova classe de objetos é que devido às altas densidades observadas nas estrelas do tipo anãs brancas, a força gravitacional não poderia ser contra balanceada apenas pela pressão térmica do gás, como acontece nas estrelas não evoluídas.

Em 1926 Ralph H. Fowler utiliza a recém desenvolvida estatística de Fermi-Dirac para explicar o que acontece com as anãs brancas e para isto sugere a existência de uma força devido à pressão dos elétrons, que, por se tratar de material tão denso, deveriam estar em estado completamente degenerado. Deveria ser desta forma pois o raio de Sirius B obtido foi de 18 000 Km e sua densidade de $\rho = 0,7 \times 10^5$ g/cm³. Você pode ver que 1 litro dessa matéria tem uma massa de 70 toneladas. Que tipo de matéria pode suportar a compressão de uma massa igual à do Sol num volume quase igual ao da Terra? Foi a principal questão na época.

A estas densidades, os núcleos atômicos se aproximam a tal ponto que seus estados ligados não são mais independentes dos núcleos vizinhos. Os elétrons ocupam os níveis de energia obedecendo ao princípio da incerteza de Heisenberg e o de exclusão de Pauli. Os elétrons nos estados mais elevados de energia (maior momentum) contribuirão fortemente para a pressão.

Em qualquer gás, a pressão resulta dos movimentos das partículas. Num gás ideal, tais movimentos surgem por causa da energia térmica ($T \neq 0$). Para um gás completamente degenerado, mesmo à temperatura teórica T= 0, o movimento é causado por efeitos quânticos descritos pelo **Princípio de Exclusão de Pauli** e pelo **Princípio da Incerteza de Heisenberg** ($\Delta r \Delta p > h$), importante em altas densidades como é o caso das anãs brancas. Nesta situação, a separação média Δr entre os elétrons é muito pequena e, por conseqüência, o momento é muito grande. Os elétrons comprimidos possuem altas velocidades ($v = dp/dm_e$), fornecendo desta forma a pressão de degenerescência eletrônica necessária para evitar o colapso gravitacional.

Mais tarde, em 1939, Subrahmanyan Chandrasekhar também contribui neste sentido, e utilizando o formalismo de polítropos, encontra o valor de massa limite para que uma anã branca permaneça em equilíbrio. Chandrasekhar assume que a matéria no interior destas estrelas se comporta como um gás degenerado, porém não relativístico; pode-se aplicar a lei de potência $P \propto (\rho/\mu_e)^{5/3}$ (P é a pressão, ρ é a densidade de massa da estrela e μ_e é o peso molecular médio por elétron, ou seja, número médio de massas atômicas por elétron).

Os polítropos são modelos que permitem estimar os valores iniciais de pressão

Fig. 1.2 Diagrama cor-magnitude (H-R) para as anãs brancas em termos de M_V e (B – V). Estas informações foram obtidas do catálogo de McCook e Sion (1987); a linha sólida é a seqüência principal, e o Sol é representado por \odot .

central e raio estelar para serem implementados em modelos estelares detalhados. Os polítropos são adaptados para vários casos particulares, desde as anãs brancas até mesmo para estrelas nos ramos de gigantes e supergigante. A equação de estado para o gás de elétrons em estado completamente degenerado porém não relativístico é uma lei de potência com $P_e \propto (\rho/\mu_e)^{5/3}$ (no sistema cgs):

$$P_e = 1,004 \times 10^{13} \left(\frac{\rho}{\mu_e}\right)^{\frac{5}{3}} dina/cm^2$$
(1.1)

1.2 Massa de Chandrasekhar

A massa máxima de uma anã branca é obtida calculando-se a pressão totalmente degenerada e totalmente relativística (v=c),

$$P_e = 0,123 \frac{hc}{m_p^{4/3}} \left(\rho \frac{Z}{A}\right)^{4/3}$$
(1.2)

em equilíbrio hidrostático (assumindo simetria esférica):

$$\frac{1}{r^2}\frac{d}{dr}\left(\frac{r^2}{\rho}\frac{dP}{dr}\right) = 4\pi G\rho \tag{1.3}$$

Substituindo-se (1.2) na equação de equilíbrio hidrostático 1.3, obtém-se

$$M_{Ch} = 0, 2\left(\frac{Z}{A}\right)^2 \left(\frac{hc}{Gm_p^2}\right)^{3/2} m_p = \frac{5,836}{\mu_e^2} M_{\odot} = 1,456 \left(\frac{2}{\mu_e}\right)^2 M_{\odot}$$
(1.4)

onde μ_e é o peso molecular médio dos elétrons, e é igual a 2 para He, C, ou O totalmente ionizados. O limite de massa de Chandrasekhar, $[=1, 456(\frac{2}{\mu_e})^2 M_{\odot}]$, é a massa máxima que uma anã branca pode ter e ainda ser suportada pela pressão de degenerescência dos elétrons; $\mu_e = A/Z$ é o peso molecular médio ($\mu_e = 2$ para hélio, carbono ou oxigênio). Tetsuo Hamada & Edwin Ernest Salpeter publicaram em 1961 no Astrophysical Journal, 134, 683, correções devido às interações eletrostáticas entre os íons e ao decaimento beta inverso, mostrando que a massa máxima para uma anã branca com núcleo de magnésio era $1,35M_{\odot}$, e $1,40 M_{\odot}$ para carbono. No mesmo artigo eles derivaram a relação empírica massa-raio das anãs brancas, para temperatura zero. Subrahmanyan Chandrasekhar e Robert F. Tooper (1964, Astrophysical Journal, 183, 941) demonstraram que as anãs brancas colapsam por efeitos da relatividade geral com 98% da massa de Chandrasekhar.

Várias anãs brancas são encontradas com massas abaixo de 0,50 M_{\odot} ; os modelos de evolução estelar indicam que estas estrelas não passaram pela fase luminosa (topo) do ramo gigante assintótico (AGB), fase de Mira e subseqüente fase de nebulosa planetária, mas sim tiveram perda de massa suficientemente alta para truncar sua evolução no início do AGB, ou ainda no ramo horizontal, onde há queima de hélio no núcleo. Uma razão para esta truncagem seria se a camada rica em hidrogênio próxima à superfície não tiver massa suficiente para manter ignição e reignição de queima de hidrogênio *shell flashes*. Há alta probabilidade que parte destas anãs brancas sejam resultado da evolução de sistemas binários interagentes, mas as observações recentes de anãs brancas com núcleo de He e massa da ordem de $0, 45M_{\odot}$ em aglomerados de alta metalicidade por Kalirai et al (2007), mostram que é possível formá-las mesmo em sistemas não binários.

Existem poucas anãs brancas com massas medidas por astrometria ou sismologia:

- 1. Sírius B: $M = 1,053 \pm 0,028 M_{\odot}$
- 2. 40 Eri B (sistema triplo): $M = 0,42 \pm 0,02 M_{\odot}$
- 3. Procyon B: $M = 0,62 M_{\odot}$
- 4. L 870-2: um sistema com duas anãs brancas com $P_{orb} = 2,5 d$ e componentes com M = 0,41 e $0,46 \pm 0,1 M_{\odot}$
- 5. Stein 2051B: com massa mais provável de $M = 0,50 \pm 0,05 M_{\odot}$
- 6. PG 1159-035 com massa sismológica de $0,59\pm0,01\,M_\odot$
- 7. PG 2131+066 com massa sismológica de $0, 61 \pm 0, 02 M_{\odot}$

A massa de Chandrasekhar é a massa máxima que uma estrela anã branca pode ter, e ser suportada por pressão degenerada dos elétrons. As duas estrelas não binárias de mais alta massa, inferidas espectroscopicamente com espectros de boa razão sinal-ruído, são PG1658+441, com $\log g = 9,36 \pm 0,07$, massa $M = 1,31 \pm 0,02 M_{\odot}$ e $T_{\rm ef} = 30\,500$ K, e GD 50, com $\log g = 9,00 \pm 0,15$ e massa $M = 1,2 \pm 0,07 M_{\odot}$. Ambas estão abaixo do limite de $1,35 M_{\odot}$, a massa de Chandrasekhar para um núcleo de Mg, o elemento nuclear mais provável.

A maior parte das estrelas anãs brancas com massas acima de $0,55 M_{\odot}$ provavelmente passou pela fase de nebulosa planetária, mas em geral 30% das anãs brancas não são descendentes das nebulosas planetárias. Somente cerca de 2% das anãs brancas evoluíram diretamente do ramo horizontal e os 28% restantes vêm igualmente do ramo gigante assintótico e da evolução de sistemas binários interagentes.

1.3 Espectroscopia

Segundo Kepler & Saraiva (2004), em 1802, William Hyde Wollaston (1766-1828) observou que, passando a luz solar por uma fenda e depois por um prisma, apareciam algumas linhas escuras no espectro, que ele interpretou como o limite das cores. Estas linhas são imagens da fenda do espectrógrafo em diferentes comprimentos de onda. Até 1820, o fabricante de instrumentos de vidro (lentes, prismas, microscópios e telescópios) alemão Joseph von Fraunhofer (Frauenhofer) (1787-1826), de Munique, já havia contado 574 linhas escuras no espectro solar, chamadas depois de linhas de Fraunhofer. Para 324 destas linhas, Fraunhofer deu o nome de letras maiúsculas: A, B, C ... para as linhas mais fortes e minúsculas para as mais fracas, começando com A no vermelho. Fraunhofer também observou linhas nos espectros das estrelas Sírius, Castor, Pollux, Capella, Betelgeuse e Procyon. Na verdade, Fraunhofer utilizava as linhas do espectro solar para calibrar seus instrumentos (vidros e prismas), que eram os de melhor qualidade fabricados naquela época. Como pequenas variações na quantidade e mistura de quartzo (SiO_2) , cal (CaO) e soda (carbonato de sódio, Na_2CO_3) que compõem o vidro (basicamente SiO_4) fazem que os prismas fabricados desloquem o comprimento de onda em diferentes ângulos, Fraunhofer usava as linhas do espectro solar para determinar as propriedades dos vidros.

Em 1856, o químico alemão Robert Wilhelm Bunsen inventou o bico de gás (bico de Bunsen), cuja vantagem era a de ter chama incolor. Quando um elemento químico era colocado sobre a chama, as cores emitidas eram as da substância, e não da chama. Bunsen tinha um colaborador mais jovem, o físico Gustav Robert Kirchhoff, de Heidelberg. Kirchhoff já havia formulado as leis que governam as voltagens e correntes em circuitos elétricos, que levam seu nome, em 1845. Em 1856, Kirchhoff sugeriu que as cores seriam melhor distingüidas se passadas através de um prisma. Eles colocaram um prisma na frente de um conjunto de lentes e passaram a identificar as linhas com os elementos químicos. Os gases quentes observados por Kirchhoff e Bunsen não emitiam um espectro contínuo. Eles descobriram que cada elemento gerava uma série de linhas diferentes. Por exemplo, o neônio tinha linhas no vermelho (por isto um cartaz de neon é vermelho), o sódio tinhas linhas no amarelo e o mercúrio tinha linhas no amarelo e no verde.

A observação dos espectros estelares tomou impulso em 1860 com Giovanni Battista Donati em Florença, e logo depois com Lewis M. Rutherfund em Nova Iorque, George Biddel Airy em Greenwich, William Huggins em Londres, e Angelo Secchi em Roma. Em 1869, Angelo Secchi, acoplou ao seu telescópio um espectroscópio e decidiu observar as estrelas e verificou que várias estrelas mostravam linhas de absorção, pouco mais largas comparada com os espectros obtido em laboratório. Com base em suas observações, Secchi classificou os espectros estelares em tipos espectrais, de acordo com a aparência que eles tinham. A ciência do século XIX não sabia explicar como as linhas espectrais de umelemento químico particular são afetadas pela temperatura e densidade do gás. Mesmo assim, já havia um grande conhecimento acumulado sobre os espectros produzidos pelos vários elementos químicos. Com o surgimento da mecânica quantica e dos modelos atômicos foi possível entender que as linhas espectrais aparecem sempre que ocorre mudança na quantidade de energia contida em determinado átomo ou íon. Tanto os átomos quanto os íons podem ser ionizados ou excitados por processos de colisão em que uma partícula livre colide com um elétron e transfere parte de sua energia, ou por radiação quando ocorre a absorção de um fóton com energia correspondente a diferença de energia entre dois níveis eletrônicos.

As linhas espectrais podem se extender por um intervalo de freqüências e não em um único valor de freqüência, que chamamos de alargamento. O mecanismo de alargamento pode ser causado por alguns processos físicos que classificamos por: alargamento natural, alargamento Doopler térmico e alargamento por pressão.

1.3.1 Alargamento natural

A energia de um elétron que se encontra em determinado nível atômico é dada pelo princípio da incerteza de Heisenberg, sendo inversamente proporcional ao tempo de vida naquele nível. Assim um grupo de átomos irá produzir linhas de absorção ou emissão com uma faixa mínima de variação de freqüência os fótons da ordem de:

$$\Delta\nu \propto \frac{1}{\Delta t} = \frac{\Delta E}{h} \tag{1.5}$$

1.3.2 Alargamento Doppler térmico

Este tipo de alargamento depende da temperatura e da composição química do gás. As partículas do gás movem-se aleatóriamente, e os movimentos dos átomos ao longo da linha de visada resultam em deslocamentos Doppler na radiação emitida ou absorvida. Um exemplo é o caso do hidrogênio neutro à T = 6000 K, que se move com velocidade média de ~ 12Km/s. Essa velocidade das partículas corresponde a um alargamento fracional de $\frac{\Delta\lambda}{\lambda} \sim \frac{\Delta V}{c} \sim 4 \times 10^{-5}$. Desta forma a largura Doppler térmica da linha H_{α} é de 0, 25Å.

O problema do alargamento das linhas espectrais das estrelas e sua forma, modelada por uma função lorentziana, foram explicados somente no início do século XX, sendo estes provocados por dois princípios: efeito Doppler e alargamento por pressão. Se as moléculas do gás estivessem em repouso, o espectro de frequências observado deveria ser uma função do tipo delta de Dirac; entretanto, como elas se movem devido a efeitos térmicos e interação com outros íons, o efeito Doppler provoca alargamento das linhas, tornando o perfil da linha mais próximo de uma função lorentziana; nas anãs brancas este alargamento é maior por que os elétrons movem-se com alta velocidade. O alargamento térmico para determinado comprimento de onda a meia altura (FWHM) por efeito Doppler é dado pela expressão:

$$\Delta\lambda_{1/2} \sim (7, 16 \times 10^{-7}) \lambda \left(\frac{T}{m}\right)^{1/2}$$
 (1.6)

onde T é a temperatura (em K) e m a massa molar (em uma).

No entanto este não é o único efeito que provoca o alargamento da linhas espectrais das estrelas; é necessário levar em consideração o alargamento por pressão, provocado por colisões de átomos ionizados e neutros, e a iteração com o campo elétrico dos íons. Estas iterações contribuem para o alargamento das linhas

espectrais, com um potencial que é uma função da separação entre as partículas, que em geral pode ser modelado por uma lei de potência onde as trocas de energia na forma de frequência são:

$$\Delta \nu = \frac{\Delta E}{h} = C_n r^n \tag{1.7}$$

onde ΔE simboliza a energia trocada, C_n uma constante e n é um número inteiro. n = 2 representa efeito Stark linear; n = 3 representa o potencial devido à ressonância; n = 4 Stark quadrático; n = 6 Van de Walls. Dentre estes potenciais, o efeito Stark é dominante em todas as estrelas quentes, devido a maior parte das partículas estarem em estado ionizado. Já nas estrelas mais frias, com a maior parte das partículas neutras, o potencial de r^6 passa a ser importante e, portanto, o alargamento das linhas do espectros recebe contribuição significativa do efeito Van der Walls.

A largura total à meia altura por ressonância em comprimento de onda é na forma:

$$\Delta \lambda_{1/2} \sim 8.6 \times 10^{-30} \left(\frac{g_i}{g_k}\right)^{1/2} \lambda^2 \lambda_r f_r N_i \tag{1.8}$$

onde λ é o comprimento de onda da linha observada, $f_r e \lambda_r$ são frequência e comprimento de onda da linhas ressonantes, $g_k e g_i$ são funções de pesos estatísticos do nível superior e inferior e N_i a densidade de número no nível fundamental.

O FWHM devido ao efeito Stark é na forma:

$$\Delta \lambda_{1/2} \sim 2,50 \times 10^{-9} \lambda \alpha_{1/2} N_e^{2/3}$$
(1.9)

sendo N_e a densidade de elétrons e $\alpha_{1/2}$ um parâmetro a meia altura que depende da temperatura e da densidade de elétrons.

Por fim o FWHM devido a efeito Van der Walls é:

$$\Delta \lambda_{1/2} \sim 30 \times 10^{16} \lambda^2 C_6^{2/5} \left(\frac{T}{\mu}\right)^{3/10} N \tag{1.10}$$

onde μ é a massa atômica reduzida, C_6 é uma constante de interação, N densidade de número e T a temperatura³.

Dentre estes 3 diferentes efeitos de alargamento por pressão (ressonância, Stark e Van der Walls) os alargamentos por Stark e Van der Walls estão sempre presentes, a diferença é que para as estrelas mais quentes que 8 000 K o efeito Stark é dominante e então sua distorção é dominante, para as estrelas mais frias

³ referência http://physics.nist.gov/Pubs/AtSpec/

o efeito Van der Walls é dominante tornando as linhas espectrais mais distorcidas por este potencial. No caso das anãs brancas que serão tratadas nesta tese, o alargamento espectral provocado pelo efeito Stark é dominante.

1.4 Observações de Anãs Brancas

Hoje em dia conhecemos cerca de 15 000 anãs brancas originárias de diversos catálogos, como por exemplo McCoock & Sion (1993) (2249 estrelas), Edinburg Cape (600 anãs brancas), Hamburg Eso Survey (900 anãs brancas), 2DF (900 anãs brancas), Sloan Digital Sky Survey ($\approx 10\,000$ anãs brancas, até dr4), Kiso Survey (≈ 300 anãs brancas). Sistematicamente estima-se que a densidade espacial de estrelas anãs brancas é de 0,003 estrela/ pc^3 (Liebert et al. 2005) que corresponde a aproximadamente 1% da densidade dinâmica de massa da vizinhança solar. Considerando esta densidade espacial e suas escalas de tempo de esfriamento teóricas, a razão de surgimento (nascimento) de anãs brancas é estimada $\approx 10^{-12}pc^{-3}$ ano⁻¹. Esta razão também corresponde a razão de morte de estrelas da seqüência principal (Weidemann 1977). Aproximadamente 70% das anãs brancas conhecidas são originárias de núcleo de nebulosa planetária (Drilling & Schönberner 1984), que mostra evidências diretas de que a sua progenitora da seqüência principal é do tipo A, F, G ou K.

De acordo com a lei de Stefan-Boltzmann, uma estrela de temperatura superficial T_{ef} tem fluxo na superfície

$$I = \sigma T_{\rm ef}^4 \tag{1.11}$$

onde σ é a constante de Stefan-Boltzmann. O fluxo observado é

$$F = \frac{4\pi R^2 I}{4\pi d^2}$$
(1.12)

onde d é a distância até a estrela, e podemos calcular o raio (R) da estrela pelas equações acima 1.11 e 1.12, se conhecemos d. A distância pode ser obtida medindo-se a paralaxe. Se a anã branca se forma em um sistema binário junto com uma estrela da seqüência principal, podemos utilizar outra técnicas para estimar a distância até a companheira [por exemplo, método da banda K infravermelho (Bailey 1981, Warner 1987, Bieriman et al. 1985)].

A massa da anã branca M pode ser obtida combinando as medidas de raio obtidas anteriormente e o potencial gravitacional superficial, chegando depois em um relação M/R. O potencial gravitacional pode ser medido através do desvio para o vermelho gravitacional de Einstein [por exemplo Bergeron, Liebert & Fulbright (1992)]

Fig. 1.3 Nesta figura podemos perceber a significativa diferença entre um espectro de estrela do tipo A, no painel superior, e o espectro de uma anã branca (no painel inferior). Ressalto que a maior diferença referente ao alargamento das linhas de Balmer ocorre fundamentalmente porque o efeito Doppler Stark é de maior intensidade nas anãs brancas que nas estrelas do tipo A. A estrela do painel superior é a ID0220-3423 conforme Ortiz et al. 2007, e a estrela no painel inferior é a PG 1022+050 deste trabalho.

$$\frac{\Delta\lambda}{\lambda} \sim \frac{GM}{Rc^2} \tag{1.13}$$

onde λ é o comprimento de onda de uma linha de absorção ou emissão da superfície da anã branca. O valor obtido é usualmente expresso como um desvio Doppler

$$v_{dop} = c \frac{\Delta \lambda}{\lambda} = 0,6362 \left(\frac{M}{M_{\odot}}\right) \left(\frac{R_{\odot}}{R}\right) km/s \tag{1.14}$$

1.5 Classificação das anãs brancas

Seguindo o método científico, depois de identificar uma classe nova de objetos, devemos diferenciá-los quanto às características comuns. As anãs brancas são classificadas quanto à composição espectral ou melhor, à composição de sua atmosfera, e além disto elas podem ser diferenciadas por sua temperatura: as mais quentes e as mais frias; a temperatura pode ser estimada através do fluxo total integrado em todos comprimentos de onda

$$F = \frac{4\pi R^2 \sigma T_{\rm ef}^4}{4\pi d^2}$$
(1.15)

A maioria das anãs brancas observadas ($\approx 86\%$) são do tipo DA, caracterizadas por apresentarem somente as linhas de Balmer no ótico. Elas existem no intervalo de temperatura, desde 7 000K até 130 000K, isto é, sobre todo alcance de cores com -0, 3 < B - V < +0, 4 ou -1, 4 < U - V < +0, 0. No diagrama de duas cores do sistema Strömgren, (u - b) - (b - y), elas ocupam uma faixa bem definida, formando um grupo homogêneo. A temperatura efetiva é o principal parâmetro.

A forma de classificação espectral atual para as anãs brancas foi proposta por Sion et al. (1983) e preserva algumas características do sistema de classificação desenvolvido por Greenstein (1960). Este sistema consiste numa descrição sumária do espectro ótico, mais um termo numérico que indica uma estimativa da temperatura. A primeira letra é sempre D (maiúscula), indicando que trata-se de uma estrela degenerada; a segunda letra, também maiúscula, indica o tipo espectral dominante na região do ótico, similar à classificação de Harward para as anãs: A para linhas de H, B para linhas de He I, O para He II; conforme a tabela (1.1), uma eventual terceira letra maiúscula pode ser utilizada para representar o tipo espectral secundário (DAB ou DBA), e por fim, um número que pode variar de 1 até 9, que indica a temperatura da estrela, definido por N.

$$N = 10 \times \Theta_{\rm ef} (= 50040 {\rm K/T_{ef}})$$
 (1.16)
Tipo	Características	Exemplos	$M_{\rm V}$
DA	H I presente, não há He I	40 Eri B	10-13
DB	presença de He I, não há H I	L 1573-31	11
DO	He II presente, He I e/ou H I	HZ 21	10
DC	espectro contínuo	W 457	12-15
DZ	linhas de metais	G 5–28	12-15

Tab. 1.1 Classificação espectral das Anãs Brancas

De forma mais intuitiva, podemos dizer que as DA1 e DA2 são estrelas quentes, com temperaturas superiores a 25 000 K, e as estrelas DA4 apresentam T_{ef} nas proximidades da faixa de instabilidade das estrelas DAs (ZZ Cetis ~ 12 000 K).

1.6 Evolução da composição química das anãs brancas

Os modelos evolucionários dizem que quando a estrela ejeta a nebulosa planetária na base de um pulso térmico, o remanescente deveria ter uma camada de hidrogênio de cerca de $10^{-4}M_{\star}$, o que é mais provável pois os pulsos são muito rápidos. Se a estrela ejeta a nebulosa no pico do pulso térmico, o remanescente pode ficar sem nenhum hidrogênio.

Durante a evolução da nebulosa planetária, pode haver uma pequena queima termo-nuclear em camadas ou perda de massa, mas a procura de pulsações, por Butler Preston Anderson Hine III & R. Edward Nather em 1988, nestes núcleos de nebulosas planetárias, que deveriam estar excitadas pelo mecanismo ε de queima nuclear não acharam qualquer pulsação (Kawaler 1988). O mecanismo ε de desestabilização da estrela pelas reações nucleares foi proposto por Sir Arthur Stanley Eddington em 1930, em seu livro The Internal Constitution of Stars. A ausência de pulsações indica que os núcleos de nebulosas planetárias não retêm hidrogênio suficiente para permitir a queima termonuclear.

As DAVs estudadas por sismologia mostram uma camada de H entre $10^{-4} \ge M_{\star} \ge 10^{-10}$, consistente com a não existência de queima nuclear [Castanheira & Kepler (2008)].

Uma das possíveis origens das anãs brancas carentes em hidrogênio é através do fenômeno *Born Again*, ou renascer, proposto por Detlef Schönberner (1979) e Icko Iben Jr. (1982), em que um *flash* (queima explosiva) final de hélio ocorre na estrela central de uma nebulosa planetária quando esta recém chegou ao ramo das anãs brancas, e ela retorna ao ramo assintótico das supergigantes (AGB) momentaneamente. Este *flash* só deve ocorrer em uma parte pequena (15%) das estrelas,

Fig. 1.4 Esquema de evolução da composição química das anãs brancas DAs e DBs

pois estas chegam ao ramo das anãs brancas com uma quantidade significativa de hélio. Esta transição torna a fotosfera deficiente em hidrogênio, rica em hélio, carbono e oxigênio, como observado na PG1159-035.

1.7 Anãs brancas pulsantes

O estudo de pulsações em estrelas proporciona uma forma única de investigarmos o seu interior. Em analogia com a ciência que estuda o interior da Terra, chamamos esse estudo de astrosismologia. Depois do Sol, as estrelas anãs brancas são aquelas para as quais mais informação foi possível obter. Até o presente, a astrosismologia permitiu medir velocidades de rotação, massa das camadas superficiais, massas totais, rotação diferencial, bem como as taxas de esfriamento das anãs brancas ao longo do diagrama HR.

Winget et al. (1987) mostraram que é possível usar anãs brancas como cronômetros para medir a idade de grupos estelares, em particular de nossa Galáxia,

Fig. 1.5 Diagrama H-R onde é mostrado na forma esquemática o fenômeno Born Again

o que por sua vez serve como um limite inferior para a idade do Universo. Em face à discórdia naquela época dos valores da idade do Universo obtidos através da constante de Hubble (H_0) e de idades estelares em nossa Galáxia, a cronologia de anãs brancas ganhou atenção redobrada. A compreensão do fenômeno da cristalização é essencial para os estudos de esfriamento de anãs brancas. Quando a cristalização ocorre, ela adiciona aproximadamente 1 bilhão de anos aos tempos de esfriamento calculados para anãs brancas. Existe ainda um efeito potencialmente maior associado com a possível separação de fase dos elementos durante a cristalização que poderia adicionar entre 1 e 3 bilhões de anos às idades calculadas. Até hoje conhecemos apenas uma estrela em que pudemos medir que 90% de seu núcleo está cristalizado, a anã branca variável BPM37093 com massa de $M_{\star} = (1,05 \pm 0,05) M_{\odot}$ e $T_{\rm ef} = 12500 K$ [Kanaan et al. (2005)], mas as anãs brancas mais frias devem estar cristalizadas.

Pulsações não-radiais em estrelas na seqüência de esfriamento das anãs brancas são observadas em 3 diferentes regiões ou faixas de instabilidade:

- 1. as **PG 1159**, pré anã brancas pulsantes (**DOV**), $T_{ef} \sim 200\,000 \, K \, a \, 65\,000 \, K$
- 2. as variáveis **DB** (**DBV**), com atmosfera de He, $T_{ef} \sim 30\,000 \ K$ a 22 000 K
- 3. e finalmente, variáveis DA (DAV ou ZZ Ceti), com atmosfera de H, $T_{ef} \sim 12400 \text{ K}$ a 10800 K.

Todas estas estrelas são multiperiódicas e a pulsação é não radial, modo g (gravidade é a força restauradora). Os períodos de pulsação estão no intervalo de 70 até cerca de 2000 segundos, e as amplitudes de 0,002 a 0,3 magnitudes. Os modos normais de pulsação são descritos por números quânticos de harmônicos esféricos ℓ , m e um número radial, o k. ℓ representa o número de nódos na superfície, mo número de nódos que passam na direção dos pólos e k representa o número de nódos radiais. Modos de mesmo ℓ e m em uma estrela simetricamente esférica são degenerados, ou seja, apresentam mesma freqüência de pulsação. A degenerescência pode ser levantada por efeitos de rotação, conduzindo a um multipleto de $(2\ell + 1)$ freqüências de espaçamento constante, proporcional ao período de rotação, para rotação lenta, ou por campo magnético que, em primeira ordem, leva a $(\ell+1)$ multipletes. Para que a análise sismológica tenha sucesso, a identificação dos modos de pulsação deve ser precisa.

Para que possamos detectar as pulsações nas anãs brancas, precisamos observar estas estrelas com tempo de integração pequeno (da ordem de 5-10 segundos), mas como podem existir vários modos de pulsação (várias freqüências) durante uma observação, para distinguir todos os períodos de pulsação é necessário um tempo de observação longo (de horas a semanas), com poucas interrupções (por exemplo para remover degenerescência de modos rotacionais). Para tentar minimizar este problema, foi criado o *Whole Earth Telescope* ou WET (Nather et al. 1990) que consiste na colaboração de vários observatórios ao redor da Terra onde astrônomos observam a mesma estrela por cerca de 10-15 dias, a fim de obter uma curva de luz com poucas interrupções e, com isso, resolver os multipletos. De todos os objetos observados em mais de 20 campanhas do WET, podemos citar por exemplo a PG 1159–035 e a GD 358, duas anãs brancas observadas em algumas destas campanhas do WET, nas quais foram identificados mais de 100 periodicidades (Winget et al. 1991, 1994; Kepler et al. 2003, Costa et al. 2007). A partir dos modelos de pulsação, identificaram-se com precisão suas massas, luminosidades, períodos de rotação e estrutura de suas camadas internas.

1.8 Estrelas ZZ Cetis

O objetivo fundamental deste trabalho é estudar o comportamento de uma subclasse de estrelas anãs brancas que são conhecidas por ZZ Cetis, anãs brancas do tipo DA que apresentam pulsações, ou seja seu brilho varia à medida que o tempo passa. A protótipo é a estrela R548 = ZZ Ceti.

A primeira anã branca pulsante conhecida foi a HL Tau 76 ($\alpha = 04 : 18 : 56.46 \text{ e} \delta = +27 : 17 : 51.4$, época = 2000.0) que foi descoberta acidentalmente por Arlo Landolt (1968) durante um extenso programa fotométrico de estrelas padrões fotométricas. Landolt (1968) coletou a curva de luz em UBV para a estrela HL Tau 76 e observou uma complexa e multi-periódica variação de luminosidade na curva de luz desta estrela; com um período dominante ⁴ de ~ 750 segundos e amplitude de 20%, ou seja, a intensidade fracional das pulsações atingiu 0,2 mag no filtro V.

Este fato desencadeou um grande número de pesquisas em busca por oscilações de alta freqüência nas anãs brancas. O primeiro trabalho apresentado com este objetivo foi Hesser, Ostriker & Lawrence (1969), baseado em uma nova técnica desenvolvida para fotometria rápida. Como critério de seleção foram selecionadas as estrelas anãs brancas mais brilhantes para o teste de variabilidade, que proporcionou a descoberta de mais uma estrela variável dentre muitas testadas. A variação de luminosidade detectada foi de apenas ~ 0,01 mag (\pm 1% da curva de luz da estrela) e os períodos detectados 213 e 273 segundos, foram mais curtos em comparação com a única variável conhecida até então; a estrela foi a R 548 que passou a ser chamada de ZZ Ceti ⁵ e acabou por batizar a nova classe das estrelas DA variáveis [Lasker & Hesser (1971)]. De forma independente, Schulav & Kapatskaya (1973) publicaram a descoberta de outra estrela que apresentava variação de luminosidade na curva de luz, a estrela G 29–38, com características semelhantes às verificadas na HL Tau 76 (alta amplitude e longo período).

⁴ o período de maior amplitude

⁵ estrela variável ZZ da constelação da baleia

Na luz destas descobertas, tornou-se claro que as primeiras anãs brancas com luminosidade variável apresentavam certas propriedades em comum levando-se em conta o fato de que todas as três estrelas apresentavam pulsações multi-periódicas, eram estrelas com atmosfera de hidrogênio (anã branca DA) e além disso encontravamse muito próximas em um diagrama U–B e B–V. Em particular, os valores de B–V indicavam que as estrelas deveriam apresentar valores de temperatura efetiva muito próximo. Na esperança e quase certeza de que esta se tratava de uma nova sub classe das estrelas DAs, e não um fato meramente casual, John Mc-Graw e Edward Robinson intensificaram as buscas por novas estrelas DA que apresentassem variação de luminosidade, sendo que então, começaram a se definir critérios para a seleção estrelas. O primeiro critério de seleção foi os índices de cor B–V; estrelas DA que apresentavam índices de cor B–V \sim 0,20 eram candidatas a apresentar pulsações, por ser semelhante ao índice de cor apresentado pelas três anãs brancas até aquele momento.

Com base neste novo critério de seleção, Richer & Ulrych (1974) detectaram variabilidade na curva de luz da estrela G 117–B15A. Resultado semelhante foi obtido por Hesser, Lasker & Neupert (1976) para a estrela do hemisfério sul BPM 30551. Um estudo mais completo e sistemático usando este critério de seleção foi apresentado por McGraw (1977a) como parte de sua tese de doutorado. McGraw (1977a) observou uma amostra relativamente grande de estrelas anãs brancas DA brilhantes (tanto do hemisfério norte quanto do hemisfério sul) com índices de cor no intervalo $0, 15 \leq B - V \leq 0, 25$. O êxito de seu trabalho culminou com a descoberta de 7 novas estrelas variáveis G38–29 (McGraw & Robinson 1975), R808 (McGraw & Robinson 1976), GD99 (McGraw & Robinson 1976), G207–9 (Robinson & McGraw 1976), BPM 31594 (McGraw 1976), L19–2 (McGraw 1977) e GD154 (Robinson et al. 1978). De um total de 99 estrelas classificadas como não variáveis, apenas 7 foram classificadas como pulsantes, isto é , \pm 7% das estrelas eram variáveis.

Fontaine et al. (1980) foram os primeiros a apontar o fato de que o critério de seleção de candidatas à anãs brancas variáveis (DAVs) poderia ser melhorado utilizando um indicador de temperatura mais preciso que o índice de cor B–V. Mas ao mesmo tempo, estava estabelecido que as variações de luminosidade das estrelas desta classe eram causadas por modos restuarados pela gravidade (modos g) e acreditava-se que a instabilidade pulsacional surgia naturalmente durante a seqüência de esfriamento das anãs brancas. Além do mais, esta nova classe de estrelas DA está localizada em um estreito intervalo de T_{ef} ~ 10 000 - 12 000 K, chamado desde então de faixa de instabilidade das estrelas DA (ou faixa de instabilidade das ZZ Cetis) (McGraw 1979; Robinson 1979). Na mesma época também foi definido que o sistema espectro-fotométrico, chamado de multi-canal, obtido por Greenstein (1976), serviria como um melhor indicador de temperatura comparado com o sistema de cores de Johnson, principalmente por se tratar de sistemas

Fig. 1.6 Esta figura nos mostra uma representação da faixa de instabilidade com base nos índices de cor (**b**-**y**) versus (**u**-**b**) de Strömgren; os círculos fechado representam as estrelas não-variáveis e os círculos aberto as estrelas ZZ Ceti.

1. Introdução

de banda mais estreita e, com isso, a determinação dos parâmetros atmosféricos das estrelas ZZ Cetis seria mais precisa.

Com esta nova informação, Fontaine et al. (1982) e Greenstein (1982) usaram medidas de índices de cor G-R do sistema espectro-fotométrico de Greenstein para mapear com maior precisão a distribuição de T_{ef} das estrelas DAs nas proximidades da faixa de instabilidade. Em rápida análise, o sistema de cores de Johnson sugere empiricamente uma faixa de instabilidade impura, ou seja apresenta tanto estrelas variáveis quanto estrelas constantes no interior da faixa de instabilidade. Apenas 25% das estrelas efetivamente no interior desta faixa de instabilidade são realmente variáveis; ao passo que com uma nova faixa de instabilidade, determinada empiricamente usando os índices espectrofotométricos de Greenstein, mostra que dentro da faixa de instabilidade não existem estrelas constantes. As delimitações desta faixa de instabilidade são $-0, 45 \leq G - R \leq -0, 38$, o que corresponde a uma largura da ordem de 2000 K em temperatura efetiva. Portanto, isto sugere um novo critério de seleção de estrelas candidatas à ZZ Ceti; estrelas com $G - R \sim -0, 42$ apresentam grande possibilidade de serem ZZ Ceti. Entretanto, a quantidade de estrelas que apresentam medidas no sistema de Greenstein é muito pequena, e limitada apenas a estrelas do hemisfério norte, já que o sistema foi definido com o espectrofotômetro instalado no telescópio de 5m do Monte Palomar. O uso deste novo critério de seleção levou a descoberta de pelo menos mais 8 novas ZZ Cetis: GD385 (Fontaine et al. 1980), G225-2 (Vauclair et al. 1981), G185-32 (McGraw et al. 1981), G191-16 (McGraw et al. 1981), G226-29 (Fontaine et al. 1982), GD66 (Dolez, Vauclair & Chevreton 1983), G238-53 (Fontaine & Wesemael 1984) e PG2303+243 (Vauclair, Chevreton & Dolez 1987). Nos anos seguintes este critério de seleção das cores fotométricas continuou a ser utilizado, e novas variáveis continuaram a ser descobertas, ainda com baixa ocorrência. Dentre elas surgiram as estrelas EC 23487-2424 (Stobie et al. 1993), EC 14012–1446 (Stobie et al. 1995), KUV 08368+4026 (Vauclair et al. 1997) e BPM 24754 (Giovannini et al, 1998). A estrela BPM37093 foi descoberta como ZZ Ceti de forma semelhante por Kanaan et al. (1992) que selecionaram esta estrela com base na $T_{\rm ef}$ fitada ao espectro IUE por Kepler e Nelan (1993). Esta estrela havia sido classificada como constante por McGraw (1977), mas tem amplitude extremamente baixa, 0.04%. As estrelas constantes detectadas com este critério de seleção no diagrama cor-cor de Strömgren aparecem nas bordas da faixa de instabilidade; utilizando este critério de seleção de amostra de candidatas a ZZ Ceti, aproximadamente 25% das estrelas selecionadas são ZZ Ceti, ou seja, com freqüência de ocorrência muito superior ao critério de seleção por cores de Johnson.

Por outro lado, Daou et al. (1990) foram os primeiros a publicar resultados precisos de atmosfera das anãs brancas DA com $T_{ef} \leq 15\,000 \ K$. Eles combinaram espectros de alto sinal-ruído com os modelos de atmosfera publicados em

Bergeron et al. (1990) tendo como objetivo o mapeamento empírico das estrelas ZZ Cetis em um plano $\log g$ - T_{ef}. Seus resultados sugeriam que a anã branca GD 165 teria parâmetros atmosféricos muito semelhante aos das estrelas ZZ Cetis. Entretanto as observações fotométricas de variabilidade de luminosidade para a estrela a tinham declarado como estrela não variável (McGraw 1977a). Se esta não variabilidade estivesse correta, implicaria que a faixa de instabilidade não seria pura. Acreditando que a GD165 ainda poderia ser variável, Bergeron & Mc-Graw (1990) reobservaram a estrela com fotometria rápida e confirmaram se tratar de uma estrela ZZ Ceti, porém com amplitude de pulsação baixa.

Bergeron & McGraw (1990) sugerem um novo critério de seleção de candidatas a ZZ Ceti, prometendo ser mais eficiente que os empregados até então; esta nova proposta foi consolidada somente com o trabalho de Bergeron et al. (1995) que apresentou o estudo mais completo e sistemático para a época sobre todas as estrelas ZZ Cetis conhecidas até aquele momento. Neste trabalho é apresentado uma análise sobre as 22 ZZ Cetis conhecidas, demonstrando que com a espectroscopia ótica de alta razão sinal-ruído ($S/R \gtrsim 60$) e modelos de atmosfera, poderiam se estimar os valores dos parâmetros atmosféricos das ZZ Cetis e de suas vizinhas em um diagrama log g - T_{ef}. Em particular, a região neste diagrama preenchida pelas estrelas ZZ Cetis, denominada faixa de instabilidade, não apresentava a presença de estrelas constantes. Com os resultados apresentados neste trabalho, surge uma nova técnica de seleção de candidatas a ZZ Ceti. Dependendo dos valores de T_{ef} e log g, existiria uma probabilidade muito pequena de que uma estrela constante apresente valores dentro da faixa de instabilidade.

Empregando este método, Jordam et al. (1998) obteve espectro ótico de alto sinal-ruído e verificou que a estrela HS0507+0434A apresentava parâmetros atmosféricos na região das ZZ Cetis prevista por Bergeron et al (1995); testou a estrela fotometricamente e verificou que, realmente, a estrela é uma ZZ Ceti. A estrela PG 1541+650 também foi observada fotometricamente depois de selecionada por este novo critério e declarada variável por Vauclair et al. (2000). Com isso, o critério de seleção de amostra de candidatas à ZZ Ceti garantia que a estrela deveria ser ZZ Ceti e, portanto, este critério é o mais eficiente. Porém existe uma inconveniência para este método: para se atingir 100% de ocorrência, é necessário espectros óticos com sinal-ruído próximo a 100. Porém, para as estrelas menos brilhantes que $V \ge 13$, dependendo do telescópio e detectores, pode exigir muitas horas de exposição para atingir sinal-ruído próximo a 100, requerendo muito tempo de observação apenas para seleção da amostra.

No início de 2001, Anjum Mukadam e Kepler de Souza Oliveira Filho selecionaram uma amostra de estrelas do SDSS tendo por base apenas as cores fotométricas (única informação que possuíam) do SDSS $u, g, r, i \in z$, mas novamente atingiram somente 10% de eficiência na descoberta de novas variáveis. Já em 2003, Anjum Mukadam começou a usar espectros de baixo sinal-ruído (~ 30) de uma amostra de estrelas anãs brancas DAs do catálogo de espectros óticos do Data Release 1 SDSS ⁶ e das cores fotométricas medidas neste projeto, u, q, r, i e z. Ajustados a modelos de atmosfera para o espectro de Detlev Koester e índices de cores fotométricos, Kleinman et al. (2004) determinaram estimativas para os parâmetros atmosféricos destas novas anãs brancas, selecionando uma amostra de candidatas à ZZ Cetis com $T_{\rm ef}$ dentro da faixa de instabilidade. Quando testadas fotometricamente, o resultado obtido foi de 90% das estrelas que apresentavam T_{ef} no interior da faixa de instabilidade foram classificadas como ZZ Cetis; pouco menor que o sugerido por Bergeron et al. (1995) que é o critério ideal de seleção de candidatas à ZZ Ceti. Porém a eficiência desta nova técnica é muito superior, uma vez que não é necessário tanto tempo de exposição de espectroscopia ótica, principalmente considerando que as estrelas do SDSS são mais fracas que B=16, o que requer telescópios de 8m para atingir razão sinal-ruído =100 no espectro. Mukadam et al. (2004a) publicaram a descoberta de 34 novas ZZ Ceti do SDSS, quantidade que dobrou o número de ZZ Cetis conhecidas até aquele momento; seguindo este critério de seleção de amostra de candidatas à ZZ Ceti, Mullally et al. (2005) descobriram 11 novas ZZ Cetis do SDSS, Kepler et al. (2005) descobriram 14 novas ZZ Cetis, Castanheira et al. 2005 descobriram 11 novas ZZ Cetis também do SDSS, além das descobertas por Silvotti et al. (2005), Voss et al. 2006, Castanheira et al. 2007 e Gianninas et al. 2007.

Na tabela 1.2 apresento algumas informações a respeito de todas as estrelas ZZ Cetis conhecidas até este momento: T_{ef} , $\log g$, magnitude, período principal de pulsação e amplitude da pulsação, todos resultados obtidos na literatura. Na figura 1.7 apresento alguns dos resultados da tabela na forma gráfica; nesta podemos observar a relação entre o período principal de pulsação e sua T_{ef} , e podemos observar que as estrelas mais frias, em geral, apresentam maiores períodos de pulsação menor. Na figura 1.8 apresento a correlação entre amplitude e temperatura; de forma semelhante, quanto maior a amplitude menor a T_{ef} , o que faz sentido, pois quanto mais fria a estrela maior a espessura da zona de convecção, por conseqüência maior a de convecção.

Na figura 1.9 apresento a localização das estrelas ZZ Ceti dentro da faixa de instabilidade; nesta os pontos escuros representam as estrelas ZZ Cetis da tabela 1.2, com seus resultados de $T_{ef} e \log g$. E por fim na figura 1.10 represento na forma de histograma os resultados da tabela 1.2, a distribuição de períodos, amplitudes $T_{ef} e \log g$ para todas as estrelas ZZ Cetis conhecidas até o momento.

⁶ O SDSS com o dr4, já detectou mais de 10 000 novas anãs brancas

WD	Nome	Mag	Período	Amp	T _{ef}	$\log g$	Fonte
		-	(s)	mma	(K)	00	
0000+0046	WDJ 0000+0046	18,8	611	23	10857	8,61	16;23
0016-2553	MCT 0016-2553	16,1	1152	8,1	10900	8,04	22
0018+0031	WDJ 0018+0031	17,4	258	6	11696	7,93	9
0031-5525	0031-5525 HE 0031-5525		277	5	11480	7,65	3
0036+312	G 132–12	16,2	213	4,3	12080	7,94	22
0048+1521	WDJ 0048+1521	18,7	615	25	11290	8,23	9
0102-0032	WDJ 0102-0032	18,2	926	39	11050	8,24	1
0104-464	BPM 30551	15,3	823	22	11260	8,23	6
0111+0018	WDJ 0111+0018	18,8	292	22	11510	8,26	1
0133-116	R 548	14,2	213	3	11990	7,97	14;6
0145-221	MCT 0145-2211	15,3	462	25	11550	8,14	6
0210+3302	HS 0210+3302	15,8	189	4,7	11924	7,39	25
0214-0823	WDJ 0214-0823	17,9	297	15	11570	7,92	1
0222-0100	WDJ 0222-0100	18,0	202	3,4	12060	8,12	23
0235+0708	WDJ 0235+069	16,6	1283	4,21	10950	7,75	25
0246+3239	KUV 02464+3239	15,8	832	40	11290	8,08	4
0249-0100	WDJ 0249-0100	19,1	1045	11	11060	8,31	3
0303-0808	WDJ 0303-0808	18,7	706	4,1	11400	8,49	23
0318+0030	WDJ 0318+0030	17,8	821	14	11040	8,07	1
0332-0049	WDJ 0332-0049	18,2	770	14	11040	8,25	1
0341-459	BPM 31594	15,0	618	56	11540	8,11	11;6
0344+073	KUV 0344+073	16,1	1385	7,6	10930	7,84	22
0344-1207	HE 0344-1207	15,8	762	18.9	11466	8,28	25
0416+272	HL Tau 76	15,2	541	37	11450	7,89	12;6
0417+361	G 38–29	15,6	1000	22	11180	7,91	6
0455+553	G 191–16	16,0	892	10	11420	8,05	6;19
0507+045	HS 0507+045B	15,4	353	23	11630	8,17	6;19
0517+307	GD 66	15,6	271	15	11980	8,05	5;6
0532-560	EC 0532-5605	16,0	688	8	11560	8,49	6
0733+4119	HS 0733+4119	15,9	656	38,7	11162	7,72	25
0756+2020	WDJ 0756+2020	18,2	200	7	11713	8,01	9
0815+4437 WDJ 0815+4437		19,3	312	27	11620	7,93	1
0818+3131	WDJ 0818+3131	17,4	202	3	11801	8,07	9
0825+0329	WDJ 0825+0329	17,5	481	4	11801	8,33	8
0825+4119	WDJ 0825+4119	18,5	656	20	11820	8,49	1

Tab. 1.2: Lista de Todas as estrelas ZZ Cetis conhecidas com suas coordenadas, período, amplitudes dominante, T $_{\rm ef}$ e $\log g$

Coordenadas	Nome	Mag	Período	Amp	$T_{\rm ef}$	$\log g$	Fonte
(2000)			(s)	mma	(K)		
0836+404	KUV 08368+4026	15,6	621	16	11490	8,05	6;17
0842+3707	WDJ 0842+3707	18,8	309	18	11720	7,73	1
0843+0431	WDJ 0843+0431	17,9	373	10	11250	8,18	8
0847+4510	WDJ 0847+4510	18,3	201	8	11680	8,00	1
0851+0605	WDJ 0851+0605	17,1	326	22	11306	8,11	8
0853+0005	WDJ 0853+0005	18,2	264	4	11750	8,11	23
0855+0635	WDJ 0855+0635	17,2	850	44	11050	8,43	23
0858+363	GD 99	14,6	1058	8	11820	8,08	6;19
0906-0024	WDJ 0906-0024	17,7	767	25	11520	8,00	1
0911+0310	WDJ 0911+0310	18,4	347	17	11634	8,11	8
0913+4036	WDJ 0913+4036	17,6	260	16	11677	7,87	9
0916+3855	WDJ 0916+3855	16,5	485	33	11410	8,10	23
0917+0926	WDJ 0917+0926	18,1	289	16	11341	8,15	8
0921+354	G 117–B15A	15,5	215	24	11630	7,97	6;19
0939+5609	WDJ 0939+5609	18,7	251	6	11790	8,22	1
0942+5733	WDJ 0942+5733	17,4	695	3,7	11260	8,27	1
0949-0000	WDJ 0949-0000	18,8	364	18	11180	8,22	1
0951+1312	HS 0951+1312	16,7	281	9	11000	7,00	1;2
0952+1816	HS 0952+1816	16,2	1462	5	11000	7,00	1;2
0958+0130	WDJ 0958+0130	16,7	263	5	11680	7,99	1
1002+5818	WDJ 1002+5818	18,3	268	7	11707	7,92	9
1007+5245	WDJ 1007+5245	18,9	259	11	11426	8,08	9
1015+0306	WDJ 1015+0306	15,7	269	9	11580	8,14	1
1015+5954	WDJ 1015+5954	18,0	456	19	11630	8,02	1
1039+4112	HS 1039+4112	15,9	855	55	11200	8,20	22
1054+5307	WDJ 1054+5307	17,9	869	37	11118	8,01	9
1056-0006	WDJ 1056-0006	17,3	944	62	11020	7,86	1
1106+0115	WDJ 1106+0115	18,4	822	12	10990	8,09	8
1116+026	GD 133	14,6	120	4	12090	8,06	5
1122+0358	WDJ 1122+0358	18,1	750	26	11070	8,06	1
1125+0345	WDJ 1125+0345	18,1	265	8	11600	7,99	1
1126-222	EC 1126-2217	16,5	218	8	11989	7,83	15
1136-0136	WDJ 1136-0136	17,8	262	3,1	11707	7,96	24
1137+423	KUV 11370+4222	16,6	257	5	11890	8,06	6;17
1138-0023	WDJ 1138-0023	17,1	197	4,1	11867	8,13	24

Tab. 1.2: Tabela de Todas as estrelas ZZ Cetis conhecidas com suas coordenadas, período, amplitudes dominante, T $_{\rm ef}$ e $\log g$

Coordenadas	Nome	Mag	Período	Amp	T _{ef}	$\log g$	Fonte
(2000)			(s)	mma	(K)		
1149+057	PG 1149+057	15,1	1023	10	11210	8,19	22
1153–1536	WDJ 1150-153	16,0	249	4,7	12453	8,03	25
1151–1519	EC 1151-1519	16,0	250	7,7	12030	7.98	22
1157+0553	WDJ 1157+0553	17,6	929	16	11050	8,15	1
1159+803	G 255–2	16,0	681	25	11440	8,17	6;17
1216+0922	WDJ 1216+0922	18,6	823	45	11293	8,29	8
1218+0042	WDJ 1218+0042	18,5	258	16	11123	8,16	8
1236-495	BPM 37093	14,0	565	4	11730	8,81	6
1222-0243	WDJ 1222-0243	16,7	396	22	11398	8,35	8
1249+0426	HS 1249+0426	15,8	289	6	11771	7,92	15
1255+0211	WDJ 1255+0211	19,1	897	32	11385	8,16	8
1257+0124	WDJ 1257+0124	18,6	906	48	11520	8,36	3
1258+0123	HE 1258+0123	16,3	745	23	11410	8,04	6
1301+0107	WDJ 1301+0107	16,3	879	13	11099	8,11	8
1307+354	GD 154	15,3	1186	16	11180	8,15	6;19
1310-0159	WDJ 1310-0159	17,7	280	7	10992	7,92	8
1337+0104	WDJ 1337+0104	18,6	797	10	11533	8,55	8
1342-237	EC 13429-2342	16,1	1177	6	10912	7,99	15
1345-0055	WDJ 1345-0055	16,7	196	6	11800	8,04	1
1349+552	PG 1349+552	16,0	209	10	11800	7,87	6
1350+656	G 238–53	15,5	206	8	11890	7,91	6
1354+0108	WDJ 1354+0108	16,4	198	6	11700	8,00	1
1355+5454	WDJ 1355+5454	18,6	324	22	11576	7,95	9
1401 - 147	EC 14012-1446	15,7	610	57	11900	8,16	6;19
1408+0445	WDJ 1408+0445	17,9	849	24	10938	8,06	8
1417+0058	WDJ 1417+0058	18,0	888	40	11300	8,04	1
1422+095	GD 165	14,3	192	2.4	11980	8,06	6;19
1425-811	L 19–2	13,8	192	6.5	12100	8,21	6;19
1429–0343	HE 1429-0343	15,8	855	55	11200	8,20	21
1443+0134	WDJ 1443+0134	18,7	982	7	10830	8,15	1
1502-0001	WDJ 1502-0001	18,7	639	34	11200	8,00	1
1524-0030	WDJ 1524-0030	16,0	868	65			1
1531+7436	HS 1531+7436	16,2	112	4	12357	8,17	15
1533-0206	WDJ 1533-0206	16,6	261	5	11350	8,20	3
1541+650	PG 1541+651	15,7	689	4.5	11600	8,10	6;18

Tab. 1.2: Tabela de Todas as estrelas ZZ Cetis conhecidas com suas coordenadas, período, amplitudes dominante, T $_{\rm ef}$ e $\log g$

Coordenadas	Nome	Mag	Período	Amp	T _{ef}	$\log g$	Fonte
(2000)			(s)	mma	(K)		
1559+369	R 808	14,4	796	43	11160	8,04	6
1617+4324	WDJ 1617+4324	18,3	890	34	11190	8,03	1
1618-0023	WDJ 1618-0023	19,3	644	5	10860	8,16	3
1625+1231	HS 1625+1231	16,1	863	49	11271	8,06	15
1641+3521	WDJ 1641+3521	19,0	773	31	11230	8,43	3
1647+591	G 226–29	12,2	110	2.8	12270	8,28	6;20
1650+3010	WDJ 1650+3010	18,1	339	15	11100	8,76	23
1714–547	BPM 24754	15,6	1086	13.2	11070	8,03	13
1700+3549	WDJ 1700+3549	17,3	898	65	11160	8,04	1
1711+6541	WDJ 1711+6541	16,9	606	6	11310	8,64	1
1724+5835	WDJ 1724+5835	17,5	280	8	11540	7,89	1
1732+5905	WDJ 1732+5905	18,7	1334	10.4	10860	7,99	1
1824+6000	HS 1824+6000	15,7	330	14	11192	7,65	15
1855+338	G 207–9	14,6	318	4	11950	8,35	6
1935+276	G 185–32	13,0	215	2	12130	8,05	6;19
1950+250	GD 385	15,1	256	11	11710	8,04	6
2002+0607	WD 1959+059	16,4	1350	6	11033	8,23	25
2128-0007	WDJ 2128-0007	18,0	302	17	11440	8,29	3
2135-0743	WDJ 2135-0743	18,6	565	50	11190	7,76	3
2148-2911	MCT 2148-2911	16,1	261	12,6	11740	7,82	22
2148+539	G 232–38	16,7	984	23	11350	8,01	5
2153-0731	WDJ 2153-0731	18,4	210	6	11930	8,07	3
2159+1322	WDJ 2159+1322	18,9	801	15	11705	8,61	9
2209-0919	WDJ 2209-0919	18,4	894	44	11431	8,33	24
2214-0025	WDJ 2214-0025	17,9	255	13	11439	8,33	9
2231+1346	WDJ 2231+1346	18,6	627	26	11080	7,95	3
2254+1236	GD 244	16,2	307	15	11680	8,08	4
2303+243	PG 2303+243	15,5	936	48	11480	8,09	7;6
2307-0847	WDJ 2307-0847	18,8	825	26	11060	8,19	3
2326+049	G 29–38	13,0	615	58	11820	8,14	6;19
2334+0103	WDJ 2334+0103	19,2	923	40	11400	7,99	16,23
2336-079	GD 1212	13,3	1161	5,4	11040	8,11	22
2347+128	G 30–20	15,9	1068	14	11070	7,95	10
2348-244	EC 23487-2424	15,3	993	38	11520	8,10	6
2350-0054	WDJ 2350-0054	18,1	272	16	10350	8,31	1

Tab. 1.2: Tabela de Todas as estrelas ZZ Cetis conhecidas com suas coordenadas, período, amplitudes dominante, T $_{\rm ef}$ e $\log g$

Tab. 1.2: Tabela de Todas as estrelas ZZ Cetis conhecidas com suas coordenadas, período, amplitudes dominante, $T_{ef} e \log g$

Coordenadas	Nome	Mag	Período	Amp	$T_{\rm ef}$	$\log g$	Fonte
(2000)			(s)	mma	(K)		

1=Mukadam et al. 2004; 2=Homeier et al. 1998; 3=Castanheira et al. 2005; 4=Bergeron et al.2001; 5=Gianninas et al. 2005; 6=Bergeron et al. 2004; 7=Vauclair et al. 1992; 8=Kepler et al. 2005; 9=Mullally et al. 2005; 10=Mukadam et al. 2002; 11=O'Donoghue, Warner & Cropper 1992; 12=Dolez 1998; 13=Giovannini et al. 1998; 14=Kepler et al. 1995; 15=Voss et al. 2006; 16=Este trabalho; 17=Vauclair et al. 1997; 18=Vauclair et al. 2000; 19=Mukadam et al. 2006; 20=Kepler et al. 1995; 21=Silvotti et al. 2005; 22=Gianninas et al. 2007; 23=Castanheira et al. 2007a; 24=Castanheira et al. 2007b; 25=Voss et al. 2007.

1.9 Teoria de Pulsação

As pulsações são formas de liberação da energia contida na estrela para o exterior. O principal mecanismo que causa pulsações nas estrelas ZZ Cetis é o surgimento de uma zona de ionização parcial do Hidrogênio. E acontece da seguinte forma: uma fina camada de H ioniza-se e desioniza-se de forma periódica; como conseqüência disto, o fluxo de energia sofre alterações até atingir a superfície da estrela, tornando variável o brilho da estrela. No entanto, Golderich & Wu (1999) mostram que as pulsações observadas nas DAVs podem ser produzidas por um outro mecanismo envolvendo a zona de convecção, mas sem envolver diretamente a ionização.

Quando um gás é comprimido sua ionização aumenta, porque parte da energia transferida para o gás durante o processo de contração é convertida em energia de ionização, o que facilita a contração, aumentando ainda mais a instabilidade. Durante o processo de expansão, essa energia é liberada o que também aumenta a instabilidade. Dessa forma, o mecanismo γ (ionização) contribui com o mecanismo κ (opacidade) e os dois juntos formam um mecanismo especial chamado mecanismo $\kappa - \gamma$.

Os mecanismos que perturbam o equilíbrio hidrostático da estrela fazem com que ela entre em regime de pulsação, fazendo seu brilho variar em torno do valor médio. Essa variação pode ser de 1% até 30% (e. g. Bradley 2000). Como qualquer objeto em vibração mecânica, a estrela também não pode oscilar em qualquer freqüência, mas apenas em freqüências específicas determinadas por sua geometria e composição interna (e. g. J. E. S. Costa, 2004).

Fig. 1.7 Esta figura mostra a correlação entre Temperatura efetiva e período de pulsação das estrelas ZZ Ceti conhecidas. Observe que quanto maior a período de pulsação, menor a $T_{\rm ef}$. Os dados da figura são os períodos dominantes mostrados na tabela 1.2

Fig. 1.8 Esta figura mostra a correlação entre Temperatura e as amplitudes dos períodos dominantes de pulsação.

Fig. 1.9 Esta figura mostra a relação entre $T_{ef} e \log g$, a faixa de instabilidade das ZZ Cetis com os dados da Tabela 1.2. Os pontos indicam parâmetros atmosféricos das estrelas ZZ Cetis conhecidas até hoje.

Fig. 1.10 Estas figuras mostram a estatística quando a períodos, amplitudes, $T_{\rm ef}$ e $\log\left(g\right)$ das estrelas ZZ Cetis conhecidas. Os dados da figura, períodos, amplitudes, $T_{\rm ef}$ e $\log\left(g\right)$ foram os mesmos mostrados na tabela 1.2

No caso das anãs brancas, a gravidade desempenha o papel de força restauradora, de forma que o modo como estas estrelas pulsam são chamados de **modos g**. Qualquer deslocamento radial de massa sofre ação da força gravitacional fazendo com que a porção de massa deslocada seja espalhada para dentro e para os lados, Kepler et al. (1984) estimaram que os deslocamentos radiais na superfície da ZZ Ceti G117–B15A é da ordem de um metro.

Em geral as anãs brancas pulsantes mostram vários modos excitados, mas com diferentes amplitudes. Alguns modos normais parecem não terem sido excitados, ou pelo menos, suas amplitudes são de baixo limite de detecção, de forma que apenas alguns modos podem ser detectados e isto depende da faixa de freqüências (espectrais) observadas. Para o visível, consegue-se detectar somente modos l = 1 e l = 2.

A função de brilho para modos-g, que descreve o brilho ao longo da superfície da estrela em função do tempo emitido para comprimentos de onda $[\lambda, \lambda + d\lambda]$, com termo radial e angular é:

$$f(r,\theta,\phi,\lambda,\nu,t) = R(r)h(\theta,\phi,\lambda)\Re Y_m^l(\theta,\phi)e^{i\nu t}$$
(1.17)

onde R(r) é o termo radial, ν é a freqüência de pulsação, Y_m^l são os harmônicos esféricos ponderados em função do comprimento de onda λ pela função h e $e^{i\nu t}$ é o termo que introduz a variabilidade temporal.

Os harmônicos esféricos são dados em termos de polinômios associados de Legendre, $P_l^m(\cos \theta)$:

$$Y_m^l(\theta,\phi) = \sqrt{\frac{(2l+1)(l-m)!}{4\pi(l+m)!}} (-1)^m e^{im\phi} P_l^m(\cos\theta)$$
(1.18)

A estrutura interna da estrela vai limitar, ou melhor, determinar quais modos a estrela pode vibrar; cada modo é representado por 3 números que indicam (l) o grau do harmônico ou modo de pulsação, (m) ordem azimutal e (k) ordem radial. Sendo que l é um número inteiro e positivo maior que 1 $(l \ge 1 \ 1,2,3,4,5,...)$, o número m também é um inteiro e deve ter valor entre $-l \le m \le +l$ (m= -1,...,0,...+l). Ao todo são 2l + 1 valores de m, e o terceiro número k, também é chamado índice nodal. A figura 1.11 mostra de forma esquemática alguns modos de pulsação. [figura apresentada por Córsico (2003)].

Fig. 1.11 Esta figura mostra os harmônicos esféricos, sobre a superfície de uma estrela, as linhas contínuas representam os contornos positivos e as linhas pontilhadas contornos negativos os símbolos de + mostram a posição do equador. A figura ilustra os casos: a) l = 1, m = 0, b) l = 1, m = 1, c) l = 2, m = 0, d) l = 2, m = 1, e) l = 2, m = 2, f) l = 3, m = 0, g) l = 3, m = 1, h) l = 3, m = 2, i) l = 3, m = 3, j) l = 5, m = 5, k) l = 10, m = 5 e l) l = 10, m = 10

2. OBSERVAÇÕES

As estrelas anãs brancas variáveis liberaram a energia armazenada no seu interior, apesar de não poderem se deformar em raio de forma significativa, "deformamse"em temperatura, ou seja, através de variações superficiais locais de temperatura (e correspondente pressão); e a forma pela qual podem ser detectadas é observar o brilho da estrela variar no tempo. E para que possamos detectar estas mudanças recorremos à fotometria:

$$F = \frac{4\pi R^2 \sigma T_{\rm ef}^4}{4\pi d^2}$$
(2.1)

$$dF \sim \frac{4R^2}{d^2} \sigma T_{\rm ef}^3 dT_{\rm ef}$$
(2.2)

A fotometria é uma técnica que permite medir o fluxo de uma estrela em função do tempo, e pode ser feita utilizando-se toda a luz da estrela que atravessa a atmosfera da Terra, ou pode se fazer uso de filtros com diferentes comprimentos de onda efetivos. As pulsações das anãs brancas são acromáticas quanto a fase de pulsação, mas a amplitude da pulsação das anãs brancas modifica-se com o comprimento de onda [Robinson, Kepler & Nather (1982)].

No caso das estrelas que são variáveis, para identificar a forma como estas variações ocorrem com o passar do tempo, recorremos à técnica de fotometria rápida, ou melhor, de série temporal fotométrica, que significa medir a luz da estrela durante determinados intervalos de tempo (tempo de integração), da ordem de alguns segundos. À série temporal fotométrica chamamos de *curva de luz* (intensidade versus tempo), que é o resultado do monitoramento do brilho da estrela durante um tempo muito maior (horas) que o tempo de integração (segundos). Esta técnica emprega a contagem de fótons da luz da estrela e de uma estrela de campo (constante).

Os períodos de pulsação das estrelas anãs brancas DAs que conhecemos ocorrem entre 70 e 1500 segundos, e desta forma o tempo de integração deve ser menor ~ 35 segundos (ou $\sim 1/2$ do menor período conhecido). Isto garante que para os períodos mais curtos, temos pelo menos dois pontos por ciclo. Em geral, a amplitude de pulsação nas estrelas DAs tem valor entre 0,2 % até 30% da intensidade média.

2.1 Fotometria Rápida

A técnica pioneira para medidas de curva de luz de uma estrela é a chamada fotometria rápida, e emprega um instrumento chamado fotômetro. Os fotômetros permitem medidas de fótons de uma fonte luminosa, que pode ser uma lâmpada ou mesmo uma estrela. Na seqüência, vamos descrever como funciona um fotômetro e quais foram as configurações que utilizamos em nosso trabalho.

A atmosfera da Terra não é homogênea (e sim bastante turbulenta) e, portanto, como identificar se a variação de brilho detectada ocorreu na estrela e não na atmosfera da Terra?

Para solucionar este problema, foi criado o instrumento chamado fotômetro de 2 canais. Até o começo da década de 1990 o instrumento utilizado para medir os fótons de luz da estrela através de uma série temporal no LNA (Laboratório Nacional de Astrofísica) era o **FOTEX** (*fotômetro do Texas*), instrumento criado por R. Edward Nather em 1973 [Nather (1973)]. O FOTEX é um fotômetro de dois canais¹.

No fotômetro de dois canais, por definição, utilizamos o canal 1 para medir, ou contar, os fótons da estrela alvo e no canal 2 detectar os fótons de uma estrela qualquer do campo que provavelmente não é variável; os dois canais fazem a contagem de fótons de forma simultânea.

A idéia básica do fotômetro de dois canais é que a estrela do canal 2 (estrela de comparação) serve para comparações com o canal 1 (estrela alvo). Se as variações observadas na curva de luz da estrela alvo aparecem também na curva de luz da estrela de comparação, deduz-se que são decorrentes de efeitos atmosféricos locais, pois além de nuvens, a atmosfera da Terra também apresenta modos de pulsação não radiais.

Para que a contagem de fótons medida seja exatamente da estrela em questão, é preciso descontar o brilho do céu que também varia durante a noite², em escalas comparáveis com os períodos de pulsação das anãs brancas; portanto, nos fotômetros de 2 canais, precisamos medir o brilho do céu e, para isto, de tempos em tempos, a observação é interrompida para uma rápida medida do céu; em seguida, a fotometria das estrelas é retomada. O brilho do céu ao final da observação é interpolado entre suas sucessivas medidas e subtraído das contagens das estrelas alvo e comparação.

A determinação do brilho do céu com exatidão pode afetar significativamente a precisão na medida das amplitudes de pulsação. Para solucionar este problema foi criado o fotômetro de três canais, onde um terceiro canal é usado exclusivamente

¹ consiste de duas fotomultiplicadoras e a contagem de fótons da estrela é através do efeito foto-elétrico.

² devido à presença da lua ou mesmo por flutuações de temperatura, que provocam mudanças locais do índice de refração e como conseqüência variações no "seeing".

para se monitorar continuamente o céu.

A necessidade de determinação precisa dos modos de pulsação, aliada aos crescentes avanços tecnológicos e de sensibilidade dos CCDs³, principalmente na região do azul do espectro, justamente onde as pulsações da anãs brancas são de maior amplitude, tornou possível utilizar um detector CCD para se fazer fotometria. Esta técnica vem sendo empregada seguidamente nos principais sítios astronômicos.

Uma das vantagens da fotometria CCD é que ela dispensa o uso de canais adicionais para estrela de comparação e céu, elimina possíveis problemas de alinhamentos entre os diferentes canais e permite fazer comparação simultânea das séries fotométricas temporais da estrela alvo e de 2, 3 ou muito mais estrelas de comparação, permitindo assim, a eliminação precisa da maior parte das flutuações atmosféricas detectadas no campo da estrela alvo; porém a correção pela extinção atmosférica é complicada, tendo em vista que as estrelas de comparação são, em geral, mais vermelhas que a estrela alvo, simplesmente porque existem muito mais estrelas vermelhas do que azuis.

2.2 Observações

Minhas observações fotométricas iniciaram em abril de 2002 e se estenderam até agosto de 2005, distribuídas em diversos turnos durante este período. Utilizamos os telescópios de 1.60 *m Perkin Elmer*, 0.6 *m* Boller & Chivens (B & C) e 0.6 *m* Zeiss do Observatório do Pico dos Dias (OPD). Em todas as nossa observações fizemos fotometria CCD, e utilizamos os detectores CCD 301 EEV CCD02-06-1-206 Frame transfer ⁴ e o CCD 098 Marconi CCD42-40-1-368.

O procedimento observacional consistiu em monitorar a estrela alvo por tempo de aproximadamente 2,5 horas ⁵ por estrela. Os tempos de integração de cada imagem variaram de 10 até 35 segundos, dependendo da magnitude da estrela, do CCD e do telescópio utilizado.

2.3 Como Funciona a Fotometria CCD?

O instrumento utilizado foi uma câmara direta no foco *Cassegrain* adaptada com um detector CCD para coleta de imagens que são posteriormente armazenadas em

³ Charge-Coupled Devices.

⁴ tempo de leitura próximo de Zero, pois toda a imagem é deslocada para uma metade não exposta do CCD.

⁵ por estarmos usando telescópios pequenos na maioria de nossos turnos de observações, observamos apenas as estrelas mais brilhantes da nossa lista de candidatas devido à necessidade de razão sinal/ruído alto.

um computador, para futura análise. A primeira tarefa é determinar o tempo de exposição, que é feito fazendo medidas das contagens de fótons obtidas no detector CCD. Como as pulsações podem aparecer a partir de 70 segundos, os tempos de exposição, somado ao tempo de transferência da imagem do CCD para um computador de aquisição de dados, não deve ultrapassar 35 segundos; nos turnos em que utilizamos o CCD 301, que tem transferência de imagem (*frame transfer*), o tempo de transferência é praticamente nulo. Para os demais CCDs (101 e 105), era necessário levar-se em conta o tempo de transferência (de aproximadamente 4 segundos). O uso de filtros é desnecessário pois a fase das pulsações nas anãs brancas são acromáticas⁶ (Robinson et al. 1982, Kepler 1984) e as estrelas observadas apresentavam magnitude visual razoavelmente baixa e precisamos de todos os fótons para atingir $S/R \sim 500$ (limite de 2 mma).

As imagens em seguida são calibradas, ou seja, corrigidas com aplicação de *bias e flat field*⁷. Com as imagens devidamente calibradas, passamos ao passo seguinte, que consiste na extração da curva fotométrica da estrela alvo e de algumas estrelas do campo, para posterior comparação com a estrela alvo. Este procedimento é realizado utilizando alguns scripts em linguagem IRAF⁸, no pacote chamado **ccd_hsp**, desenvolvido por Antonio Kanaan⁹, que realiza fotometria por abertura.

Utilizando-se estes scripts, devemos identificar a estrela alvo e algumas estrelas de comparação no campo, para que possamos subtrair as perturbações introduzidas pela atmosfera; depois de identificadas as estrelas, os scripts passam a gerar uma tabela contendo as curvas fotométricas (fotometria de abertura, com pesos inversamente proporcionais à área) de todas estrelas selecionadas e também do céu. As contagens do céu são feitas tomando-se as contagens sobre um estreito anel (maior que 3 vezes o FWHM¹⁰) ao redor de cada estrela.

E como é medida a curva de luz das estrelas selecionadas? A fotometria CCD é fortemente dependente das condições atmosféricas (do seeing), pois pode modificar além da qualidade das imagens, o perfil de intensidades a ser analisado. A intensidade de luz da estrela e do céu varia conforme o tamanho de abertura. Quanto melhor o "seeing", menor a abertura necessária e maior a intensidade detectada por menor contaminação do céu. Para determinarmos qual a melhor abertura, para se medir a intensidade de luz da estrela, em geral fazemos fotometria das estrelas utilizando diferentes aberturas. Depois selecionamos qual a melhor abertura, aquela que contém mais contagens da estrela, calculamos a intensidade

⁶ não depende do comprimento de onda

⁷ sinal de fundo e campo plano

⁸ Image Reduction and Analysis Facility (NOAO)

⁹ disponível em http://www.astro.ufsc.br/kanaan/

¹⁰ Full Width at Half Maximum

fracional.

$$r_t = \frac{I_t}{\sum_{i=1}^{N} I_i}$$
(2.3)

onde I_t é a intensidade da estrela alvo e I_i as intensidades de cada uma das estrelas de comparação; r_t é a intensidade relativa da estrela alvo com relação à soma de intensidade das estrelas de comparação, escolhemos o tamanho de abertura aquele que apresenta a menor dispersão.

2.4 Seleção de candidatas a DAV

Um fato muito importante antes de iniciar a observação é a escolha da amostra. Escolhemos aquelas estrelas que apresentam $T_{\rm ef}$ nas proximidades da faixa de instabilidade ou seja, aquelas classificadas como DA3, DA4 ou DA5. A escolha da amostra certa pode ser determinante nos objetivos deste trabalho¹¹, já que as estrelas DA aparecem em praticamente todos intervalos de temperatura.

O projeto de observar através da fotometria rápida e espectroscopia todas as anãs brancas DA cujo índice de cor fotométrico indica que sua temperatura está próxima ou dentro da faixa de instabilidade das ZZ Cetis iniciou-se na UFRGS em 1985. O objetivo era determinar a $T_{\rm ef}$ de cada estrela através de seu espectro e utilizar a fotometria rápida para identificar se a estrela é pulsante ou não.

As estrelas foram selecionadas através de seus índices de cor nos sistemas de Strömgren e Greenstein¹² disponíveis em artigos como: McCook & Sion (1987), Green, Schmidt & Liebert (1986) além de alguns catálogos de anãs brancas publicados mais tarde, como por exemplo o *Edinbrugh Cape* (EC), *Hamburg Quasar Survey* (HQS), *Hamburg ESO Survey* (HES), *Kiso Survey* (KUV) e *Sloan Digital Sky Survey* (SDSS). Neste trabalho utilizamos essencialmente estrelas selecionadas dos catálogos McCook & Sion, EC, HES, HQS, e SDSS; na tabela 2.1 são apresentados parâmetros fotométricos obtidos na literatura para as estrelas observadas com fotometria e espectroscopia.

O motivo de usar as cores fotométricas para selecionar a amostra é que estas servem como indicador de T_{ef} , conforme já discutido no Capítulo 1. Porém, não somente os índices de cor fotométricos podem ser utilizados para se fazer a seleção da amostra, também podem-se usar espectros, como é o caso das estrelas selecionadas do catálogo SDSS, onde possuímos os espectros de baixo S/R, e a partir destes, determinamos uma estimativa de T_{ef} e massa da estrela. A eficiência do método de espectro de baixo S/R para critério de seleção de amostra de estrela

¹¹ detecção de novas estrelas ZZ Cetis.

¹² Sistema introduzido por Greenstein (1976, 1984). Os índices de cor foram obtidos com espectrofotômetro de multi-canal acoplado ao telescópio de 5 m do Monte Palomar (Eggen 1985).

já vem sendo comprovada na série de novas ZZ Cetis descobertas, como: Mukadam et al. (2004) descobriram 34 novas ZZ Cetis; Mullaly et al. (2005) 11 novas ZZ Cetis; Kepler et al. (2005) 14 novas ZZ Cetis e Castanheira et al. (2006) 11 novas ZZ Cetis. A seguir vamos discutir brevemente a origem de cada um dos diferentes catálogos utilizados neste trabalho.

2.4.1 Hamburg Quasar Survey e Hamburg ESO Survey

O HES é um catálogo de quasares brilhantes (Wisotzki et al. 1990) que começou a ser desenvolvido em 1990 e consiste de uma série de espectros digitalizados obtidos com prisma no ESO Schmidt telescope, no hemisfério sul. Sua área de abrangência é de ~ 90 graus², com magnitude média de B ~ 17.5. Este projeto apresenta um complemento para hemisfério norte HQS (Hamburg Schmidt telescope, em Calar Alto - Espanha [Hagen et al. 1995]). O principal objetivo tanto do HES quanto do HQS era detectar ou catalogar o maior número possível de Quasares brilhantes; porém pouco mais de 10% dos objetos detectados eram quasares e apareceram uma série de outros objetos dentre eles algumas anãs brancas que são listadas por Homeier et al. (1998). Cerca de aproximadamente 80 novas anãs brancas e dentre estas algumas candidatas à ZZ Ceti.

2.4.2 Edimburgh Cape Survey

O Edinburgh-Cape é um catálogo de objetos azuis do hemisfério sul, cujo objetivo é detectar um grande número de objetos azuis em região de alta latitude Galáctica, similar ao Palomar Green Survey Green (1986) do hemisfério norte. Uma completa descrição dos métodos empregados na obtenção deste trabalho é dada em Stobie et al. (1997), (1987) e (1992), Kilkenny (1994) e Stobie, Kilkenny & O'Donogue (1995). O projeto é dividido em duas partes; a primeira, obtenção de imagens com placas U e B realizadas no telescópio Anglo-Australian Observatory (AAO). O material das placas foi digitalizado e medido pelo programa COSMOS do Royal Observatory em Edinburgh. A segunda etapa do projeto envolveu a obtenção de fotometria UBV e espectroscopia de baixa dispersão (100 Å mm^{-1}) no South African Astronomical Observatory (SAAO) para os objetos mais brilhantes que B = 16, 5. Conforme esperado, foi descoberto um grande número de objetos azuis (± 6000 objetos), dentre estes anãs brancas, sub-anãs quentes, estrelas azuis do ramo horizontal, estrelas B, variáveis cataclísmicas, núcleo ativo de galáxias e quasares. Conhecendo os índices de cor fotométricos U-B e B-V, para as anãs brancas deste catálogo, determinamos uma estimativa para T_{ef} e $\log q$ através do diagrama cor-cor (u–b) versus (b–y) conforme representado na figura 1.8 . Assim selecionamos as estrelas com $T_{\rm ef}$ pertinentes ao nosso trabalho, para futura análise por fotometria rápida e espectroscopia de alta razão S/R para melhorar as estimativas de $T_{ef} e \log g$. Os objetos que estudamos sua curva de luz são apresentados na tabela 2.2 na forma de diário de observações, com as coordenadas de cada estrela, magnitude V, telescópio e data de observação.

WD	Nome	v	B-V	U-B	v	g-r	у	b-y	u-b	Mag	μ	π
0000+169	HS 0000+1656	16.0										
0009-058	G 158-39	16.00	+0.22	-0.50	16.2	-0.20				12.63	0.23	
0011+000	G 31-35	15.34	+0.21	-0.54			15.35	+0.161	+0.516	12.72	0.465	0.0329
0033+016	G 1-7	15.61	+0.20	-0.66	15.56	-0.35				12.06	0.38	0.026
0037-006	PG 0037-006	14.6			14.7	-0.36	14.85	+0.05	+0.63	11.81		
0051+116	HS 0051+1145	15.6										
0101 + 048	G 1-45	13.96	+0.31	-0.57	14.00	-0.07	14.05	+0.18	+0.53	13.00	0.40	0.045
0103 + 229	HS 0103+2253	15.25										
0103-278	G269-093	15.20					15 45	-0.02	+0.52	11 39	0.30	
0104-464	BPM30551	15.1	+0.29	-0.58			15.13	+0.11	+0.52	12.38	0.23	
0107-192	GD 685	16.2		0.00	16.3	-0.51	16.18	+0.07	+0.45	11.24	0.13	
0126 ± 101	G 2-40	14.38	0.26	-0.54	10.5	0.02	10.10	10.07	10.15	11.21	0.398	0.0284
0133-116	R548	14.50	+0.17	-0.50	14 11	-0.37	14 20	+0.04	+0.69	11 77	0.370	0.0204
0145-221	MCT 0145-2211	15 30	10.17	0.50	17.11	0.57	14.20	10.04	10.07	11., /	0.07	0.014
0145221 0151 ± 017	G71-41	15.00	+0.16	-0.59	14 90	-0.45	15.00	+0.06	+0.57	11 47	0.36	
0231 054	GD 31	14.24	+0.10	0.68	14.70	0.37	14.31	+0.00	± 0.37	11.47	0.30	
0231-034 0237 ± 105	UD 31 HS 0237±1034	15.05	±0.21	-0.08		-0.57	14.51	±0.05	+0.4 2	11.09	0.22	
0255 705	BDM2810	14.08	+0.23	0.50			14.08	+0.10	+0.61	12.23	0.67	0.04
0233-703 0320+113	HS 0320+1121	16.31	±0.23	-0.59			14.00	±0.10	+0.01	12.23	0.07	0.04
0329+115	CD 47	15.20	10.15	0.50	15.2	0.42	15 21			11 55	0.22	
0339-033	DUD 47	15.20	+0.13	-0.39	15.2	-0.45	15.51	+0.05	+0.50	11.55	0.22	
0339+323	RUDIN 70 RDM21504	15.75	+0.19	-0.40	15.0	-0.40	15.00			11.43	0.15	
0341-439	DPN131394	13.05	+0.21	-0.00	14.54	0.59	13.00	+0.02	+0.07	11.70	0.17	0.022
0332+090		14.30	+0.10	-0.75	14.54	-0.38	14.47	-0.01	+0.47	11.24	0.15	0.022
0401+250 0407+170	U 8-8	13.80	+0.12	-0.50	13.91	-0.41	13.78	+0.09	+0.55	11.02	0.28	0.040
0407+179	HZ 10 40 E-: D	14.14	+0.17	-0.58	14.10	-0.40	14.18	+0.05	+0.50	11.43	0.12	0.020
0413-077	40 Eri B	9.52	+0.03	-0.68	9.50	-0.50	9.53	-0.05	+0.35	11.05	4.08	0.1982
0410+272	HI Tau-70	15.2	+0.20	-0.50	14.95	-0.31	15.04	+0.03	+0.03	11.99	0.15	
0624-756	BPM4225	15.38	+0.26	-0.73			15.53	+0.04	+0.57	11.77	0.09	
063/+4//	GD //	14.80	+0.13	-0.64			14.83	+0.04	+0.49	11.79		
0/01-58/	BPM 18394	14.46	+0.22	-0.72			14.46	-0.026	+0.459	11.30	0.19	
0921+354	GII/-BI5A	15.50	+0.17	-0.62	15.36	-0.41	15.53	+0.03	+0.56	11.62	0.14	0.012
0938+286	TON 20	15.5		-0.63	15.48	-0.43				11.54		0.0126
0943+441	G 116-52	13.25	+0.07	-0.55	13.20	-0.63	13.55	-0.05	+0.57	11.04	0.30	0.037
0950-572	BPM 19738	14.94	+0.20	-0.58			14.91	+0.05	+0.59	11.89	0.18	
0951-035	G 161-36	14.8	+0.15	-0.58		14.78	-0.17	+0.61			•••	1
0954-710	BPM 6082	13.48	+0.12	-0.65			13.48	-0.01	+0.51	11.42	0.17	
1001-033	GD 110	15.43	+0.25	-0.59								
1013+033	HS 1013+0321	15.22										
1022+050	PG 1022+050	14.18	+0.19	-0.51			14.22	0.00	+0.73	11.50	0.16	0.025
1026+023	PG 1026+023	13.8		-0.61	14.20	-0.41				11.62	0.10	0.0286
1053-290	EC 10532-2903	15.38	+0.14	-0.57							•••	
1101+364	PG 1101+364	14.4		-0.50	14.44	-0.46				11.43		0.0147
1102+005	HS 1102+0032	16.51										
1105-048	G 163-50	13.06	+0.035	-0.688	12.91	-0.52	13.06	-0.011	+0.514	11.0	0.422	0.0266
1116+026	GD 133	14.57	+0.19	-0.59	14.53	-0.37				11.77		0.0263
1119+385	PG 1119+385	15.7		-0.74	15.69	-0.46				11.43		0.0125
1124-293	EC 11246-2923	15.02	+0.22	-0.60						12.27	0.34	
1129+071	PG 1129+071	14.9		-0.62	14.90	-0.45				11.46		0.0189
1147+255	G 121-22	15.67	+0.20	-0.60			15.67	+0.09	+0.59	12.20	0.30	0.019
1202-232	EC 12028-2316	12.79	+0.25	-0.56								
1204-136	EC 12043-1337	15.53	+0.19	+0.94								
1213+528	Case1	13.34	+0.53	-0.48			13.29	+0.34	+0.77	14.07	0.12	0.026
1220-292	EC 12204-2915	15.79										

Tabela 2.1. Dados fotométricos obtidos na literatura

WD	Nome	V	B-V	U-B	v	g-r	у	b-y	u-b	Mag	μ	π
1236-495	BPM 37093	13.96	+0.18	-0.70	1		13.78	+0.07	+0.50	12.03	0.56	0.060
1244+149	G 61-17	15.86	0.22	-0.53	15.79	-0.23	15.91	+0.08	+0.27	12.01	0.22	0.016
1244-125	EC 12448-1232	14.70	+0.13	-0.52								
1253+482	GD 320	16.5	16.5		16.46	-0.49				11.55		
1308-301	EC 13085-3010	15.11	+0.09	-0.58								
1314-153	EC 13140-1520	14.86	0.00	-0.62								
1326-236	EC 13266-2336	15.97	+0.10	-0.55								
1327-083	G 14-58	12.31	+0.09	-0.61	12.20	-0.40	12.31	-0.02	+0.45	11.92	1.17	0.047
1334+070	HS 1334+0701	14.98										
1334-160	EC 13342-1604	15.35	-0.06	-0.83						11.41	0.12	
1350+656	G 238-53	15.5	15.51	-0.571	15.51	-0.30				11.56	0.27	0.0156
1354+340	G 165-B5B	16.16	+0.08	-0.70			16.20	-0.03	+0.32	12.00		
1356-233	EC 13563-2318	14.96	+0.24	-0.57								
1401-147	EC 14012-1446	15.67	+0.17	-0.52								
1418-005	PG 1418-005	16.5		-0.63	16.47	-0.42				11.58		0.00813
1422+095	GD 165	14.32	+0.14	-0.59			13.98	+0.065	+0.594	11.99	0.252	0.0278
1425-811	L 19-2	13.75	+0.25				13.40	+0.05	+0.57	11.97	0.45	0.044
1447+049	HS 1447+0454	15.94										
1448+077	G 66-32	15.46	+0.04	-0.67	15.58	-0.48				11.62	0.92	0.028
1503-092	EC 15036-0918	15.15	0.14	-0.54								
1507-105	GD 176	15.42	+0.23	-0.50			15.41	+0.05	+0.72	11.89		
1527+061	HS 1527+0614	15.43	. 0.20	0.00			10.11			11109		
1537+651	GD 348	14.64	+0.18	-0.49			14.66	+0.13	+0.57	12.45		0.0370
1539-035	GD 189	15.20	+0.25	-0.55			15.23	+0.13	+0.60	12.51		
1544-377	L 481-60	12.80	+0.30	-0.40			12.82	+0.13	+0.64	12.45	0.48	0.075
1550+183	GD194	14.83	+0.11	-0.84			14.74	+0.05	+0.36	11.89	0.23	0.0244
1555-089	G152-B4B	14.80	+0.09	-0.63			14.94	+0.02	+0.60	11.65	0.12	
1559+369	R808	14.36	+0.17	-0.56	14.29	-0.34	14.35	+0.08	+0.66	11.88	0.57	0.034
1606+019	HS 1606+0153	15.32										
1606+422	Case2	13.85	+0.06	-0.54			13.87	+0.04	+0.62	11.75	0.18	0.023
1610+166	GD 196	15.67	+0.07	-0.63	15.7	-0.46				11.43	0.21	0.014
1614+056	HS 1614+0537	14.80										
1616-591	BPM24047	15.08	+0.10	-0.84			14.86	+0.05	+0.65	11.91	0.24	
1619+123	HS 1619+1220	14.23		-0.700	14.57	-0.51				11.23		0.0169
1636+160	GD 202	15.60	+0.14	-0.63	15.5	-0.43				12.12		
1637+335	G 180-65	14.66	+0.18	-0.57		-0.15	14.59	+0.14	+0.60	12.52	0.57	0.032
1642+170	HS 1642+1702	15.75										
1647+591	G 226-29	12.24	+0.16	-0.62	12.17	-0.43				11.81	0.34	0.080
1654+637	GD 515	15.6		-0.65	15.6	-0.43				11.5		0.0102
1655+215	G 169-34	14.06	+0.25	-0.55	14.06	-0.11	14.12	+0.14	+0.59	12.44	0.58	0.044
1711+172	HS 1711+1716	16.71										
1714-547	BPM24754	15.55	+0.27	-0.59			15.59	+0.07	+0.64	12.03	0.16	
1716+020	G 19-20	14.26	+0.13	-0.59		-0.41	14.37	+0.03	+0.58	11.78	0.52	0.025
1824+040	G 21-15	13.90	+0.05	-0.55		-0.41				11.54	0.41	0.0182
1826-045	G 21-16	14.57	+0.24	-0.60		-0.02	14.59	+0.153	+0.576	12.66	0.292	0.0349
1827-106	G 155-19	14.25	+0.14	-0.63		-0.46	15.35	-0.00	+0.64	11.49	0.32	
1840-111	G 155-34	14.18	+0.15	-0.61			14.21	+0.17	+0.64	12.81	0.23	0.053
1855+338	G 207-9	14.62	+0.16	-0.61		-0.31	14.69	+0.084	+0.433	12.14	0.355	0.030
1857+119	G 141-54	15.52	+0.20	-0.57	15.55	-0.31				12.21	0.27	
1911+135	G142-B2A	14.00	+0.12	-0.60			14.05	-0.03	+0.58	11.56	0.10	
1919+145	GD 219	12.94	+0.08	-0.66			12.98	-0.01	+0.35	11.51	0.09	0.051
1935+276	G 185-32	13.00	+0.17	-0.57	12.94	-0.33	12.98	+0.07	+0.51	11.92	0.405	0.0557
1950+250	GD 385	15.13	+0.19		15.2	-0.39				11.70	0.20	0.026

Tabela 2.1 (continuação)

2. Observações

WD	Nome	V	B-V	U-B	v	g-r	у	b-y	u-b	Mag	μ	π
2039-682	BPM 13491	13.25	-0.06	-0.81			13.45	-0.07	+0.34	11.38	0.25	0.037
2047+372	G210-36	12.93	+0.14	-0.67		-0.51	12.99	+0.02	+0.39	11.64	0.27	0.055
2051+095	HS 2051+0929	16.2								11.20	0.131	
2105-820	BPM 1266	13.62	+0.24	-0.61			13.60	+0.12	+0.68	12.61	0.37	0.055
2109+021	HS 2109+0212	16.47										
2115-560	BPM 27273	14.28	+0.26	-0.59			14.27	+0.14	+0.59	12.56	0.45	0.045
2126+734	G 261-43	12.78	+0.02	-0.65	12.68	-0.60	12.83	-0.01	+0.45	11.16	0.32	0.043
2132+097	HS 2132+0941	16.02										
2136+229	G126-18	15.25	+0.14	-0.50	15.2	-0.25	15.07	+0.17	+0.66	12.20	0.30	0.024
2148+165	HS 2148+1631	15.9										
2149+372	GD 397	15.2			15.25	-0.49	15.06	+0.13	+0.76	11.51		
2216+159	HS 2216+1551	15.35										
2226+061	GD 236	15.5					14.70	-0.03	+0.39	11.28		0.0154
2240+125.1	HS 2240+1234	16.0	ldots									
2246+223	G 67-23	14.35	+0.20	-0.68	14.33	-0.23	14.37	+0.12	+0.47	12.28	0.51	0.053
2254+126	GD 244	16.0									0.205	
2259+143	HS 2259+1419	15.53										
2258+406	G216-B14B	15.5				-0.21					0.07	
2303+242	PG 2303+242	15.50	+0.08		15.5	-0.31	15.29	+0.09	+0.63	12.14		0.0189
2306+130	PG 2306+130	15.1		-0.7	15.92	-0.43	15.38	+0.02	+0.55	11.54		0.0156
2311+552	GD 556	16.2			16.21	-0.38				12.03		
2322+206	PG 2322+206	16.3		-0.59	16.32	-0.44	15.59	+0.08	+0.55	11.50		0.0137
2326+049	G 29-38	13.10	+0.20	-0.65	12.95	-0.37	13.043	+0.06	+0.61	11.77	0.56	0.071
2337-760	BPM 15727	14.66	+0.05	-0.69			14.80	-0.03	+0.57	11.29	0.26	
2341+322	G 130-5	12.84	+0.20	-0.59	12.89	-0.46	12.99	+0.02	+0.64	11.70	0.24	0.056
2347+128	G 30-20	16.0			16.09					0.36		
2359-434	BPM 45338	13.05	+0.07	-0.87			12.76	+0.20	+0.60	13.47	0.92	0.110

Tabela 2.1 (continuação)

2.5 Transformada de Fourier

Após obtida a curva de luz e feitas as devidas calibrações por extinção e brilho do céu, a curva de luz está pronta para ser analisada, para detectar algum tipo de variação periódica de luz, que não esteja presente na curva de luz da estrela de comparação, o que assegura que a variação detectada ocorre na própria estrela. O método empregado nesta análise é a Transformada Discreta de Fourier (DFT), que não se restringe a séries temporais com pontos de espaçamento temporal constante. O resultado é um espectro de freqüência versus amplitude. O passo seguinte é identificar qual pico é devido a variações de brilho da estrela. Kepler (1993) descreve que este procedimento consiste em determinar a probabilidade de um pico no espectro de freqüência ser verdadeiro. Obtida a transformada de Fourier dos dados, é necessário estimar a probabilidade de cada pico no espectro de freqüências ser real ou ruído. Então determinamos a potência média (\bar{P}) da região do espectro que estamos interessados, somando todos os picos e dividindo

pelo número de freqüências:

$$\bar{P} = \sum_{i=1}^{N} \frac{P_i}{N} \tag{2.4}$$

onde P_i é a potência do pico i e N é o número de pontos na região. Sendo P_{obs} a potência do pico observado, a probabilidade que uma freqüência do espectro da Transformada de Fourier tenha uma potência $P < P_{obs}$ é:

$$Prob(P < P_{obs}) = \int_{0}^{P_{obs}} \frac{1}{P} e^{-\frac{P_{obs}}{P}} dP = 1 - e^{-\frac{P_{obs}}{P}}$$
(2.5)

Então, a probabilidade de um pico ser falso (P_F) é $P_F = 1 - \text{Prob}(P_{\text{obs}})$. E a probabilidade que um pico de ruído em N frequências independentes esteja acima de P_{obs}/\bar{P} é:

$$P_{\rm obs} = \ln \left(\frac{N}{P_F}\right) \bar{P} \tag{2.6}$$

Para um conjunto de dados igualmente espaçados e sem interrupções, a distribuição de ruído é randômica e $P_F = 1/1000$ é dado por $3\langle A \rangle$. Em caso de conjunto de dados com muitas interrupções, como por exemplo os dados do WET, o espectro de Fourier tem acima de 1000 freqüências independentes (o número de freqüências independentes é igual ao número de observações/2) então $P_{\rm obs} = 14\bar{P}$, para $P_F = 1/1000$. Ou seja, o pico deve ser 14 vezes maior que a potência média para ter uma chance em 1000 de ser verdadeiro. Num espectro de amplitude um pico precisa ser cerca de 4 vezes maior que a amplitude média para ser considerado verdadeiro, o que corresponde a um grau de confiabilidade de 3σ .

Mesmo que a estrela seja classificada como não variável por ter um limite de não variabilidade em amplitude inferior a 1,5 milimagnitudes (mma), deve-se levar em conta a existência de alguns efeitos que podem mascarar a pulsação da estrela, por exemplo:

- Uma estrela que pulsa com índices l = 1 e m = 0, quando vista com um ângulo de inclinação de 90°, parece ser não variável devido ao cancelamento entre as superfícies quentes e frias.
- Se o modo de pulsação l ≥ 3, a amplitude de variação é minimizada devido ao cancelamento das diferentes temperaturas da superfície observada (de qualquer ângulo) (Dziembowski 1977; Robinson, Kepler & Nather 1982)
- Amplitude muito pequena e incapaz de ser detectada com os instrumentos e detectores atuais, possivelmente causada por batimentos destrutivos de múltiplas freqüências.

Nas figuras 2.1 à 2.9 são mostradas as curvas de luz e espectro de Fourier de cada estrela observada; as unidades usadas para curva de luz e espectro de Fourier são as seguintes:

- *mi*: modulação de intensidade, definida como a variação fracional em unidade. 100% de modulação é definida como 1000 *mmi*. Essa unidade é usada para variações de intensidade nas curvas de luz.
- ma: modulação de amplitude, é usada nos espectros de amplitude. 100% de modulação é por definição, 1000 mma.
- mp modulação de potência, $[mp = (ma)^2]$, é usada nos espectros de potência.

Por exemplo, na curva de luz uma modulação de intensidade de 5 *mmi* corresponde a uma variação de 0,5% do valor médio (o exemplo serve para o espectro de amplitude, 5 *mma* significa uma modulação de 0,5%). Em todos os espectros de amplitude das figuras 2.1 à 2.9, a linha pontilhada corresponde a uma amplitude limite $A_{\text{lim}} = 3\overline{A}$ que, segundo as simulações de Monte Carlo, qualquer pico acima de A_{lim} é considerado uma variação real da luz da estrela com 99% de certeza, para dados sem interrupções; a linha tracejada que aparece nestas figuras representa a posição da amplitude média. Quando nenhum pico está acima ($3\overline{A}$), então, A_{lim} é o limite superior de confiabilidade para a estrela ser não variável. Isto significa que abaixo do limite determinado não podemos saber se a estrela varia ou não.

Ascenção Reta (2000)	Declinação(2000)	limite 1σ (mma)	3σ (mma)
00 13 39.0	+00 19 24	0,59	1,76
00 14 21.5	+09 47 11	0,93	2,79
00 20 49	+00 44 35	0,86	2,57
00 33 02.0	+01 36 44	1,97	5,91
00 35 11	+00 11 51	0,70	2,10
01 10 55	+14 39 22	1,38	4,14
02 28 08	$-08\ 35\ 01$	1,62	4,86
03 23 02	+00 05 59	1,59	4,77
03 25 30.4	+21 42 49	1,12	3,36
03 42 58	$-05\ 13\ 43$	2,17	6,51
03 44 10.4	+07 18 46	2,14	6,42
04 09 28.9	+17 07 53	2,7	8,1
07 44 43.3	+24 43 10	3,34	10,0
08 55 35.2	+16 18 37	2,14	6,42

Tab. 2.2: Tabela de limite de não variabilidade

continua ...

Ascenção Reta(2000)	Declinação(2000)	limite 1σ (mma)	3σ (mma)
09 25 11.8	+05 09 33	2,46	7,38
09 39 33.0	$-15\ 18\ 32$	0,88	2,65
09 52 58.9	+07 31 10	2,46	7,38
10 06 23.0	+07 12 14	2,46	7,38
10 18 50.7	$-10\ 19\ 41$	1,77	5,31
10 25 37.7	+19 07 23	0,62	1,86
10 53 16.5	$-29\ 03\ 49$	0,94	2,81
11 02 41.4	+00 32 37	2,51	7,53
11 15 11.5	+03 21 17	1,7	5,1
12 02 52.4	$-23\ 16\ 32$	3,03	9,09
12 44 50.2	$-12\ 32\ 19$	0,80	2,41
13 00 13.6	+01 44 43	2,67	8,01
13 08 32.0	$-30\ 10\ 01$	1,91	5,73
13 26 40.1	$-23\ 36\ 47$	1,35	4,05
13 34 03.2	+07 01 45	1,05	3,15
13 56 20.2	$-23\ 18\ 53$	1,65	4,95
14 12 35.4	+16 00 18	2,21	6,63
14 31 44.5	+15 21 25	2,19	6,57
15 01 52.3	+03 14 00	1,25	3,75
15 15 46.2	$-16\ 26\ 35$	1,15	3,45
15 27 13.5	+06 14 20	2,23	6,69
15 37 35.0	$-15\ 14\ 03$	1,99	5,97
16 10 46.3	+16 39 31	2,2	6,6
16 14 48.2	+11 36 22	1,79	5,37
16 36 24.5	+16 00 10	1,82	5,46
16 42 39.3	+17 02 58	1,79	5,37
16 43 21.5	+14 23 08	3,89	1,17
16 51 23.0	+18 48 24	1,47	4,41
20 46 16.0	$-06\ 44\ 26$	0,82	2,45
20 51 17.6	+09 29 48	1,9	5,7
21 09 08.4	+02 12 33	1,6	4,8
21 17 40.8	+15 14 08	1,75	5,25
21 32 23.9	+09 41 55	1,45	4,35
21 45 36.3	+22 31 38	0,96	2,87
22 05 16.8	+17 56 48	2,48	7,44
22 54 16.5	+12 36 47	2,54	7,62

Tab. 2.2: Tabela de limite de não variabilidade das estrelas que observei no LNA

Tab. 2.2:	Tabela de	limite de nâ	o variabilida	ade das estr	elas que o	observei no
LNA						

Ascenção Reta(2000)	Declinação(2000)	limite 1σ (mma)	3σ (mma)
23 06 00.3	+13 03 07	1,79	5,37
23 14 18	+00 54 27	1,69	5,07
23 18 00.1	+12 41 48	2,02	6,06
23 22 05.4	+20 40 04	2,01	6,03
23 58 08.9	+01 15 36	2,97	8,91

2.6 Novas ZZ Cetis

Em nosso último turno de observação realizado no LNA em agosto do ano de 2005, foram observadas 15 candidatas a ZZ Ceti, selecionadas do SDSS por base em seus espectros de baixo sinal-ruído e destas descobrimos três estrelas que são novas ZZ Ceti, são elas WD0000-0046, WD2334+0103 e WD1650+3010. Suas curvas de luz e transformada de Fourier são mostradas a seguir, assim como a tabela com seus períodos de pulsação.

Estrela	Periodicidades	
WD0000-0046	P1=611.4s	A_1 =23,00 $\langle A \rangle$
	P2=584.8s	A_2 =15,92 $\langle A \rangle$
	P3=601.3s	A_3 =8,973 $\langle A \rangle$
WD1650+3010	P1=339.1s	A_1 =14,71 $\langle A \rangle$
WD2334+0103	P1=923,2s	A_1 =40,37 $\langle A \rangle$

2.7 Prováveis ZZ Cetis

Em algumas situações observamos estrelas que apresentam variabilidade em sua curva de luz, porém, devido a condições adversas não conseguimos obter uma nova curva de luz para confirmar a variabilidade da estrela. Nesta seção mostramos estrelas que são nossas prioridades de observação por apresentarem ao menos 1 pico de com frequência de pulsação com amplitude perto de 3 (σ) vezes acima do ruído.

Estrela	Periodicidades	
HS1550+0012	P1=644 s	A=20,2 mma
HS2145+2231	P1=111 s	A=3,03 mma

Fig. 2.1 Curvas de luz a esquerda e transformada de Fourier das estrelas que observamos com a técnica de fotometria rápida. Nos gráficos da esquerda, o eixo xtemos tempo em segundos e no eixo y a intensidade fracional sobre a média. Nos gráficos à direita, freqüência em Hz e amplitude em mma.

Fig. 2.2 Curvas de luz a esquerda e transformada de Fourier das estrelas que observamos com a técnica de fotometria rápida.Nos gráficos da esquerda, o eixo xtemos tempo em segundos e no eixo y a intensidade fracional sobre a média. Nos gráficos à direita, freqüência em Hz e amplitude em mma.

Fig. 2.3 Curvas de luz a esquerda e transformada de Fourier das estrelas que observamos com a técnica de fotometria rápida.Nos gráficos da esquerda, o eixo xtemos tempo em segundos e no eixo y a intensidade fracional sobre a média. Nos gráficos à direita, freqüência em Hz e amplitude em mma.

Fig. 2.4 Curvas de luz a esquerda e transformada de Fourier das estrelas que observamos com a técnica de fotometria rápida.Nos gráficos da esquerda, o eixo xtemos tempo em segundos e no eixo y a intensidade fracional sobre a média. Nos gráficos à direita, freqüência em Hz e amplitude em mma.

Fig. 2.5 Curvas de luz a esquerda e transformada de Fourier das estrelas que observamos com a técnica de fotometria rápida.Nos gráficos da esquerda, o eixo xtemos tempo em segundos e no eixo y a intensidade fracional sobre a média. Nos gráficos à direita, freqüência em Hz e amplitude em mma.

Fig. 2.6 Curvas de luz a esquerda e transformada de Fourier das estrelas que observamos com a técnica de fotometria rápida.Nos gráficos da esquerda, o eixo xtemos tempo em segundos e no eixo y a intensidade fracional sobre a média. Nos gráficos à direita, freqüência em Hz e amplitude em mma.

Fig. 2.7 Curvas de luz a esquerda e transformada de Fourier das estrelas que observamos com a técnica de fotometria rápida.Nos gráficos da esquerda, o eixo xtemos tempo em segundos e no eixo y a intensidade fracional sobre a média. Nos gráficos à direita, freqüência em Hz e amplitude em mma.

Fig. 2.8 Curvas de luz a esquerda e transformada de Fourier das estrelas que observamos com a técnica de fotometria rápida.Nos gráficos da esquerda, o eixo xtemos tempo em segundos e no eixo y a intensidade fracional sobre a média. Nos gráficos à direita, freqüência em Hz e amplitude em mma.

Fig. 2.9 Curvas de luz a esquerda e transformada de Fourier das estrelas que observamos com a técnica de fotometria rápida.Nos gráficos da esquerda, o eixo xtemos tempo em segundos e no eixo y a intensidade fracional sobre a média. Nos gráficos à direita, freqüência em Hz e amplitude em mma.

Fig. 2.10 Curva de luz da estrela WD0000-0046 e sua transformada de Fourier. A linha pontilhada representa 3σ .

Fig. 2.11 Curva de luz da estrela WD1650+3010 e sua transformada de Fourier. A linha pontilhada é 1σ

Fig. 2.12 Curva de luz da estrela HS1550+0012 e sua transformada de Fourier. Esta estrela foi observada no Telescópio Zeiss do LNA, por 1.5 horas e com este tempo de observação foi possível identificar pelo menos um período de pulsação de 644 segundos (1553 μHz) e amplitude de 20.2mma e $\langle A \rangle = 6.6mma$ (representada pela linha contínua).

Fig. 2.13 Curva de luz da estrela HS2145+2231 e sua transformada de Fourier. Esta estrela foi observada no Telescópio de 1.60m LNA, por 2.2 horas e com este tempo de observação foi possível identificar pelo menos um período de pulsação de 111 segundos (9045 μHz) e amplitude de 3.0 mma.

2.8 Espectroscopia Ótica

A segunda parte experimental deste trabalho consiste em obter espectros na região do ótico das estrelas que foram testadas pela fotometria, com objetivo de determinar a sua temperatura efetiva e sua massa com base nos modelos de atmosfera e de evolução estelar (estes objetivos serão discutidos em detalhes no próximo capítulo). Para as estrelas não variáveis, a única forma de se extrair algum tipo de informação é pela espectroscopia, pois já que a estrela não faz parte do seleto e restrito grupo de estrelas ZZ Cetis, permite apenas que determinemos sua temperatura e massa através da espectroscopia. A grande vantagem que as ZZ Cetis possuem em relação às demais estrelas DAs é que, com os avanços da astrosismologia, é possível obter informações de seu interior, apenas estudando sua curva de luz, desde que é claro se tenha tempo de observação suficiente.

A espectroscopia ótica corresponde à região do espectro eletromagnético compreendida entre os comprimentos de onda do visível, ou seja, entre 3 600 Å e 7 000 Å. Nesta região espectral, as anãs brancas DA apresentam as linhas de Balmer do Hidrogênio, o que permite determinação de seus parâmetros atmosféricos (T_{ef} , $\log g$), pois o perfíl destas linhas é capaz de fornecer esta informação; como é feito isso será discutido no capítulo seguinte.

2.9 Observações

Nossa amostra é composta por 240 espectros de estrelas do tipo DA (apresentam Hidrogênio puro em sua atmosfera). Alguns já foram mostrados na tese de doutorado de Odilon Giovannini Jr. (1995), e outros foram observados posteriormente; em sua essência são estrelas selecionadas dos catálogos: Edinburgh-Cape Survey, Hamburg ESO Survey, Hamburg Quasar Survey e McCook & Sion (1986). Estes espectros foram obtidos nos seguintes telescópios: 1,60m LNA (Laboratório Nacional de Astrofísica), CTIO 1,5 m (Cerro Tololo International Observatory), 2,7m McDonald Observatoty, 2,14m CASLEO (Complejo de Astronómico el Leoncito) e 2,14m KPNO (Kitt Peak National Observatory). Foram utilizados em todos os telescópios espectrógrafos do tipo Cassegrain. Nosso objetivo era obter razão sinal-ruído $\gtrsim 70$ para poder medir $T_{\rm ef}$ e log g com precisão melhor que 200 K e 0.1 dex.

No McDonald Observatory, os espectros foram obtidos por Chuck Claver, Matt Wood & Kepler S. O. através de um detector CCD TI (Texas Instrument) de 800 × 800 pixels acoplado ao telescópio de 2,7 m, uma rede de difração de 400 linhas/mm com "blaze" em 4 000 Å centrada em 4 500 Å e dispersão de ~ 1,8 Å/pix. A largura de fenda era de 2", fornecendo uma resolução espectral de ~ 4,0 Å/pix (largura à meia altura das lâmpadas de calibração). Os espectros obtidos no Kitt Peak National Observatory foram obtidos por Kepler S. O. & Matt Wood, com espectrógrafo Cassegrain acoplado ao telescópio de 2,14 m com detector CCD TI semelhante ao do McDonald Observatory, também com rede de 400 linhas/mm e resolução espectral semelhante $\sim 4,0$ Å/pix.

No CASLEO, Kepler S. O. utilizou o espectrógrafo Cassegrain acoplado ao telescópio de 2,14 m e um detector CCD de 400×600 pixels; rede de 400 linhas/mm com "blaze" em 4000 Å e centrada em 4300 Å, dispersão de 4,5 Å/pix e a fenda de 5,5" por causa do *seeing* ruim forneceu resolução espectral 10 Å.

No observatório de Cerro Tololo International Observatory foram realizados 5 turnos de observação (Odilon Givannini, Kepler S. O. & Alex F. M. C.); os espectros foram obtidos com espectrógrafo Cassegrain acoplado ao telescópio de 1,5 m. Nos dois primeiros turnos (Julho e Agosto de 1994) utilizou-se o detector CCD GEC (General Eletric Co.) 400 × 600 pixels, e nas outras 3 utilizou-se o CCD Loral de 1 200 × 1 200 pixels. O CCD Loral apresenta alta eficiência quântica na região do azul ($\lambda < 4000$ Å), região onde as linhas de Balmer são sensíveis a log g; para determinarmos precisamente a massa da estrela precisamos ter as linhas de Balmer da região do azul bem definidas. A resolução espectral obtida no CTIO foi de ~ 10 Å com rede de 300 l/mm com ambos detectores.

No LNA, onde obtive 56 espectros num total de 7 turnos de observação conforme pode ser observado na tabela 2.3, a configuração utilizada foi espectrógrafo Cassegrain no telescópio de 1,6 m; no primeiro turno de observação utilizamos o CCD101 que possui 1024 \times 1024 pixels e nos demais turnos utilizamos o CCD106 com 2048 \times 2048 pixels, que além de ter um campo maior, também é significativamente mais sensível na região do azul que o CCD101. A rede de difração utilizada foi de 600 linhas/mm e resolução espectral de \sim 3,0 Å.

WD	nome	V	Exp.(horas)	Telescópio
0000+1656	HS 0000+1656	16,0	1,0	1,6 LNA
0009-058	G 158–39	16,0	2,2	1,5 CTIO
0013+0019	G 31–35	15,4	1,0	1,5 CTIO
0033+016	G 1–7	15,5	0,5	2,7 McDonald
0037-006	PG 0037-006	14,6	1.5	1,5 CTIO
0040-0021	WD 0040-0021	15,0	1,4	1,6 LNA
0051+1145	HS 0051+1145	15,6	1,0	1,6 LNA
0103-278	G 269–93	15,4	2,3	1,5 CTIO
0103+2253	HS 0103+2253	15,8	1,0	1,6 LNA
0104-464	BPM 30551	15,3	2,7	1,5 CTIO
0104-464	BPM 30551	15,3	3,5	2,14 CASLEO

Tab. 2.3: Diário de observações

2. Observações

WD	nome	V	Exp.(horas)	Telescópio
0107-192	GD 685	16,2	3,5	1,5 CTIO
0124-6612	EC 0124-6612	15,5	2,3	1,5 CTIO
0129+103	G 2–40	14,4	1.3	1,5 CTIO
0130+0504	G 1–45	14,0	0,8	1,5 CTIO
0133-116	R 548	14,1	1,5	2,14 CASLEO
0142-3026	EC 0142-3026	16,5	3,5	1,5 CTIO
0145-2211	MCT 0145-2211	15,3	1,7	1,6 LNA
0151+017	G 71–41	15,0	0,5	2,7 McDonald
0225+001	HS 0225+0010	15,9	2,5	1,5 CTIO
0231-054	GD 31	14,2	1,1	1,5 CTIO
0237+1034	HS 0237+1034	16,0	0,8	1,6 LNA
0255 - 705	BPM 2819	14,1	1,5	2,14 CASLEO
0329+1121	HS 0329+1121	15,9	0,8	1,6 LNA
0339-035	GD 47	15,3	1,7	1,5 CTIO
0339+523	RUBIN 70	15,8	0,5	2,7 McDonald
0341-459	BPM 31594	15,0	2,7	1,5 CTIO
0341-459	BPM 31594	15,0	2,4	2,14 CASLEO
0352+096	HZ 4	14,5	1,2	1,5 CTIO
0401+250	G 8-8	13,8	0,3	2,7 McDonald
0407+179	HZ 10	14,1	1,5	1,5 CTIO
0413-077	40 ERI B	9,5	0,01	2,7 McDonald
0416+272	HL Tau 76	15,2	2,6	1,5 CTIO
0507+046	HS 0507+0435	15,6	3,0	1,5 CTIO
0532-5605	EC 0532-5605	16,0	1,8	1,5 CTIO
0622-8010	EC 0622-8010	14,8	1,5	1,5 CTIO
0624 - 756	BPM 4225	15,5	2,2	1,5 CTIO
0637+447	GD 77	14,8	0,4	2,7 McDonald
0701-587	BPM 18394	14,4	0,5	1,6 LNA
0810+235	HS 0810+2329	15,5	3,3	1,5 CTIO
0852+192	HS 0852+1916	15,7	2,3	1,5 CTIO
0921+354	G 117-B15A	15,5	1,0	2,7 McDonald
0922+053	HS 0922+0522	14,9	2,3	1,5 CTIO
0938+286	TON 20	15,5	0,8	2,7 McDonald
0943+441	G 116–52	13,2	0,3	2,7 McDonald
0945+245	PG 0945+245	14,3	0,3	2,7 McDonald
0950-572	BPM 19738	14,9	1,1	1,5 CTIO
0950+077	HS 0950+0745	15,3	2,0	1,5 CTIO

Tab. 2.3: Diário de observações

WD	nome	V	Exp.(horas)	Telescópio
0951-035	G 161–36	14,8	0,5	2,7 McDonald
0954-710	BPM 6082	13,5	1,0	1,5 CTIO
1001-033	GD 110	15,5	0,8	2,7 McDonald
1003+074	HS 1003+0726	15,3	2,0	1,5 CTIO
1013+0321	HS 1013+0321	15,6	0,7	1,6 LNA
1022+050	PG 1022+050	14,1	0,1	2,14 KPNO
1026+023	PG 1026+023	14,1	0,3	2,7 McDonald
1033+464	GD 123	14,9	0,3	2,7 McDonald
1053-2903	EC 10532-2903	15,4	0,7	1,6 LNA
1101+364	PG 1101+364	14,4	0,2	2,14 KPNO
1102+0032	HS 1102+0032	14,8	1,0	1,6 LNA
1105 - 048	G 163–50	13.0	1,3	1,6 LNA
1116+026	GD 133	14,6	0,3	2,7 McDonald
1119+385	PG 1119+385	15,7	0,3	2,14 KPNO
1123+189	PG 1123+189	14,0	0,5	2,7 McDonald
1124-2923	EC 11246-2923	15,0	1,0	1,6 LNA
1127-2940	ESO 439-80	15,0	1,0	1,5 CTIO
1129+071	PG 1129+071	14,9	0,2	2,14 KPNO
1147+255	G 121–22	15,6	1,0	2,7 McDonald
1202-2316	EC 12028-2316	12,8	1,3	1,6 LNA
12043-1337	EC12043-1337	15,5	1,0	1,6 LNA
1207 - 032	PG 1207-032	12,3	0,2	2,7 McDonald
1213+528	CASE 1	13,3	0,07	2,14 KPNO
1220-2915	EC 12204-2915	15,8	1,0	1,6 LNA
1229 - 012	PG 1229-012	14,2	0,3	2,7 McDonald
1236-495	BPM 37093	13,9	1,3	1,5 CTIO
1241+235	PG 1241+235	15,2	0,8	2,7 McDonald
1244-1232	EC 12448-1232	14,7	2,7	1,6 LNA
1244+149	G 61–17	15,9	1,0	2,7 McDonald
1247+553	GD 319	12,3	0,2	2,7 McDonald
1253+482	GD 320	16,5	0,3	2,14 KPNO
13085-3010	EC 13085-3010	15,1	0,7	1,6 LNA
1326-2336	EC 13266-2336	15,7	1,4	1,6 LNA
1327-083	G 14–58	12,2	0,2	2,7 McDonald
1334-1604	EC 13342-1604	15,3	1,0	1,6 LNA
1334+0701	HS 1334+0701	15,0	1,0	1,6 LNA
1355+340	G 165-B5B	16,2	1,5	2,7 McDonald

Tab. 2.3: Diário de observações

2. Observações

WD	nome	V	Exp.(horas)	Telescópio	
1356-231	EC 13563-2318	15,0	1,4	1,5 CTIO	
1356-231	EC 13563-2318	15,0	2,7	1,6 LNA	
14012-1446	EC 14012-1446	15,5	1,0	1,6 LNA	
1418 - 005	PG 1418-005	16,5	1,3	2,7 McDonald	
1422+095	GD 165	14,3	1,3	1,6 LNA	
1425-811	L 19-2	13,8	1,0	1,5 CTIO	
1447+0454	HS 1447+0454	15,6	0,7	1,6 LNA	
1448+077	G 66-32	15,5	1,0	2,7 McDonald	
1503-091	EC 1503-092	15,2	2,1	1,5 CTIO	
15036-0918	EC 1503-0918	15,2	0,7	1,6 LNA	
1507 - 105	GD 176	15,4	0,8	2,7 McDonald	
1527+0614	HS 1527+0614	16,1	1,0	1,6 LNA	
1537+651	GD 348	14,6	0,3	2,7 McDonald	
1539-035	GD 189	15,2	0,7	2,7 McDonald	
1544 - 377	L 481–60	12,8	0,8	1,5 CTIO	
1550+183	GD 194	14,8	0,7	2,7 McDonald	
1555 - 089	G 152–B4B	14,8	0,7	2,7 McDonald	
1559+369	R 808	14,3	0,8	2,7 McDonald	
1606+0153	HS 1606+0153	15,0	0,7	1,6 LNA	
1606+422	CASE 2	13,9	0,3	2,7 McDonald	
1610+166	GD 196	15,7	0,3	2,14 KPNO	
1610+1639	HS 1610+1639	15,7	1,3	1,6 LNA	
1614+0537	HS 1614+0537	14,7	2,0	1,6 LNA	
1616-591	BPM 24047	15,1	3,0	1,5 CTIO	
1619+1220	HS 1619+1220	14,9	2,0	1,6 LNA	
1636+160	GD 202	15,6	1,0	2,7 McDonald	
1636+1600	HS 1636+1600	15,6	0,7	1,6 LNA	
1637+335	G 180–65	14,6	0,5	2,7 McDonald	
1642+1702	HS 1642+1702	15,8	1,3	1,6 LNA	
1647+591	G 226–29	12,2	0,2	2,7 McDonald	
1651+1848	HS 1651+1848	16,2	1,4	1,6 LNA	
1654+637	GD 515	15,6	1,3	2,7 McDonald	
1655+215	G 169-34	14,4	0,3	2,7 McDonald	
1711+1716	HS 1711+1716	16,2	1,4	1,6 LNA	
1714 - 547	BPM 24754	15,6	2,8	1,5 CTIO	
1716+020	G 19–20	14,8	0,7	2,7 McDonald	
1827-106	G 155–19	14,2	0,1	2,14 KPNO	

Tab. 2.3: Diário de observações

WD	nome	V	Exp.(horas)	Telescópio
1840-111	G 155–34	14,2 0,1		2,14 KPNO
1855+338	G 207–9	14,6 1,7		1,6 LNA
1857+119	G 141–54	15,5 0,3		2,14 KPNO
1911+135	G 142-B2A	14,0	0.1	2,14 KPNO
1919+145	GD 219	13,0	0,1	2,14 KPNO
1935+276	G 185–32	13,0	1,7	1,6 LNA
1950+250	GD 385	15,2	3,0	1,5 CTIO
2034 - 290	EC 2034-290	16,3	1,3	1,5 CTIO
2039 - 682	BPM 13491	13,5	1,0	2,14 CASLEO
2047+372	G 210–36	13,6	0,1	2,14 KPNO
2051+0929	HS 2051+0929	16,2	3,0	1,6 LNA
2105 - 820	BPM 1266	13,6	2,0	1,5 CTIO
2105 - 820	BPM 1266	13,6	4,0	2,14 CASLEO
2109+0212	HS 2109+0212	16,4	1,0	1,6 LNA
2115 - 560	BPM 27273	14,3	1,0	2,14 CASLEO
2126+734	G 261–43	14,7	0,5	2,7 McDonald
2132+0941	HS 2131+0941	15,9	1,0	1,6 LNA
2136+229	G 126–18	15,2	0,2	2,14 KPNO
2148+1631	HS 2148+1631	15,9	0,7	1,6 LNA
2149+372	GD 397	15,2	0,6	2,7 McDonald
2216+1551	HS 2216+1551	15,7	1,4	1,6 LNA
2226+061	GD 236	14,6	0,5	2,7 McDonald
2246+223	G 67–23	14,4	0,1	2,14 KPNO
2254+1236	HS 2254+1236	15,5	2,0	1,6 LNA
2258+406	G 216-B14B	15,5	0,5	2,7 McDonald
2259+1419	HS 2259+1419	15,8	1,0	1,6 LNA
2302 - 773	EC 2302-773	14,5	1,7	1,5 CTIO
2303+241	PG 2303+241	15,5	2,0	1,5 CTIO
2306+131	PG 2306+131	15,9	1,7	1,5 CTIO
2311+552	GD 556	16,2	0,5	2,7 McDonald
2322+207	PG 2322+207	16,3	0,5	2,7 McDonald
2322+2040	HS 2322+2040	16,3	1,0	1,6 LNA
2326+049	G 29–38	13,0	0,7	1,5 CTIO
2337 - 760	BPM 15727	14,6	3,0	1.5 CTIO
2337 - 760	BPM 15727	14,6	1,0	2,14 CASLEO
2341+322	G 130–5	12,9	0,1	2,7 McDonald
2347+128	G 30–20	16,1	2,0	1,6 LNA

Tab. 2.3: Diário de observações

WD	nome	V	Exp.(horas)	Telescópio
2348-244	EC 2348-242	15,3	1,4	1,5 CTIO
2359-434	BPM 45338	13,0	0,6	1,5 CTIO

Tab. 2.3: Diário de observações

2.10 Procedimentos de redução

A redução foi feita utilizando-se os procedimentos padrões do Image Reduction and Analysis Facility (IRAF) produzido pelo National Optical Astronomy Observatories (NOAO), e consiste basicamente na remoção de efeitos produzidos pelo instrumento e pela atmosfera terrestre.

Foi feita correção por *flat-field* e *bias* (da ordem de 20 imagens flat-field e 20 imagens de bias por noite). A seguir foi feita a calibração de comprimento de onda que consiste em identificar alguns comprimentos de onda sobre o CCD; para isso utilizamos um espectro de lâmpada de He-Ar onde são conhecidos previamente os comprimentos de onda de algumas linhas de emissão da lâmpada; identificando-se estes podemos utilizar o espectro da lâmpada para calibrar o espectro observado. Em geral, para cada objeto é feita uma exposição de lâmpada. E sem dúvida este é o passo da redução em que deve-se ter o máximo de atenção, pois a precisão deve ser a melhor possível, já que os perfis de linha são muito afetados por erros desta calibração. A sensibilidade do CCD no extremo azul do espectro, próximo à 3500 Å é muito baixa, formando linhas de difícil detecção nesta região.

Outra calibração que deve ser feita é com respeito ao fluxo; para isto utilizamos algumas estrelas padrões espectroscópicas, estrelas que possuem fluxo conhecido aqui na Terra. Algumas eram padrões espectrofotométricas secundárias, e outras utilizamos as padrões espectroscópicas de Hamui et al. (1992) com fluxo tabelado em maior resolução (16 Å). Esta correção serve para fins atmosféricos e instrumentais. Algumas das estrelas padrões que utilizamos neste trabalho foram EG21, LTT3218, LTT879 e EG274. Para fazer a correção por extinção, a estrela padrão é observada em diferentes massas de ar (μ) e a correção é da seguinte forma ~ $10^{[0,4(\mu)\kappa(\lambda)]}$, onde $\kappa(\lambda)$ é o coeficiente de extinção para o comprimento de onda λ . Por fim usamos o fluxo medido com as estrelas padrões para calibrar o espectro do objeto em questão, o que resulta no espectro do objeto em unidades de ergs/cm²/s/Å. Em outras palavras, calibração de fluxo consiste na extração e comparação dos fluxos observados com o fluxo das estrelas padrões observadas, e seus fluxos tabelados. A razão entre o fluxo da estrela observado e o fluxo tabelado nos dá a função sensibilidade do CCD, que é uma correção a ser aplicada ao espectros dos objetos para a calibração de fluxo após a correção por extinção.

Fig. 2.14 Nesta figura são mostrados os espectros obtidos durante este trabalho. O fluxo, eixo vertical, está deslocado para apresentação. O comprimento de onda, eixo horizontal, está em Å.

Fig. 2.15 Nesta figura são mostrados os espectros obtidos durante este trabalho. O fluxo, eixo vertical, está deslocado para apresentação. O comprimento de onda, eixo horizontal, está em Å.

Fig. 2.16 Nesta figura são mostrados os espectros obtidos durante este trabalho. O fluxo, eixo vertical, está deslocado para apresentação. O comprimento de onda, eixo horizontal, está em Å.

Fig. 2.17 Nesta figura são mostrados os espectros obtidos durante este trabalho. O fluxo, eixo vertical, está deslocado para apresentação. O comprimento de onda, eixo horizontal, está em Å.

Fig. 2.18 Nesta figura são mostrados os espectros obtidos durante este trabalho. O fluxo, eixo vertical, está deslocado para apresentação. O comprimento de onda, eixo horizontal, está em Å.

3. DETERMINAÇÃO DE TEMPERATURA EFETIVA E GRAVIDADE

Os parâmetros atmosféricos, temperatura efetiva e aceleração gravitacional($T_{\rm ef}$, $\log g$), neste trabalho foram determinados através da comparação entre o fluxo previsto nos modelos de atmosfera e o fluxo observado nas medidas espectroscópicas. Podemos observar na literatura diversos trabalhos neste sentido, por exemplo: Koester, Shulz & Weidmann (1979); Greenstein (1982); Daou et al. (1990); Bergeron et al. (1995); Bergeron et al. (2001); Bergeron et al. (2003,2004); Finley, Koester & Basri (1997), Koester & Allard (2000) e Gianninas et al. (2005).

Neste capítulo mostraremos como foram determinados os parâmetros atmosféricos bem como algumas noções teóricas dos modelos atmosféricos empregados neste trabalho e calculados por Detlev Koester da Universidade de Kiel, para nosso projeto. Na seqüência discutiremos os principais aspectos físicos envolvidos na construção destes modelos e a seguir descreveremos os procedimentos utilizados na determinação dos parâmetros atmosféricos de cada estrela da amostra.

3.1 Noções Teóricas

É na combinação do transporte de energia por convecção e radiação que se encontra a base da construção dos modelos de atmosfera para as anãs brancas relativamente frias como as estudadas neste trabalho. A teoria de convecção utilizada é a chamada teoria do comprimento de mistura MLT (Mixing Length Theory), formulada e aplicada pela primeira vez ao problema estelar por Biermann (1951), Vitense (1953) e Böhm-Vitense(1958), baseados no trabalho de Prandtl (1952). Desde então tem se elaborado e quantificado muitas adaptações desta teoria, tanto que, existem hoje diversas versões da MLT aplicadas desde a problemas de engenharias (química, mecânica e de alimentos) até aos problemas de modelagem de interior estelar. A derivação clássica da teoria pode ser encontrada, por exemplo, no cápitulo 14 de Cox & Giuli (1968). Esta teoria apresenta como principal problema o de tratar-se de uma *teoria local*; e na realidade a forma como ocorre o transporte convectivo no interior das estrelas é turbulenta, e não local.

A idéia fundamental desta teoria consiste na forma de descrever o transporte por convecção. À primeira vista, poderia parecer incoerente utilizar modelos de convecção para as anãs brancas, onde a forma dominante de transporte de energia é por condução! Dominante porque o núcleo é praticamente a estrela toda. Acima do núcleo as camadas de He e H são muito finas $M_{\text{atmosfera}} \leq 10^{-2} M_{\star}$. Porém é nas finas camadas de He e H denominadas de atmosfera que está nosso maior interesse de estudo, pois nela forma-se o espectro observado, e nestas camadas o transporte de energia é dominado por radiação ou convecção.

No interior de todas as anãs brancas a transferência de energia por condução é a principal forma de transferir ou trocar energia com as camadas superiores, apesar de sempre existir uma camada radiativa externa; no entanto nas anãs brancas mais frias que 30 000 K para DBs 20 000 K para as DAs, outra forma de transporte de energia ou calor é a convecção. Isso ocorre nas estreitas camadas de He e H (envelope) que envolve a estrela e representando cerca de 1% da massa total da estrela. Estas camadas podem ser modeladas pela MLT. E para modelar a convecção por esta teoria, é necessário descrever como ocorrem a formação de bolhas e como funciona o *efeito de flutuação*. O nome *comprimento de mistura* se refere à distância (ℓ) que as bolhas percorrem durante *a flutuação*, passando de regiões de maior para regiões de menor temperatura (e vice-versa), quando estas bolhas sobem ou descem, elas mantêm equilíbrio de pressão com a vizinhança.

A taxa de transferência de calor está relacionada à formação das bolhas, a sua velocidade de subida (\bar{v}) , à distância percorrida ou comprimento de mistura ℓ e, principalmente, da temperatura da estrela como função de sua profundidade e do calor específico. A principal exigência desta teoria é que sejam conhecidos, no ponto de interesse (ao redor dos elementos de fluido, ou bolha), temperatura, densidade e outras quantidades estelares.

Podemos definir um gradiente de temperatura com relação à profundidade na estrela:

$$\beta = -\frac{dT}{dr} = -\frac{dT}{dP}\frac{dP}{dr} = -T\frac{d\ln T}{d\ln P}\frac{d\ln P}{dr} = -\frac{T}{\lambda_P}\nabla$$
(3.1)

Se λ_P representa a altura da escala de pressão, pode ser escrita como:

$$\lambda_P \equiv -\left(\frac{d\ln P}{dr}\right)^{-1} = \frac{P}{g\rho} = \frac{v_s^2}{g\Gamma_1}$$
(3.2)

onde v_s é a velocidade do som e Γ_1 é expoente adiabático.

Assim sendo, podemos expressar o gradiente de temperatura como função da velocidade do som no meio e do operador $\nabla = \frac{d \ln T}{d \ln P}$.

$$\beta = -\frac{g\Gamma_1 T}{v_s^2} \nabla \tag{3.3}$$

O efeito de convecção ocorre justamente porque existe uma pequena diferença entre dois gradientes de temperatura; um destes é do elemento que sobe ou desce, e o outro é com relação à sua vizinhança (representados pelos subíndices "e" e "v" respectivamente nas expressões abaixo); essa diferença de temperatura vamos simbolizar por δT . Consideremos Δr a distância percorrida pelo elemento e \bar{v} a velocidade média que este elemento se move. Desta maneira, o fluxo de energia transportado de forma convectiva tem a seguinte forma:

$$\pi F_{conv} = \rho C_p \bar{v} \delta T = \rho C_p \bar{v} (\beta_v - \beta_e) \Delta r \tag{3.4}$$

Substituindo Δr por metade do comprimento de mistura $\ell/2$ e os β 's em termos de ∇ , a expressão para o fluxo convectivo fica:

$$\pi F_{conv} = \frac{1}{2} \rho C_p \bar{v} T (\nabla_v - \nabla_e) \frac{\ell}{\lambda_p}$$
(3.5)

Para estimarmos o valor da velocidade \bar{v} , é preciso calcular o trabalho exercido pelo excesso da gravidade sobre o elemento de fluido. Consideremos $\delta\rho$ a diferença de densidade entre o elemento e sua vizinhança. Então, a força que atua sob este elemento, que o faz "boiar", é da forma: $f_b = -g\delta\rho$. A equação de estado tem a seguinte forma geral:

$$\chi_{\rho}d\ln\rho = d\ln P - \chi_{T}d\ln T + \chi_{\mu}d\ln\mu \qquad (3.6)$$

lembrando que aqui μ é o potencial químico. Podemos escrever a equação de estado de uma forma um pouco mais compacta $d(\ln \rho) = d(\ln P) - Qd(\ln T)$ onde $Q \equiv 1 - (\partial \ln \mu / \partial \ln T)_P$; Q é conhecido como coeficiente de expansão térmica. Lembrando-se que o elemento está em equilíbrio de pressão, isto é, $\delta P = 0$, temos $\delta \rho = -Q\rho \delta T/T$. Então, a força que atua sobre o elemento flutuante é:

$$f_b = \frac{gQ\rho}{T}\delta T = \frac{gQ\rho}{T}(\beta_v - \beta_e)\Delta r$$
(3.7)

Integrando sobre todo o caminho Δ percorrido pelo elemento de fluido, que vamos aproximar por $\Delta = \ell/2$, obtemos o trabalho $\bar{\omega}$ sobre este elemento.

$$\bar{\omega} = \int_0^{\Delta} f_b(\Delta r) d(\Delta r) = \left(\frac{gQ\rho\lambda_P}{8}\right) (\nabla_v - \nabla_e) \left(\frac{\ell}{\lambda_P}\right)^2 \tag{3.8}$$

A velocidade \bar{v} pode ser aproximada em termos do trabalho da seguinte forma $\frac{1}{2}\rho\bar{v}^2 \approx \frac{1}{2}\bar{\omega}$

$$\bar{v} = \left(\frac{gQ\lambda_P}{8}\right)^{\frac{1}{2}} \left(\nabla_v - \nabla_e\right) \left(\frac{\ell}{\lambda_P}\right)$$
(3.9)

Retornando à expressão do fluxo convectivo (3.5), substituindo o valor de \bar{v} obtido em (3.8), a expressão do fluxo convectivo fica:

$$\pi F_{conv} = \left(\frac{gQ\lambda_P}{32}\right)^{\frac{1}{2}} (\rho C_P T) (\nabla_v - \nabla_e)^{\frac{3}{2}} \left(\frac{\ell}{\lambda_P}\right)^2$$
(3.10)

Lembramos que ℓ representa o *comprimento de mistura*, e usualmente é expresso como múltiplo da escala de pressão $\ell = \alpha \lambda_P$. Mas para completarmos a teoria, necessitamos conhecer a eficiência deste transporte convectivo. À medida que o elemento sobe, o excesso de calor é transferido para sua vizinhança, sob a forma de radiação; esta perda de energia diminui o excesso de energia contido no elemento que se dissolve, até atingir o final do comprimento de mistura. O parâmetro de eficiência é definido da seguinte forma:

 $\gamma = \frac{\text{excesso de energia}}{\text{perda de energia por radiação durante o tempo de vida do elemento}}$

Vamos definir $\nabla_v \in \nabla_e$ como os gradientes de temperatura da vizinhança e do elemento respectivamente e ∇_R e ∇_A os gradiente radiativo e adiabático respectivamente.

O excesso de energia contido no elemento é proporcional a $(\nabla_v - \nabla_e)$ e nos processos em que o elemento se move adiabaticamente $(\nabla_v - \nabla_A)$. Portanto a perda de energia por radiação é proporcional a $(\nabla_v - \nabla_A) - (\nabla_v - \nabla_e) =$ $(\nabla_e - \nabla_A)$ então ``

$$\gamma = \frac{(\nabla_v - \nabla_e)}{(\nabla_e - \nabla_A)} \tag{3.11}$$

Utilizando a expressão 3.5 que calcula o fluxo convectivo total em termos do comprimento de mistura podemos calcular o fluxo monocromático da seguinte forma (Bergeron, Wesemael & Fontaine 1992):

$$F_{\rm conv} = \frac{bC_p \rho T \ell^2}{\lambda_p} \left(\frac{agQ}{\lambda_p}\right)^{1/2} (\nabla_v - \nabla_e)^{3/2}$$
(3.12)

onde $(\nabla_v - \nabla_e)$ pode ser expresso em termos do ∇_A e ∇_v da forma que segue, e vamos substituir $\nabla_v = \nabla$, o gradiente real na estrela:

$$(\nabla_v - \nabla_e)^{1/2} = -\frac{B}{2} + \left(\frac{B^2}{4} + \nabla - \nabla_A\right)^{1/2}$$
(3.13)

Os passos intermediários estão explicitados em Mihalas (1978). O parâmetro B é expresso da seguinte forma

$$B \equiv \frac{\nabla_e - \nabla_A}{\nabla - \nabla_e} = \frac{\sigma T^3 d}{\rho \ell \tau_e C_p} \left(\frac{\lambda_p}{agQ}\right)^{1/2}$$
(3.14)

Onde d é um parâmetro definido em função da profundidade ótica do elemento convectivo τ_e ,

$$d = \frac{8\tau_e^2}{1 + (8\tau_e^2/c)}$$
(3.15)

Tab. 3.1 Constante numéricas da MLT; eficiência convectiva crescente de cima para baixo

Versão	a	b	c	$\alpha = \ell / \lambda_p$
ML1	8	1/2	24	1
ML2	1	2	16	1
ML3	1	2	16	2

e a profundidade ótica deste elemento é calculada da seguinte forma:

$$\tau_e = \kappa \ell \rho \tag{3.16}$$

onde κ é a opacidade

A expressão para o fluxo convectivo para as camadas superiores pode ser expressa em termos de proporcionalidade com relação as constantes da MLT da seguinte forma:

$$F_{\rm conv} \propto \frac{b\alpha c^3}{a}$$
 (3.17)

Por fim, o fluxo total é a soma do fluxo radiativo com o fluxo convectivo.

$$\pi F = \pi F_{\text{Rad}} + \pi F_{\text{Conv}} = \sigma_R T_{\text{ef}}^4 \tag{3.18}$$

A teoria de comprimento de mistura descrita acima é bastante simples e convencional em astrofísica. Numerosos refinamentos já foram propostos. Usualmente existem 3 versões da teoria do comprimento de misturas que são as mais conhecidas por ML1, ML2 e ML3.

O modelo ML1 corresponde ao tratamento pioneiro da MLT feito por Böhm-Vitense (1958). A versão ML2 corresponde à alteração da ML1 diferindo apenas em suas constantes a, b, c e apresenta uma eficiência convectiva maior que a ML1 (Tassoul, Fontaine & Winget 1990). O modelo ML3 pode ser visto como sendo o modelo ML2 com $\alpha = 2$, conforme podemos observar na Tab 3.1, e naturalmente a eficiência convectiva é maior ainda no modelo ML3.

Um dos grandes problemas desta teoria (MLT) é que dependendo da temperatura da estrela e da parametrização ou da eficiência convectiva empregada nos modelos da MLT, podem-se encontrar valores diferentes para temperatura dependendo da região espectral em análise (ótico ou ultra- violeta). Em outras palavras, espectros de uma mesma estrela na região do ótico e no ultra-violeta apresentam valores de T_{ef} e log g diferentes, tratados ambos pela mesma grade de modelos. Este problema é apresentado e resolvido em Bergeron et al. (1995), que faz as determinações de temperatura efetiva pelos espectros de 22 ZZ Cetis, na região do ótico e no ultra-violeta, realizando estas comparações com as diferentes parametrizações para a MLT. A figura 3.2 mostra bem as comparações que eles obtiveram para as diferentes grades de modelos ML1, ML2 e ML3. Bergeron et al. (1995) concluem que as estrelas DAs com $T_{\rm ef}$ > 18000 K, e as com $T_{\rm ef}$ < 8000 K são totalmente independente da grade de modelos da MLT utilizada. Isso porque as diferenças de fluxo emergente calculadas para as diferentes versões da MLT são pequenas para as temperaturas mais elevadas, já que uma fração desprezível de energia é transportada via convecção, ao passo que, para as temperaturas mais baixas a convecção torna-se adiabática e os efeitos termodinâmicos podem ser representados por gradientes adiabáticos. Entretanto, é na região intermediária de temperatura, que tanto T_{ef} quanto $\log q$ apresentam forte dependência dos parâmetros da MLT. Quando a eficiência convectiva é aumentada, os resultados são T $_{\rm ef}$ maior e $\log g$ menor. Dentro do intervalo de 8000 K $\leq T_{ef} \leq 15\,000$ K as diferenças de fluxo entre ML1 e ML3 tornam-se grandes, atingindo um máximo em $\approx 13\,000$ K. Bergeron et al. (1995) determinam que ML2 deve ser a melhor parametrização para esta região, e o valor de α deve ser igual a 0,6 para o ML2, com uma incerteza de temperatura medida da ordem de $\sigma(T_{\rm ef}) \approx 350 K$, para ajustar simultaneamente os resultados obtidos com os espectros no ultra-violeta e no ótico.

A Fig 3.2 [Bergeron *et al.* (1995)], ilustra a diferença entre temperaturas determinadas por medidas no ótico e no ultra-violeta no intervalo de 10000 K à 16000 K. As temperaturas foram determinadas utilizando-se modelos com ML1, ML2, ML2/ α =0,6 e ML3, tanto para o ótico quanto para o ultra-violeta. Verifique que os modelos com ML2/ α =0,6 são os que apresentam valores de T_{ef}(ultravioleta) e T_{ef}(ótico) consistente. Koester & Vauclair (2000) verificam que estes resultados também podem ser obtidos com ML1/ α =1.75.

3.2 Espectros sintéticos

Os espectros sintéticos que utilizamos neste trabalho foram calculados através de modelos atmosféricos para estrelas DAs, isto é, na construção dos modelos para este tipo de atmosfera foi assumindo que sua composição seja de hidrogênio puro. Logo abaixo deste envelope de hidrogênio aparece uma camada um pouco mais espessa, composta apenas de hélio. Isto ocorre porque a escala de difusão gravitacional é menor que 10^6 anos e as estrelas com $T_{\rm ef} \sim 12\,000$ K de massa normal têm idade de cerca de 0,1 Gano.

Bergeron et al. (1990) fizeram uma análise dos parâmetros atmosféricos, log g, T_{ef} e abundância de He, para uma amostra de estrelas DA com temperatura próxima de 13 000 K, porque abaixo desta temperatura o hélio é invisível espectroscopicamente; por isso que não é possível utilizar as linhas de hélio para determinar a abundância na atmosfera. A possível presença de He, trazido as camadas externas por convecção, só pode ser detectada quando se faz a análise das linhas mais altas da série de Balmer, porque a presença de hélio aumenta a pressão fotosférica, provocando uma alteração dos níveis mais altos do átomo de hidrogênio, evidenciado no perfil das linhas H_9 , H_8 e H_{ϵ} alterado, mas é totalmente equivalente a uma massa maior. A população dos níveis mais altos do átomo de hidrogênio foi calculada utilizando o formalismo de Hummer-Mihalas (Hummer & Mihalas 1988; Däppen, Anderson e Mihalas 1987).

Dentro do formalismo de Hummer-Mihalas, as diferentes transições são subdivididas em três categorias. A primeira inclui as transições de um nível inferior i, com a correspondente probabilidade de ocupação w_i , para um nível superior j, com uma correspondente probabilidade de ocupação w_j . Este tipo de transição é chamado de ligado-ligado. O segundo tipo de transição que pode ocorrer inclui as transições de um mesmo nível i para o contínuo verdadeiro, isto é, um efeito de ionização; esta transição é chamada de transição ligado-livre. O último tipo de transição inclui as transições de um nível i para um nível j superior que é suficientemente perturbado pela interação com as partículas vizinhas, de forma que o nível de energia j é destruído; esse efeito também é chamado de dissociação de nível, com a correspondente probabilidade de transição 1 - w_j . Esse tipo de transição também contribui para a opacidade ligado-livre. Däppen, Anderson & Mihalas (1987) tratam esse problema considerando a absorção do nível i por um fóton de energia $h\nu$, provocando uma transição para um nível superior fictício n^* inteiro, dado por:

$$n^* = \left(\frac{1}{n_i^2} - \frac{h\nu}{\chi_H^I}\right)^{-1/2}$$
(3.19)

A fração de níveis dissociados $D_i(\nu)$ é definida como a fração de átomos em um nível *i* que, depois de ter absorvido um fóton de energia $h\nu$, é ionizada. Esta fração é expressa da seguinte forma:

$$D_i(\nu) = \frac{w_i - w_{n^*}}{w_i}$$
(3.20)

No formalismo de Hummer-Mihalas, a contribuição de um nível i para a opacidade monocromática total é calculada em termos da condição de equilíbrio termodinâmico local (LTE) da seguinte forma,

$$\chi_{i}(\nu) = N_{i} \left[\sum_{j>i} \frac{w_{j}}{w_{i}} \alpha_{ij}(\nu) + D_{i}(\nu) \alpha_{ik}(\nu) \right] \left(1 - e^{-h\nu/kT} \right)$$
(3.21)

onde o primeiro termo da soma corresponde à opacidade devido às transições ligado-ligado, multiplicada pela probabilidade de ocupação de cada nível de transição; sendo w_i em geral maior que w_j , o fator de peso w_j/wi é menor que a unidade e a importância do aumento das transições diminui suavemente a opacidade total, provocando um gradual desaparecimento das linhas perturbadas pelas partículas da vizinhança. O segundo termo corresponde à opacidade do pseudo-contínuo e é dominado pela perturbação dos níveis de energia por partículas carregadas.

Efeito idêntico ao aumento de pressão por contaminação do hélio pode ser obtido simplesmente com o aumento da gravidade superficial da estrela. Liebert e Wehrse (1983), por considerações teóricas, sugerem que ambos efeitos, aumento da pressão fotosférica pela abundância de He e o aumento da gravidade superficial, podem ser separados; mas na prática não é possível separar estes dois efeitos; é necessário examinar-se cuidadosamente os perfis das linhas de Balmer e as cores fotométricas (Bergeron, Wesemael e Fontaine 1990). Em outras palavras, não é possível obter uma única solução de parâmetros atmosféricos $[T_{\rm ef}, \log g, N(He)/N(H)]$ a partir do espectro para um determinado objeto, a menos que seja conhecida independente a gravidade ou a abundância.

A dificuldade em saber que quantidade de hélio sobe à superfície da estrela torna a abundância de hélio na atmosfera e o fluxo convectivo parâmetros arbitrários nos modelos de atmosfera, pois depende da espessura da camada de H. Os modelos com $ML2/\alpha = 0.6$ indicam que se $M_H \sim 10^{-10} M_{\star}$, a camada de convecção atingirá a camada de hélio para $T_{\rm ef} < 10\,000 \ K$. Esta possível contaminação é o principal responsável pelos diferentes valores de $T_{\rm ef}$ obtidos com diferentes modelos atmosféricos. Entretanto, os resultados sismológicos indicam $M_H > 10^{-10} M_{\star}$, e a teoria evolucionária prediz $M_H \sim 10^{-4} M_{\star}$. Para as estrelas que estudamos com $T_{\rm ef} > 10\,000 \ K$ esta contaminação de He **não** deve ocorrer. Por isso os modelos atmosféricos que fitamos assumem $M_{He} = 0$ na fotosfera.

Mantendo-se a eficiência convectiva e a abundância de He constante, o perfil das linhas do hidrogênio depende fortemente dos dois parâmetros atmosféricos, $T_{ef} e \log g$. Os modelos mostram que esta dependência dos parâmetros atmosféricos é de extrema relevância, pois algumas linhas (de H_{β} à H_{δ}) são mais sensíveis a variações em temperatura, e as outras mais afetadas pelos efeitos gravitacionais, conforme pode ser notado nas Fig 3.1 e Fig 3.2. Essa dependência é que exige que as observações incluam desde H_9 a H_{β} , que é desafiador pois a atmosfera terrestre absorve fortemente abaixo de 4 000Å, e a eficiência quântica dos detectores é reduzida nesta faixa espectral.

3.3 Cálculo dos Parâmetros Atmosféricos da Amostra

Os modelos atmosféricos e espectros sintéticos empregados neste trabalho foram calculados com $ML2/\alpha = 0.6$ por apresentarem o mesmo valor de temperatura

Fig. 3.1 Nesta figura podemos observar a dependência em $\log g$ para os modelos de atmosfera, considerando a temperatura de 12 500 K. É visível o alargamento das linhas mais altas H_{δ} , H_{ϵ} e H_8 , enquanto que as linhas mais baixas H_{β} e H_{γ} sofrem pouca influência da gravidade. Os valores de $\log g$ são 7,0, 7,5, 8,0, 8,5 e 9,0.

Fig. 3.2 Nesta figura podemos notar as variações de $T_{\rm ef}$ sob um determinado valor $\log g$ (constante) nas linhas $H\gamma \in H\beta$. O valor de $\log g$ é 8,0, enquanto que os valores de temperatura são de 9000 K, 10000 K, 12000 K, 15000 K e 18000 K.

Fig. 3.3 Nesta figura observamos a largura das linhas H_{β} , H_{γ} , H_{δ} e H_{ϵ} como função da temperatura, mostrando que o máximo ocorre próximo de 13 000 K. Estes gráficos são para $\log g = 8.0$

Fig. 3.4 Esta figura é do trabalho de Bergeron et al. (1995) e mostra uma comparação entre as temperaturas derivadas por espectros no ultra-violeta (UV) e espectros óticos; utilizando diferentes parametrizações da MLT. A linha contínua mostra onde $T_{\rm ef}({\rm otico}) = T_{\rm ef}({\rm UV})$; as linhas tracejadas, representam a incerteza de 350 K associada às medidas no ótico.
tanto no ótico quanto no ultra-violeta e resultam na mesma distribuição de massa logo acima e logo abaixo de 13 000 K (Bergeron et al. 1995). A grade de modelos foi calculada e gerada por Detlev Koester.

O procedimento de comparação chamado LPT (line profile technique) entre os espectros sintéticos e o observado consiste primeiramente em normalizar à unidade o contínuo em ambos os espectros, teórico e observado, em distâncias fixas e longe do centro das linhas, desde H_{β} até H_{9} , preservando o perfil das linhas.

Os espectros sintéticos formam uma grade de 50 × 15 com (15) diferentes valores de $\log(g)$ para cada $T_{\rm ef}$ (50), com $\log g$ variando desde 5,0 até 10,0 e a temperatura de 6000 K à 100000 K. Os espectros sintéticos foram convoluídos com um perfil instrumental do tipo Gaussiano obtido em cada telescópio, para que possamos comparar o perfíl das linhas de Balmer observadas com o perfíl dos espectros da grade.

- T_{ef} : de 6 000 K à 10 000 K em intervalos de 250 K; de 10 000 K à 14 000 K em intervalos de 200 K; de 14 000 K à 20 000 K intervalos de 250 K; de 20 000 K à 30 000 K em intervalos de 2 000 K; de 30 000 K à 100 000 K em intervalos de 5 000 K.
- log g (em cm/s²): 5,0; 5,5; 6,0; 6,5; 7,0; 7,25; 7,5; 7,75; 8,0; 8,25; 8,5; 8,75; 9,0; 9,5 10,0.

Comparando o espectro observado com a grade de espectros sintéticos com diferentes valores de $T_{\rm ef}$ e log g, podemos construir uma função bi-dimensional de $\chi^2(T_{\rm ef}; \log g)$, resultado da comparação.

Seja S uma função do tipo $S = S(\chi^2_{T_{ef}}; \chi^2_{\log g})$ resultado da comparação entre o espectro observado e os espectros sintéticos de diferentes T_{ef} e $\log g$; o mínimo valor de S corresponde e o melhor ajuste aos valores de T_{ef} e $\log g$ do espectro observado. A função S a ser minimizada tem a seguinte forma:

$$S = \sum_{i=1}^{n} \frac{(F_i^o - F_i^t)^2}{\sigma_i^2}$$
(3.22)

onde F^o é o fluxo do espectro observado, n é o número de pontos, F^t é o fluxo do espectro teórico e σ_i corresponde ao erro da medida. Assumimos um valor constante e arbitrário para σ_i ($\sigma = 1$) em cada ponto, isto é, todos os pontos têm o mesmo peso, uma vez que os espectros são em geral de boa razão sinal-ruído.

Mas nem sempre $S = S(\chi^2_{T_{\rm ef}}, \chi^2_{\log g})$ apresenta apenas um único mínimo que vai nos mostrar qual é a $T_{\rm ef}$ e o $\log g$, podendo haver casos em que existem dois mínimos, e nosso problema é saber qual dos dois é o valor correto de $T_{\rm ef}$ e $\log g$ da estrela.

Segundo Bergeron et al. (1990) e Bergeron, Saffer & Liebert (1992), este é um método bastante eficiente para o cálculo de $T_{\rm ef}$ e log g para as DA quentes e frias, pois existe apenas uma solução para estes parâmetros. Ao passo que na região das ZZ Cetis, a determinação destes parâmetros torna-se complicada, pois nesta região, ao redor de 13 000 K, ocorre a opacidade máxima do hidrogênio e a largura equivalente das linhas de Balmer é máxima. Então o valor exato da temperatura depende fortemente da gravidade, conforme Bergeron (1995). Daou et al. (1990) mostram que é possível estimar log g através das larguras equivalentes das linhas da série de Balmer H_{ϵ} , H_8 , e H_9 pois estas são sensíveis à gravidade, conforme pudemos observar na Fig 3.1; no entanto não é possível se obter solução única para $T_{\rm ef}$ somente com estas linhas.

Note que no cálculo da função bi-dimensional $S(\chi^2_{T_{ef}}; \chi^2_{\log q})$ não levamos em conta os pontos referentes ao contínuo, a fim de evitarmos a propagação de um eventual erro na calibração de fluxo e do avermelhamento atmosférico e interestelar, apesar do contínuo possuir o maior número de pontos do espectro. Já para os espectros na região do ultra-violeta (IUE ou HST não tratados nesta tese) o contínuo possui grande importância até mesmo porque não existem tantas linhas de absorção como no ótico, com a série de Balmer, apresentando principalmente a primeira linha da série de Lyman (Ly α), mas contaminada pela emissão geocoronal. Segundo Bergeron et al. (1995), é impossível obter-se uma única solução para $T_{\rm ef}$ e log g baseado apenas nos espectros ultra-violeta; é necessário considerar um dos dois parâmetros fixos, para se obter o outro. Por outro lado, no UV obtemos uma melhor sensibilidade à eficiência convectiva. A sensibilidade para o fluxo UV na determinação da eficiência convectiva pode ser observada em Bergeron et al. 1992, mas o valor de $\alpha = 0, 6$ é o que melhor ajusta as temperaturas simultaneamente no UV e no ótico. Uma forma de estimar a temperatura das estrelas ZZ Ceti via espectroscopia é calcular o valor de $\log q$ no ótico, e depois de conhecido este valor, podemos estimar temperatura fitando o espectro UV. Porém ainda existem poucas anãs brancas com espectro UV disponível [Kepler & Nelan (1993); Koester et al. (2000) e Castanheira et al. (2003), Lajoie et al. (2007)].

As incertezas obtidas para os parâmetros atmosféricos T_{ef} e log g, mostrados na Tab 3.2, foram calculadas utilizando o método descrito por Zhang, Robinson & Nather (1986): como S é uma função de T_{ef} e log g, expressa na equação 3.20, os melhores parâmetros são aqueles que minimizam S. Qualquer variação dos parâmetros atmosféricos altera o valor mínimo de S. Seja S_0 o valor mínimo de S; quando um dos parâmetros é alterado por uma pequena quantidade d e o outro é permitido variar, obtém-se um novo mínimo para S, que vamos chamar de S'. Assim, a incerteza associada ao parâmetro modificado por uma fator d, conforme Zhang, Robinson & Nather, é da seguinte forma:

$$\sigma_j^2 = \frac{d^2}{(S' - S_0)} \tag{3.23}$$

sendo j=1 e 2 correspondente a T_{ef} e log g (σ_1 e σ_2). Logo, estimamos σ_j calculando qual a diferença em S quando fitamos o espectro com um parâmetro a uma distância d do melhor valor.

Tabela 3.2. Apresento os valores de $T_{\rm ef}$ e log g ML $2\alpha = 0.6$ usando perfil de linha, massa e idade calculadas usando os modelos de Wood 1995 e Althaus et al. 2001.

WD	Nome	T_{ef}	$\sigma_{T_{ef}}$	$\log g$	$\sigma_{\log g}$	Massa	σ_{Massa}	Idade(G anos)
0000+169	HS 0000+1656	12600.	30.	8.392	0.127	0.849	0.057	0.220
0009-058	G 158-39	10805.	139.	8.010	0.002	0.609	0.001	0.609
0011+000	G 31-35	9106.	258.	7.631	0.018	0.407	0.003	0.637
0031-5525	HE 0031-5525A	11736.	283.	7.487	0.002	0.360	0.009	0.268
0033+016	G 1-7	10638.	108.	8.580	0.014	0.970	0.003	1.524
0037-006	PG 0037-006	13238.	168.	8.450	0.013	0.891	0.003	0.661
0040-0021	WD 0040-0021	15096.	203.	7.809	0.017	0.509	0.000	0.214
0051+116	HS 0051+1145	13000.	30.	8.073	0.011	0.651	0.004	0.410
0101+048	G 1-45	8345.	279.	7.749	0.001	0.459	0.009	0.912
0103+229	HS 0103+2253	13000.	30.	8.073	0.011	0.651	0.004	0.410
0103-278	G 269-093	13163.	296.	7.722	0.008	0.463	0.001	0.262
0104-464	BPM 30551	11745.	242.	8.240	0.003	0.749	0.005	0.691
0107-192	GD 685	13442.	165.	7.936	0.019	0.573	0.009	0.314
0124-661	EC 0124-6612	13732.	295.	7.975	0.007	0.596	0.001	0.308
0126+101	G 2-40	8496.	73.	6.962	0.007	0.208	0.001	0.355
0133-116	R 548	11883.	241.	7.763	0.003	0.478	0.006	0.367
0142-3026	EC 0142-3026	16058.	187.	8.165	0.013	0.709	0.001	0.284
0145-221	MCT 0145-2211	11104.	188.	8.121	0.029	0.675	0.002	0.673
0151+017	G71-41	13020.	154.	7.541	0.010	0.385	0.003	0.212
0225+0010	HS 0225+0010	12461.	311.	7.950	0.009	0.578	0.003	0.392
0225+0010	HS 0225+0010	15564.	246.	7.796	0.009	0.504	0.007	0.193
0231-054	GD 31	14800.	81.	8.875	0.057	1.134	0.015	1.162
0237+105	HS 0237+1034	16456.	99.	7.606	0.015	0.421	0.000	0.118
0255-705	BPM 2819	10050.	170.	7.718	0.006	0.450	0.002	0.545
0329+113	HS 0329+1121	10588	37	8.321	0.010	0.800	0.004	1.058
0339-035	GD 47	12955	265	7.802	0.016	0.501	0.009	0.301
0339+523	RUBIN 70	12334	334	7.293	0.009	0.310	0.003	0.167
0341-459	BPM 31594	12442.	111.	7.890	0.030	0.545	0.002	0.371
0352+096	HZ 4	13916	258	8.061	0.015	0.646	0.006	0.334
0401+250	G 8-8	13336	188	7.648	0.026	0.010	0.003	0.228
0407+179	HZ 10	13211	98	7 782	0.011	0.492	0.005	0.228
0413-077	40 Eri B	15486	114	7.720	0.006	0.467	0.003	0.177
0416+272	HI Tau-76	11720	995	7 750	0.005	0.471	0.005	0.376
0507+0435	HS 0507+0435	11403	14	7 950	0.010	0.576	0.005	0.496
0532-5605	EC 0532-5605	12229	82	8.421	0.018	0.870	0.008	0.800
0622 - 8010	EC 0622-8010	14134	153	8.149	0.046	0.697	0.008	0.365
0624-756	BPM 4225	13203	11.	8.073	0.026	0.651	0.002	0.393
0637+477	GD 77	13990.	847.	7.997	0.001	0.609	0.002	0.299
0701-587	BPM 18394	12504	222	9,000	0.001	1.196	0.003	1.954
0810+233	HS 0810+2329	10802.	9.	8.065	0.011	0.641	0.005	0.665
0852+1916	HS 0852+1916	10823	113	7.955	0.007	0.578	0.006	0.572
0921+354	G117-B15A	11231	385	8.237	0.002	0.746	0.005	0.777
0922+0522	HS 0922+0522	10504	272	8.222	0.005	0.736	0.006	0.929
0938+286	TON 20	14136	280	7.741	0.003	0.475	0.003	0.216
0943+441	G 116-52	12368	104	7.353	0.034	0.326	0.003	0.185
0945	PG 0945	8892	210	9.404	0.005	1.417	0.001	0.118
0950-572	BPM 19738	14412	40	7.430	0.019	0.356	0.003	0,000
0950+0745	HS 0950+0745	11330	149	8.121	0.019	0.675	0.008	0.636
0950+0745	HS 0950+0745	12000	50	8 114	0.017	0.672	0.007	0 541
0950+0745	HS 0950+0745	16660	275	7 795	0.008	0.507	0.007	0.000
0951-035	G 161-36	12974	263	7 740	0.000	0.307	0.003	0.282
0954-710	BPM 6082	12911	203.	7 720	0.011	0.461	0.000	0.202
1001-033	GD 110	8668	172	8 043	0.008	0.622	0.003	1 171
1001-055	50 110	0000.	1/2.	0.045	0.000	0.022	0.005	1.1/1

Tabela 3.2 (continuação)

WD	Nome	T_{ef}	$\sigma_{T_{ef}}$	$\log g$	$\sigma_{\log g}$	Massa	σ_{Massa}	Idade(G anos)
1003+0726	HS 1003+0726	9421.	168.	7.857	0.014	0.519	0.008	0.747
1013+033	HS 1013+0321	11398.	28.	8.229	0.003	0.741	0.006	0.738
1013+033	HS 1013+0321	16726.	52.	7.888	0.017	0.554	0.003	0.168
1022+050	PG 1022+050	14119.	217.	7.329	0.017	0.328	0.000	0.300
1026+023	PG 1026+023	14000.	50.	7.857	0.034	0.532	0.000	0.397
1036+4608	GD 123	9140.	202.	8.813	0.016	1.098	0.003	2.960
1053-290	EC 10532-2903	10581.	167.	8.224	0.007	0.737	0.003	0.910
1101+364	PG 1101+364	12181.	49.	7.117	0.068	0.262	0.003	0.114
1102+005	HS 1102+0032	13304.	238.	8.347	0.027	0.821	0.004	0.568
1105-048	G 163-50	14200.	81.	7.599	0.038	0.412	0.007	0.175
1116+026	GD 133	12318.	585.	7.790	0.015	0.492	0.008	0.342
1119+385	PG 1119+385	16258.	21.	7.916	0.023	0.568	0.000	0.192
1122+546	PG 1122+546	7430.	518.	8.607	0.038	0.982	0.001	4.090
1124-293	EC 11246-2923	9402.	154.	8.075	0.020	0.643	0.003	0.996
1127-2940	ESO 439-80	9110.	197.	7.749	0.001	0.462	0.009	0.726
1129+071	PG 1129+071	13544.	146.	7.863	0.019	0.534	0.003	0.284
1147+255	G 121-22	10004.	52.	7.986	0.002	0.593	0.000	0.725
1202-232	EC 12028-2316	9014.	36.	8.166	0.019	0.696	0.003	1.331
1204-136	EC 12043-1337	10834.	76.	8.350	0.023	0.820	0.004	1.026
1213+528	Case 1	16737.	289.	7.756	0.001	0.488	0.001	0.140
1220-292	EC 12204-2915	11437.	138.	8.312	0.016	0.795	0.006	0.825
1220-292	EC 12204-2915	16988.	41.	7.940	0.016	0.583	0.003	0.171
1229-030	PG 1229-030	9795.	113.	7.874	0.032	0.529	0.003	0.686
1236-495	BPM 37093	11518.	279.	8.801	0.019	1.093	0.002	1.712
1241-010	PG 1241-010	9640.	225.	8.755	0.001	1.066	0.001	2.505
1244+149	G 61-17	10532.	261.	7.784	0.007	0.484	0.002	0.518
1244-125	EC 12448-1232	12884.	232.	7.899	0.029	0.552	0.010	0.340
1250+5506	GD 319	7870.	50.	7.539	0.011	0.362	14.245	0.828
1253+482	GD 320	13724.	280.	7.508	0.002	0.375	0.001	0.169
1308-301	EC 13085-3010	13200.	31.	8.136	0.029	0.688	0.003	0.431
1314-153	EC 13140-1520	13200.	51.	8.136	0.029	0.688	0.003	0.431
1326-236	EC 13266-2336	13166.	268.	7.995	0.001	0.607	0.006	0.354
1327-083	G 14-58	14072.	204.	7.663	0.033	0.439	0.008	0.196
1334+070	HS 1334+0701	10021.	174.	7.785	0.008	0.482	0.002	0.590
1334-160	EC 13342-1604	13780.	228.	8.768	0.004	1.078	0.002	1.069
1350+656	G 238-53	11470.	197.	7.918	0.023	0.558	0.008	0.474
1354+340	G 165-B5B	13303.	247.	7.843	0.023	0.523	0.010	0.293
1356-233	EC 13563-2318	9336.	216.	8.041	0.009	0.623	0.013	0.953
1401-147	EC 14012-1446	11119.	218.	8.146	0.014	0.689	0.002	0.696
1418-005	PG 1418-005	12450.	161.	7.852	0.025	0.524	0.010	0.356
1422+095	GD 165	12384.	57.	8.074	0.033	0.649	0.019	0.468
1425-811	L 19-2	12348.	273.	8.208	0.017	0.733	0.006	0.436
1447+049	HS 1447+0454	10257.	112.	8.869	0.023	1.128	0.006	2.414
1448+077	G 66-32	12612.	71.	7.806	0.015	0.501	0.010	0.326
1503-092	EC 15036-0918	12947.	158.	8.096	0.021	0.664	0.002	0.429
1503-092	EC 15036-0918	14896.	227.	7.899	0.032	0.555	0.000	0.243
1507-105	GD 176	10062.	182.	7.418	0.016	0.334	0.003	0.380
1527+061	HS 1527+0614	13371.	101.	7.827	0.023	0.515	0.005	0.283
1537+651	GD 348	9645.	201.	7.988	0.002	0.593	0.003	0.800
1539-035	GD 189	9967.	165.	8.200	0.010	0.720	0.003	1.056
1544-377	L 481-60	10549.	212.	8.445	0.012	0.884	0.006	1.292
1550+183	GD194	14373.	237.	8.247	0.001	0.758	0.003	0.407
1555-089	G152-B4B	13172.	222.	7.770	0.008	0.486	0.003	0.277

WD	Nome	T _{ef}	$\sigma_{T_{ef}}$	$\log g$	$\sigma_{\log q}$	Massa	σ_{Massa}	Idade(G anos)
1559+369	R 808	11089	187	8.028	0.007	0.620	0.007	0.525
1606+019	HS 1606+0153	9832	132	7.685	0.014	0.434	0.005	0.556
1606+422	Case 2	12427	200	7.480	0.007	0.360	0.004	0.223
1610+166	GD 196	14112	229	7.724	0.011	0.467	0.001	0.212
1613-7009	LHS 3167	9275	50	8.638	0.028	1.001	0.006	2.514
1614+056	HS 1614+0537	10927	217	7.915	0.020	0.555	0.006	0.537
1616-591	BPM 24047	13442.	284.	7.977	0.009	0.597	0.007	0.328
1619+123	HS 1619+1220	10594.	23.	8,199	0.012	0.721	0.006	0.871
1636+160	GD 202	12289.	254.	7.868	0.036	0.533	0.004	0.375
1637+335	G 180-65	9929.	216.	7.994	0.001	0.598	0.004	0.745
1642+170	HS 1642+1702	14963.	288.	8.532	0.005	0.946	0.002	0.587
1647+591	G 226-29	12237.	91.	8.153	0.031	0.696	0.005	0.544
1651+1848	HS 1651+1848	14400.	50.	5.277	0.030	0.244	0.005	0.110
1654+637	GD 515	11603.	11.	7.920	0.018	0.559	0.006	0.461
1655+215	G 169-34	9368.	172.	8.005	0.001	0.602	0.006	0.882
1702-5314	BPM 24601	13188.	47.	7.930	0.029	0.570	0.007	0.329
1711+172	HS 1711+1716	12364.	99.	8.108	0.016	0.669	0.007	0.494
1714-547	BPM 24754	11282.	331.	8.060	0.017	0.639	0.002	0.587
1716+020	G 19-20	12595.	21.	7.675	0.021	0.439	0.006	0.281
1824+040	G 21-15	10533.	134.	7.850	0.023	0.518	0.002	0.554
1826-045	G 21-16	9126.	195.	7.965	0.008	0.578	0.003	0.905
1827-106	G 155-19	13000.	51.	7.634	0.026	0.423	0.004	0.243
1840-111	G 155-34	9971.	71.	8.066	0.018	0.639	0.004	0.832
1855+338	G 207-9	11794.	12.	8.393	0.031	0.849	0.007	0.851
1857+119	G 141-54	9868.	191.	7.997	0.001	0.599	0.004	0.759
1911+135	G 142-B2A	14245.	211.	7.989	0.002	0.605	0.004	0.285
1919+145	GD 219	14157.	323.	8.032	0.008	0.629	0.011	0.306
1935+276	G 185-32	12167.	63.	7.937	0.199	0.566	0.078	0.235
1950+250	GD 385	12116.	169.	8.273	0.006	0.772	0.009	0.569
2034-290	EC 2034-290	15522.	144.	8.462	0.010	0.901	0.012	0.481
2039-682	BPM 13491	16640.	339.	8.177	0.019	0.718	0.013	0.260
2047+372	G 210-36	14000.	55.	8.079	0.034	0.656	0.004	0.337
2051+095	HS 2051+0929	12596.	14.	7.928	0.018	0.566	0.005	0.373
2105-820	BPM 1266	10395.	23.	7.947	0.015	0.572	0.002	0.631
2109+021	HS 2109+0212	13046.	353.	8.215	0.005	0.736	0.004	0.499
2115-560	BPM 27273	9240.	50.	7.544	0.008	0.371	0.002	0.553
2126+734	G 261-43	15141.	265.	7.791	0.026	0.500	0.000	0.207
2132+097	HS 2132+0941	13773.	344.	7.980	0.006	0.599	0.003	0.307
2136+229	G126-18	10216.	62.	8.065	0.012	0.639	0.004	0.777
2148+165	HS 2148+1631	11229.	67.	8.144	0.016	0.689	0.002	0.675
2148+165	HS 2148+1631	11325.	111.	8.068	0.173	0.643	0.075	0.162
2148+165	HS 2148+1631	16376.	226.	7.786	0.006	0.502	0.001	0.158
2149+372	GD 397	13076.	200.	7.859	0.039	0.531	0.009	0.313
2152+0223	G 93-48	10578.	68.	8.315	0.019	0.797	0.015	0.934
2216+159	HS 2216+1551	12035.	86.	8.413	0.017	0.864	0.007	0.828
2216+159	HS 2216+1551	17116.	333.	8.079	0.016	0.662	0.001	0.205
2226+061	GD 236	15500.	50.	7.659	0.036	0.439	0.001	0.161
2240+125	HS 2240+1234	11610.	29.	8.331	0.020	0.808	0.002	0.815
2246+223	G 67-23	10573.	178.	8.769	0.004	1.075	0.004	1.998
2254+126	GD 244	11438.	85.	8.115	0.025	0.671	0.005	0.615
2259+143	HS 2259+1419	11276.	287.	7.627	0.016	0.413	0.005	0.361
2258+406	G216-B14B	10059.	220.	8.269	0.003	0.764	0.005	1.155
2302-773	EC 2302-773	12484.	232.	8.161	0.029	0.701	0.002	0.521

Tabela 3.2 (continuação)

WD	Nome	T_{ef}	$\sigma_{T_{ef}}$	$\log g$	$\sigma_{\log g}$	Massa	σ_{Massa}	Idade(G anos)
2303+242	PG 2303+242	11453.	133.	8.414	0.016	0.864	0.002	0.952
2306+130	PG 2306+130	13293.	232.	7.891	0.016	0.549	0.002	0.309
2311+552	GD 556	11118.	275.	7.833	0.012	0.511	0.002	0.473
2322+206	PG 2322+206	13028.	69.	7.638	0.024	0.425	0.002	0.242
2326+049	G 29-38	11482.	267.	7.976	0.007	0.591	0.003	0.500
2337-760	BPM 15727	14000.	50.	7.371	0.053	0.339	0.010	0.000
2341+322	G 130-5	13081.	228.	7.560	0.015	0.393	0.002	0.215
2347+128	G 30-20	11268.	258.	7.943	0.011	0.571	0.006	0.509
2348-242	EC 2348-242	11883.	215.	8.163	0.022	0.701	0.009	0.597
2359-434	BPM 45338	8513.	51.	8.430	0.030	0.870	0.001	2.504

Tabela 3.2 (continuação)

3.4 Modelos para determinação da massa

Para estimar a massa da estrela é necessário um nova grade de modelos, neste caso uma grade de modelos de evolução estelar que descreve toda a seqüência evolutiva de uma estrela desde a seqüência principal até atingir a fase de anã branca, passando pelos estágios de nucleosíntese. O ponto de partida consiste em resolver um conjunto de quatro equações que descrevem a estrutura e a evolução de uma estrela (conservação de massa, equilíbrio hidrostático, conservação de energia, transporte de energia tanto radiativo quanto convectivo).

$$\frac{dM_r}{dr} = 4\pi r^2 \rho \tag{3.24}$$

$$\frac{dP}{dr} = -\rho \frac{GM_r}{r^2} \tag{3.25}$$

$$\frac{dT}{dr} = -\frac{3}{4ac} \frac{\kappa \rho}{T^3} \frac{L_r}{4\pi r^2}$$
(3.26)

$$\frac{dL_r}{dr} = 4\pi r^2 \rho \left(\epsilon - T \frac{\partial S}{\partial t}\right)$$
(3.27)

onde M_r é a massa interior a uma esfera de raio r, L_r é a luminosidade que passa através da mesma esfera, κ , ϵ e S são opacidade, taxa de produção de energia nuclear e emissão de neutrons e entropia respectivamente, e a é a constante radiativa $a = 7,565 \times 10^{-15} erg/cm^3 deg^4$.

Além disto, utiliza-se a seguinte expressão para opacidade total:

$$\frac{1}{\kappa} = \frac{1}{\kappa_r} + \frac{1}{\kappa_c} \tag{3.28}$$

sendo $\kappa_r \in \kappa_c$ as opacidades radiativa e condutiva respectivamente.

Neste trabalho utilizei duas grades diferentes de modelos de anãs brancas para determinação da massa, sendo estas descritas por Wood (1995) e Althaus & Benvenuto (1998). O motivo de usar as duas é que, para poder contemplar todos intervalos de temperatura desde $6\,000~K \leq T_{\rm ef} \leq 100\,000$ e massa entre $0.1 \leq M_{\star}/M_{\odot} \leq 1.4$, foi necessário utilizar ambas as grade de modelos. A grade de Althaus tem espaçamento menor que a grade de modelos de Wood, porém para algumas temperaturas os modelos de Althaus não cobrem todos valores de massa.

As principais características dos dois modelos de evolução são as seguintes: Modelos de Wood

- 1. Teoria de convecção que descreve o transporte de energia MLT descrita por, Böhm-Vitense(1958);
- 2. Incluí contribuições íons e prótons;
- 3. Contribuição devido a iteração Coulombiana;
- 4. Elétrons parcialmente degenerados;
- 5. Troca de elétrons em temperatura finita por efeito Thomas-Fermi;
- 6. Massa da camada de H é de $10^{-4}M_{\star}$ e camada de He também é fixa $10^{-2}M_{\star}$;
- Leva em consideração fatores de cristalização para as estrelas mais massivas;
- 8. Grade de modelos apresenta resultados para estrelas com massa entre $0.4 \le M_{\star}/M_{\odot} \le 1.0;$
- 9. Composição do núcleo Carbono e Oxigênio;
- 10. Opacidade condutiva descrita por Itoh et al. (1983, 1984)

Modelos de Althaus

- Teoria que descreve o transporte de energia por convecção descrita por Canuto, Goldman e Mazzitelli (1996);
- 2. Incluí contribuições íons e prótons;
- 3. Contribuição devido a iteração Coulombiana;
- 4. Elétrons parcialmente degenerados;
- 5. Troca de elétrons em temperatura finita por efeito Thomas-Fermi;

- 6. Massa da camada de H é variável de $10^{-13} \leq M_H/M_\star \leq 10^{-4}$ e massa de Hélio de $10^{-5} \leq M_{He}/M_\star \leq 10^{-2}$. Porém utilizei apenas modelos com $M_H/M_\star = 10^{-4}$ e $M_{He}/M_\star = 10^{-2}$;
- 7. Opacidade radiativa para as altas temperaturas ($T_{\rm ef} \ge 8\,000~K$) conforme Iglesias & Rogers 1993;
- 8. Para as baixas temperaturas utiliza a opacidade molecular conforme Alexander & Ferguson (1994); os efeitos moleculares são mais relevante para as temperaturas maiores que $5\,000 \ K \le T_{\rm ef} \le 8\,000 \ K$ e completamente dominantes até 2 500 K.
- Também levam em consideração o calor latente de cristalização e efeitos de mistura convectiva, que ocorre nas estrelas mais massivas;
- 10. Considera os efeitos de difusão uma função do tempo;
- 11. Apresenta modelos para altas massa > $1M_{\odot}$ com núcleo de Carbono, Oxigênio e Neônio, e os modelos de baixa massa < $0.45M_{\odot}$ apresentam núcleo de Hélio
- 12. Grade de modelos apresenta resultados para estrelas com massa entre $0.15 \le M_{\star}/M_{\odot} \le 1.392$;

A maior diferença nos dois modelos de evolução está nas considerações quanto ao ponto de início da evolução. Althaus et al. iniciam o processo evolutivo para uma estrela desde a seqüência principal, com polítropo de 2/3, até finalmente atingir a fase de anã branca, quando inicia a fase de anã branca e inicia a separação por difusão das camadas de H e He, de forma dependente do tempo. Já nos modelos de Wood, o ponto inicial de evolução já é na fase de anã branca e com as camadas de H e He já separadas. A rigor para as temperaturas (em torno de 12 000 K) das estrelas que estamos interessados os efeitos da dependência temporal de difusão não acontecem, pois para temperatura de $\sim 12\,000\,K$ as camadas de H e He estão totalmente separadas. Assim sendo não encontramos diferenças significativas entre os dois modelos.

Na figura 3.4 fazemos uma comparação entre os modelos de Althaus et al. e os modelos de evolução de Matt Wood, e podemos perceber que não existem diferenças significativas entre os dois modelos; estamos usando os modelos de Althaus et al. (2002) porque estes incluem resultados para estrelas de alta massa $(M_{\star} \ge 1.0 M_{\odot})$. Nestes modelos a composição do núcleo é de C e O/Ne/Mg para as mais massivas. Escolhemos modelos que apresentam massa de hélio de M_{He} = $10^{-2}M_{\star}$ e massa de hidrogênio de $10^{-4}M_{\star}$, pois estes são esperados teoricamente e são consistentes com os resultados sismológicos. O método de determinação da massa das estrelas é através de uma interpolação bi-dimensional de (T_{ef}; $\log g$) com a grade de modelos evolucionários.

Fig. 3.5 Fitagem das linhas, mostramos os perfis de linhas desde H_{β} em baixo até H_9 em cima, com um deslocamento vertical fixo para melhor clareza.

Fig. 3.6 Fitagem das linhas, mostramos os perfis de linhas desde H_{β} em baixo até H_9 em cima, com um deslocamento vertical fixo para melhor clareza.

Fig. 3.7 Fitagem das linhas, mostramos os perfis de linhas desde H_{β} em baixo até H_9 em cima, com um deslocamento vertical fixo para melhor clareza.

Fig. 3.8 Fitagem das linhas, mostramos os perfis de linhas desde H_{β} em baixo até H_9 em cima, com um deslocamento vertical fixo para melhor clareza.

Fig. 3.9 Fitagem das linhas, mostramos os perfis de linhas desde H_{β} em baixo até H_9 em cima, com um deslocamento vertical fixo para melhor clareza.

Fig. 3.10 Fitagem das linhas, mostramos os perfis de linhas desde H_{β} em baixo até H_9 em cima, com um deslocamento vertical fixo para melhor clareza.

Fig. 3.11 Modelos evolucionários de Leandro Althaus, cada linha corresponde a um modelo com massa constante, a menor massa é $0,15M_{\odot}$ e a maior massa é $1,392M_{\odot}$. $\log[g(cm/s^2)]$ e $\log[T_{\rm ef}(K)]$.

Fig. 3.12 Comparação entre os modelos evolucionário de Matt Wood e Leandro Althaus. A linha contínua corresponde aos modelos de Althaus 2002 e os pontos os modelos de Wood 1995. $\log[g(cm/s^2)] e \log[T_{ef}(K)]$.

4. ESTRELAS DO CATÁLOGO SLOAN DIGITAL SKY SURVEY

Com o DR4 (Data Release 4) do Sloan Digital Sky Survey, foram identificadas aproximadamente 10 000 novas anãs brancas, mais que dobrando o número anãs brancas conhecidas até o momento, e uma verdadeira avalanche de artigos sobre anãs brancas ocorreu desde o início desta busca. Kleinman et al. (2004) apresenta os resultados das novas anãs brancas descobertas na primeira parte do projeto SDSS, first Data Release (DR1) num total de 2551 novas anãs brancas; Eisenstein et al. (2006a) classifica um total de 9316 anãs brancas do DR4; o SDSS também identificou anãs brancas magnéticas (Schmidt et al. 2003; Valandingham et al. 2005), sistemas binários com anãs brancas e estrela M (Raymond et al. 2003; Smoêié et al. 2004; Silvestri et al. 2005) e variáveis cataclísmicas (Szkody et al. 2002, 2003, 2004, 2005). Com o enorme número de novas anãs brancas catalogadas pelo SDSS, as amostras de anãs brancas raras, com algumas particularidades também aumentaram, incluindo as anãs brancas ultra-frias (Harris et al. 2001; Gates et al. 2004; Kilic et al. 2005), estrelas de Carbono e Oxigênio (Harris et al 2003; Liebert et al. 2003), estrelas DAV (Mukadam et al. 2004; Mullally et al. 2005; Kepler et al. 2005; Castanheira et al. 2005), estrelas DBV (Nitta et al. 2005), estrelas DO quentes (Krzesinski et al. 2004); estrelas de baixa massa com núcleo degenerado de He (Liebert et al. 2004); e DBs quentes na região do "gap das DB", região no diagrama HR onde não tinham sido detectadas estrelas DBs anteriormente (Eisenstein et a. 2006b).

O SDSS (York et al. 2000; Stoughton et al. 2002; Abazajiam et al. 2003; 2004; Finkbeiner et al. 2004; Abazajian et al. 2005; Adelman-McCarthy et al 2006) está catalogando uma região de 10^4 graus quadrados do céu no hemisfério norte. Este censo está sendo feito usando filtros de banda *u*, *g*, *r*, *i* e *z* (Fukugita et al. 1996; Gunn et al. 1998, 2006). As imagens são processadas e calibradas para produzir o catálogo de 5 bandas, incluindo galáxias (Eisenstein et al. 2001, Strauss et al. 2002), quasares (Richards et al. 2002) e estrelas, classificadas com a espectroscopia subseqüente.

Neste capítulo apresentamos nossos resultados para alguns espectros de estrelas DA do dr1 Sloan Digital Sky Survey. Algumas são estrelas ZZ Cetis descobertas em Mukadam et al. (2004), Mullaly et al. (2005), Kepler et al. (2005) e Castanheira et al. (2005). Com estas novas ZZ Cetis, a amostra de estrelas ZZ Cetis aumentou consideravelmente, permitindo-nos ter informações com melhor precisão, do ponto de vista estatístico, da faixa de instabilidade, que será analisado nos capítulos a seguir.

O SDSS tem um catálogo de espectros que encontra-se disponível à comunidade científica em www.sdss.org. Para obter os espectros das anãs brancas deste projeto, é necessário conhecer suas coordenadas ou usar os catálogos de Kleinman et al. (2004) e Eisenstein et al. (2006a), também disponíveis na internet nos endereços das.sdss.org/wdcat/dr1 e das.sdss.org/wdcat/dr4. Todas as observações espectroscópicas foram feitas usando um espectrógrafo IFU, e para localizar um espectro, basta informar seu endereço de Placa, Fibra ou usar as coordenadas da estrela. A região espectral de interesse é de 3 800 Å até 9200 Å, com resolução espectral em torno de 2Å. Na tabela 4.1 apresentamos as coordenadas dos espectros das estrelas ZZ Cetis do SDSS utilizadas neste trabalho; logo na seqüência na tabela 4.2 apresento os resultados de $T_{\rm ef}$, $\log g$ e massa das ZZ Cetis do SDSS usando a técnica do prefil das linhas de Balmer. Na tabela do apêndice A apresentamos nossos resultados de temperatura, $\log(g)$ e massa, com suas respectivas incertezas. As incertezas que estamos apresentando nesta tabela constituem apenas da incerteza "interna", com referência ao ajuste do melhor modelo ao espectro observado; a incerteza "externa" deve ser maior devido principalmente à baixa razão sinal-ruído, sendo estas de aproximadamente $\Delta T_{\rm ef}\,\sim\,300~K,$ e $\Delta\log g\,\sim\,0,2$ conforme Kepler et al. (2006).

Ē

MJD	Placa	Fibra	Espectro	Nome	AR_{2000}	Dec_{2000}	
52203	0685	225	spSpec_52203_0685_225	WD10000-0046	00:01:06.7	(-)00.03.075	i
52203	0688	348	spSpec-52203-0688-348	WDI1836+0031	00:18:36.2	(-)00.05.07.5 (+)00.31.51.4	
51871	0420	388	spSpec-51871-0420-388	WD10048+1521	00:48:55.2	(+)15.21.487	
51816	0396	262	spSpec-51816-0396-262	WDJ0040+1521 WDJ0102-0032	00.40.55.2 01.02.07.2	(-)00.32.597	
52209	0694	597	spSpec-52209-0694-597	WDJ0102 0052	01:11:00.6	(+)00.32.37.7	
52162	0668	354	spSpec-52162-0668-354	WDI0214-0823	02:14:06.8	(-)08.23.184	
52102	0707	042	spSpec-52172-0707-042	WDI0249_0100	02.14.00.0 02.49.22.3	(-)00.23.10.4 (-)01.00.067	
51821	0/13	483	spSpec-51821-0/13-483	WDJ0249 = 0100 $WDJ0318 \pm 0030$	03.18.47.1	(-)01.00.00.7 (+)00.30.20.6	
51810	0415	211	spSpec-51810-0415-211	WDI0332-0049	03:32:36.6	(+)00.30.29.0 (-)00.49.18.4	
52941	1583	167	spSpec-52941-1583-167	WD10756+2020	07:56:17.5	(+)20.20.10.4	
51959	0547	350	spSpec-51959-0547-350	WDI0815+443	08:15:31.8	(+)44.37.10.2	
52619	0931	321	spSpec-52619-0931-321	WDJ00151445	08.18.29.0	$(+)31\cdot31\cdot530$	
52642	1185	085	spSpec-52642-1185-085	WD10825+0329	08:25:18.9	(+)03.29.27.8	
52264	0760	604	spSpec-52264-0760-604	WDI0825+4119	08:25:47.0	(+)41.19.000	
52320	0864	548	spSpec-52320-0864-548	WDI0842+3707	08:42:20.7	(+)37.07.017	
52650	1188	191	spSpec-52520-0004-548	WDI0843+0431	08:43:14.0	(+)04.31.31.6	
52030	0763	144	spSpec-52050-1108-191 spSpec-52235-0763-144	WDI0847+4510	08:47:46.8	(+)45:10:06.2	
52670	1190	322	spSpec-52670-1190-322	WD10851+0605	08:51:28.2	(+)06:05:51.1	
52668	1189	538	spSpec-52668-1189-538	WDI0055+0635	08:55:07.2	(+)00.05.51.1 (+)00.26.22.7	
51929	0470	081	spSpec-51929-0470-081	WD0906-0024	09:06:24.2	(-)00.20.22.7	
52238	0566	031	spSpec-52238-0566-031	WD10911+0310	09:11:18.4	(+)03.10.451	
52668	1200	017	spSpec-52668-1200-017	WDI0913+4036	09.13.12.7	(+)40.36.28.8	
52000	1200	445	spSPec-52076-1301-445	WD10017±0026	09:17:31.0	(+)00.26.381	
51991	0556	476	spSrec-51991-0556-476	WD10939+5609	09:39:44.9	(+)56:09:40.1	
51911	0452	023	spSpec-51911-0452-023	WDI0942+5733	09.42.13 1	(+)57:33:42.5	
51630	0266	037	spSpec-51630-0266-037	WDI0949-0000	09:49:17.4	(-)00.00.23.6	
51994	0500	163	spSpec-51994-0500-163	WDI0958+0130	09:58:33.1	(+)01:30:49.2	
52317	0558	573	spSpec-52317-0558-573	WDI1002+5818	10:02:38.6	(+)58:18:35.9	
52400	0903	557	spSpec-52400-0903-557	WDJ1007+5245	10:07:18.3	(+)52:45:19.8	
52316	0559	330	spSpec-52316-0559-330	WJD1015+5954	10:15:19.6	(+)59:54:30.5	
51999	0503	329	spSpec-51999-0503-329	WDJ1015+0306	10:15:48.0	(+)03:06:48.2	
52649	1010	629	spSpec-52649-1010-629	WDJ1054+5307	10:54:49.9	(+)53:07:59.1	
51909	0276	073	spSpec-51909-0276-073	WDJ1056-0006	10:56:12.3	(-)00:06:21.7	
51900	0278	367	spSpec-51900-0278-367	WDJ1106+0115	11:06:23.3	(+)00:05:01.3	
52376	0836	214	spSpec-52376-0836-214	WDJ1122+0358	11:22:21.1	(+)03:58:22.4	
52376	0836	050	spSpec-52376-0836-050	WDJ1125+0345	11:25:42.8	(+)03:45:06.3	
52375	0841	377	spSpec-52375-0841-377	WDJ1157+0553S	11:57:07.4	(+)05:53:03.5	
52672	1230	188	spSpec-52672-1230-188	WDJ1216+0922	12:16:28.6	(+)09:22:46.4	
52000	0288	412	spSpec-52000-0288-412	WDJ1218+0042	12:18:30.7	(+)00:42:16.1	
52313	0333	077	spSpec-52313-0333-077	WDJ1222-0243	12:22:29.6	(-)02:43:32.5	
52026	0523	128	spSpec-52026-0523-128	WDJ1254+0124	12:57:10.5	(+)01:24:22.9	
52026	0523	186	spSpec-52026-0523-186	WDJ1255+0211	12:55:35.4	(+)02:11:16.0	
51689	0293	603	spSpec-51689-0293-603	WDJ1301+0107	13:01:10.5	(+)00:04: 30.6	
51692	0339	629	spSpec-51692-0339-629	WDJ1310-0159	13:10:07.8	(-)00:07:59.7	
51955	0298	608	spSpec-51955-0298-608	WDJ1337+0104	13:37:14.4	(+)01:04:43.8	
51666	0300	288	spSpec-51666-0300-288	WDJ1345-0055	13:45:50.9	(-)00:55:36.4	
51641	0301	322	spSpec-51641-0301-322	WDJ1354+0108	13:54:59.8	(+)01:08:19.3	
52797	1323	161	spSpec-52797-1323-161	WD1355+5454	13:55:31.0	(+)54:54:04.5	
52045	0582	551	spSpec-52045-0582-551	WDJ1408+0445	14:08:59.4	(+)00:19:03.6	1
51609	0304	345	spSpec-51609-0304-345	WDJ1417+0058	14:17:08.8	(+)00:58:27.2	
52027	0537	279	spSpec-52027-0537-279	WDJ1443+0134	14:43:30.9	(+)01:34:05.8	
51990	0310	229	spSpec-51990-0310-229	WDJ1502-0001	15:02:07.0	(-)00:01:47.2	
52411	0925	139	spSpec-52411-0925-139	WDJ1533-0206	15:33:33.0	(-)02:06:55.7	

Tabela 4.1.Tabela de coordenadas destas estrelas e espectros de algumas
estrelas do SDSS utilizados neste trabalho

Tabela 4.1 (continuação)

MJD	Placa	Fibra	Espectro	Nome	AR ₂₀₀₀	Dec ₂₀₀₀
52374	0815	390	spSpec-52374-0815-390	WDJ1617+4324	16:17:37.6	(+)43:24:43.8
51693	0346	109	spSpec-51693-0346-109	WDJ1618-0023	16:18:37.1	(-)00:01:32.1
52767	1339	618	spSpec-52767-1339-618	WDJ1644+3521	16:41:15.6	(+)35:21:40.6
52433	0820	110	spSpec-52433-0820-110	WDJ1700+3549	17:00:55.4	(+)35:49:51.0
51691	0350	362	spSpec-51691-0350-362	WDJ1711+6541	17:11:13.0	(+)65:41:58.3
52431	0978	169	spSpec-52431-0978-169	WDJ1717+3026	17:17:47.7	(+)30:26:23.6
52017	0366	264	spSpec-52017-0366-264	WDJ1724+583	17:24:28.4	(+)58:35:38.9
52017	0366	591	spSpec-52017-0366-591	WDJ1732+590	17:32:35.2	(+)59:05:33.4
52932	1522	037	spSpec-52932-1522-037	WDJ2128-0007	21:28:08.5	(-)00:07:50.8
52176	0421	112	spSpec-52176-0421-112	WDJ2135-0743	21:35:30.3	(-)07:43:30.7
52908	1473	319	spSpec-52908-1473-319	WD2147-0013	21:47:23.7	(-)00:13:58.4
52173	0644	633	spSpec-52173-0644-633	WDJ2153-0731	21:53:54.1	(-)07:31:21.9
52224	0734	419	spSpec-52224-0734-419	WDJ2159+1322	21:59:05.5	(+)13:22:55.8
51791	0374	180	spSpec-51791-0374-180	WDJ2214-0025	22:14:58.4	(-)00:25:11.9
52521	0738	470	spSpec-52521-0738-470	WDJ2231+1346	22:31:35.7	(+)13:46:52.8
52258	0725	586	spSpec-52258-0725-586	WDJ2307-0847	23:07:26.7	(-)08:47:00.3
52524	1094	573	spSpec-52524-1094-573	WDJ2334+0103	23:34:58.7	(+)01:03:03.1
51788	0386	135	spSpec-51788-0386-135	WDJ2350-0054	23:50:40.7	(-)00:54:30.9

Nome	T_{ef}	$\sigma_{T_{ef}}$	$\log g$	$\sigma_{\log g}$	Massa	σ_{Massa}	Idade
	(K)	(K)			M_{\odot}	M_{\odot}	(G anos)
WD0145-221_b	14226.	241.	8.248	0.000	0.759	0.006	0.415
WD0102-0032	12632.	268.	7.513	0.001	0.372	0.006	0.222
WD0111+0018	11118.	263.	7.993	0.001	0.600	0.004	0.553
WD0214-0823	11571.	217.	7.799	0.007	0.495	0.002	0.410
WD0318+0030	13000.	52.	8.180	0.009	0.714	0.003	0.479
WD0332-0049	10866.	234.	7.495	0.001	0.358	0.001	0.338
WD0815+4437	11670.	284.	7.247	0.000	0.296	0.003	0.184
WD0825+4119	10842.	290.	8.472	0.003	0.903	0.003	1.221
WD0842+3707	10317.	349.	7.388	0.011	0.327	0.002	0.341
WD0847+4510	10871.	214.	7.727	0.003	0.457	0.001	0.448
WD0906-0024	13689.	310.	8.082	0.011	0.657	0.001	0.360
WD0923+0120	12202.	57.	8.414	0.011	0.865	0.006	0.797
WD0939+5609	10279.	203.	7.765	0.001	0.473	0.002	0.540
WD0942+5733	11902.	240.	7.981	0.003	0.595	0.002	0.457
WD0949-0000	13600	52	8.069	0.006	0.649	0.002	0.360
WD0958+0130	11939	242.	7.938	0.016	0.570	0.001	0.435
WD1015+0306	11521.	177.	7.896	0.037	0.546	0.014	0.458
WD1015+5954	12156	167.	8.085	0.011	0.655	0.006	0.500
WD1056-0006	11288	272	7.665	0.017	0.430	0.003	0.377
WD1122+0358	11123	2.24	7.851	0.013	0.520	0.002	0.481
WD1125+0345	11734	324	7.609	0.013	0.407	0.001	0.316
WD1157+0553	11592	57	7.965	0.007	0.585	0.003	0.482
WD1345-0055	11220	69	8 070	0.018	0.645	0.003	0.605
WD1417+0058	10631	381	7 744	0.001	0.013	0.002	0.484
WD1443+0134	13600	51	7 364	0.001	0.335	0.002	0.138
WD1502-0001	12250	268	7 580	0.009	0.396	0.002	0.269
WD1617+4324	11874	200.	7.642	0.014	0.422	0.002	0.319
WD1700+3549	11908	307	7 721	0.005	0.458	0.002	0.348
WD170015545 WD1711+6541	10819	75	8 4 5 3	0.005	0.450	0.004	1 198
WD1724+5835	11029	270	7 515	0.002	0.366	0.002	0.333
WD1732+5905	10200	51	7 899	0.002	0.500	0.001	0.633
WD2350-0054	10200.	24	8 139	0.007	0.685	0.001	0.055
WD0000-0046	10857	187	8 611	0.010	0.005	0.002	1 493
WD2334+0103	10419	131	8 578	0.006	0.968	0.002	1.634
WD1310_0159	10060	141	7.668	0.010	0.427	0.002	0.514
WD1106+0115	10777	274	7 739	0.001	0.462	0.003	0.464
WD1337+0104	11402	41	8 269	0.002	0.767	0.003	0.782
WD0018+0031	11465	332	7 809	0.010	0.500	0.003	0.425
WD0911+0310	11517	274 274	8.095	0.010	0.500	0.003	0.586
WD2307-0847	10961	274.	7 430	0.007	0.341	0.002	0.303
WD1222_0243	11586	34	8 342	0.007	0.815	0.001	0.832
WD1222-0243 WD1002+5818	13000	51	7 599	0.013	0.015	0.002	0.032
WD1002+5010	10404	338	7.805	0.015	0.404	0.002	0.534
WD1533 0206	10494.	53	8 101	0.000	0.494	0.002	0.554
WD2231±1346	12082	228	8 13/	0.024	0.684	0.004	0.570
WD0818+3131	11305	13	8 164	0.012	0.004	0.004	0.669
WD0825±0320	11395.	248	8 0/1	0.010	0.701	0.005	0.009
WD105/+5307	11201.	240. 207	8 240	0.005	0.020	0.002	0.300
WD08/3±0/31	11207.	297. 218	8 3/0	0.001	0.740	0.003	0.767
WD0013±4036	11745	210.	7 788	0.015	0.014	0.004	0.707
WD0851±0605	12280	209.	7 806	0.000	0.490	0.004	0.390
WD1216±0022	11110	300	8 071	0.021	0.645	0.007	0.507
11012101070722	11110.	507.	0.071	0.000	0.045	0.002	0.022

Tabela 4.2. Tabela com os valores de $T_{\rm eff}$ e log g ML2/ $\alpha = 0.6$ usando perfil de linha, também é mostrado a massa calculada e a idade calculadas usando os modelos de Wood (1995)

Nome	T_{ef}	$\sigma_{T_{ef}}$	$\log g$	$\sigma_{\log g}$	Massa	σ_{Massa}	Idade
WD1355+5454	14379.	139.	7.443	0.006	0.359	0.002	0.133
WD2128-0007	12967.	339.	8.000	0.000	0.609	0.002	0.371
WD0756+2020	11705.	306.	8.573	0.008	0.967	0.001	1.142
WD0917+0926	14200.	52.	7.560	0.011	0.397	0.001	0.165
WD1354+0108	11581.	41.	8.118	0.024	0.673	0.004	0.598
WD1218+0042	10857.	172.	8.398	0.221	0.852	0.101	1.093
WD1255+0211	12303.	353.	8.884	0.280	1.138	0.106	1.691
WD2159+1322	13451.	513.	8.283	0.027	0.779	0.012	0.504
WD0048+1521	11096.	496.	8.308	0.212	0.792	0.098	0.895
WD2214-0025	11472.	1002.	8.253	0.026	0.757	0.012	0.751
HE0031-5525	13582.	276.	8.025	0.241	0.624	0.097	0.338

Tabela 4.2 (continuação)

4.1 Mais estrelas do SDSS

O catálogo DR4 SDSS de Eisenstein et al (2006) apresenta um total de aproximadamente 10000 novas anãs brancas. Nesta seção apresentamos os resultados obtidos para uma sub amostra de 2253 estrelas, da qual obtivemos no parâmetros atmosféricos através do ajuste de espectro total com a grade de modelos empregada na análise de todo espectro incluindo linhas e contínuo. Optei por este método tendo em vista que o sinal ruído dos espectros é baixo, apresentando linhas pouco precisas, principalmente na região do azul, conforme pode se observado nas figuras 4.1, 4.1, 4.2, 4.3. A forma como Eisenstein et al. (2006) faz as determinações é semelhante ao ajuste de todo espectro, porém é feita uma multiplicação do espectro por um polinômio de baixa ordem, antes de fazer comparação por mínimos quadrados com os modelos de atmosfera. A forma como faço neste trabalho é normalizar os espectros em uma região específica do vermelho entre 5100 - 5300 e posteriormente comparo o espectro diretamente com a grade de modelos normalizada na mesma região. Na figura 4.1 apresento alguns espectros com seus melhores ajustes; e na seqüência apresento a tabela de parâmetros atmosféricos obtidos para estes 2253 espectros.

4.2 Informações estatísticas

Nesta seção apresentamos apenas algumas informações estatísticas a respeito desta amostra de 2253 espectros do SDSS, quanto a discussão mais detalhada a respeito da distribuição de massa será realizada no capítulo distribuição de massa.

1.	
က	
N	the second secon
0	WD0000-0046 WD0018+0031 WD0023-0033 WD0040-0021

Fig. 4.1 Espectros do SDSS com parâmetros determinados pelo perfil das linhas de Balmer desde H_{β} inferior até, H_9 superior, com um deslocamento vertical fixo para melhor clareza. A linha contínua corresponde ao espectro observado e a linha tracejada representa o modelo que melhor ajusta o espectro.

Fig. 4.2 Espectros do SDSS com parâmetros determinados pelo perfil das linhas de Balmer desde H_{β} inferior até, H_9 superior, com um deslocamento vertical fixo para melhor clareza. A linha contínua corresponde ao espectro observado e a linha tracejada representa o modelo que melhor ajusta o espectro.

Fig. 4.3 Espectros do SDSS com parâmetros determinados pelo perfil das linhas de Balmer desde H_{β} inferior até, H_9 superior, com um deslocamento vertical fixo para melhor clareza. A linha contínua corresponde ao espectro observado e a linha tracejada representa o modelo que melhor ajusta o espectro.

Fig. 4.4 Nesta figura apresentamos em cada painel um espectro do SDSS (pontos) e o modelo que melhor ajusta o espectro. São 3 espectros selecionados aleatoriamente do catálogo SDSS, de estrelas com magnitude g19, 0, 19, 3, 19, 5 respectivamente.

Fig. 4.5 Distribuição de massa dos espectros do catálogo SDSS utilizados neste trabalho; resultado do ajuste de todo espectro (ALL). A massa média da amostra de 2253 espectros é de 0,613 M_{\odot} .

Fig. 4.6 Distribuição de $\log g$ dos espectros do catálogo SDSS utilizados neste trabalho; resultado do ajuste de todo espectro.O $\log g$ médio da amostra de 2253 espectros é de 7, 818 ± 0, 0173.

Fig. 4.7 Distribuição de temperaturas dos espectros do catálogo SDSS utilizados neste trabalho; resultado do ajuste de todo espectro. A Temperatura média da amostra de 2253 espectros é de 19236 K.

Fig. 4.8 T_{ef} e $\log g$ para uma amostra de 2253 espectros do SDSS. A linha contínua representa a posição de $\log g$ médio que corresponde a 7,818.

5. ESTRELAS DO CATÁLOGO 2DF

Neste capítulo apresento os resultados com relação às estrelas anãs brancas DAs do catálogo 2df (*Two degree field*), também chamado de 2QZ (*Two Degree Quasar Survey*). Este é mais um projeto que visava buscar quasares distantes, tendo bastante êxito em seus objetivos; mas além de identificar novos quasares distantes, também identificou uma série de outros objetos azuis, dentre eles novas anãs brancas tanto do tipo DA quanto DB. O projeto 2df foi realizado no Anglo-Australian Telescope (AAT) e mais detalhes podem ser obtidos em Smith et al. (2002).

A região de busca do 2df é bem mais profunda em magnitudes que os conhecidos catálogos de objetos azuis fracos Palomar-Green (PG) e Edinburgh-Cape (EC). O catálogo PG abrange uma área de 10700 graus² com limite de magnitude $B \leq 16.2$. Contribuiu para a identificação da classe de estrelas pulsantes pré-degeneradas (PG 1159, McGraw et al. 1979) além da identificação de 353 estrelas anãs brancas DA. De forma semelhante, o catálogo EC corresponde a uma região do céu de 10000 graus² e com limite de magnitude de $B \leq 18.0$. Neste projeto foi identificada uma nova classe de estrelas pulsantes, as estrelas subanãs B (Kilkenny et al. 1997). Em contraste de região do céu estudada, o catálogo 2QZ abrange uma pequena área de 740 graus², somente 1,8 por cento do céu, em alta latitude Galáctica, nas vizinhaças dos pólos sul e norte Galáctico. O limite de magnitude para os objetos de interesse são $18.25 \leq b_j \leq 20.85$, que transformado no sistema de banda larga $18.4 \leq B \leq 21.0$; ou seja, estes objetos são muito fracos, sendo este o catálogo de espectros de anãs brancas mais fracas conhecidas até o momento¹.

O catálogo consiste de um total de 942 espectros de estrelas anãs brancas do tipo DA, todos calibrados apenas em comprimento de onda; a resolução espectral é de ≈ 9 Å, e a qualidade espectral varia muito, dependendo da magnitude da estrela, porém a razão sinal-ruído é em média ≈ 5.1 . Utilizamos nesta análise apenas as estrelas que possuem $g \le 19.5$, porque as estrelas com magnitude maior que esta apresentam razão sinal-ruído inferior a 3.

Os espectros do 2df não estão calibrados por fluxo. Para fazer esta correção, utilizei a função resposta do CCD obtida por Lewis et al. (2002). Os espectros do 2df foram divididos pela função resposta ponto a ponto em função do comprimento de onda. Na figura 5 apresentamos esta função resposta do CCD medida

¹ Os espectros encontram-se disponíveis no endereço www.2df.org

Fig. 5.1 Função resposta para a calibração de fluxo dos objetos do catálogo 2df, conforme proposto por Lewis et al. (2002). Está função foi empregada para a calibração dos espectros 2df analisados nesta seção.

para os espectros do 2df conforme Lewis et al. (2002).

Tendo em vista que a razão sinal ruído não era a ideal, a técnica proposta por Bergeron et al. (1995) de utilizar o perfíl das linhas de Balmer para determinar os valores de $\log g$ e $T_{\rm ef}$, torna-se pouco eficiente. Então, para estimarmos os parâmetros atmosféricos destas estrelas DA, utilizamos o ajuste do espectro total. Esta técnica pode ser sempre empregada, desde que a calibração de fluxo esteja correta e a extinção atmosférica e interestelar corrigidas ou pequenas.

Na tabela 11.1 apresento os valores de $T_{\rm ef}$, $\log(g)$ e Massa que obtive através do ajuste de mínimos quadrados dos espectros com a grade de modelos do Koester. A massa foi calculada utilizando os modelos evolucionários de Althaus et al. (2005). Também estou apresentando o histograma de distribuição de massa e o

120

gráfico de massa *versus* $T_{\rm ef}$. E um fato relevante a ser salientado neste caso é que o aumento de massa para as estrelas com temperatura entre 13 000 K e 10 000 K, aparentemente não é observado. Isso será discutido em mais detalhes no capítulo sobre a distribuição de massa das anãs brancas.

Fig. 5.2 Distribuição de $T_{\rm ef}$
e $\log g$ das 477 estrelas do catálogo 2DF com magnitude
g ≤ 19.5
6. COMPARAÇÕES DE RESULTADOS

Neste capítulo estamos apresentando uma comparação entre os valores de $T_{\rm ef}$, $\log g$, massa e distribuição de massa que obtivermos e outros trabalhos encontrados na literatura.

Em Mukadam et al. (2004) é publicada uma lista de 34 estrelas ZZ Cetis. Seus parâmetros atmosféricos foram determinados com base nos espectros de baixo sinal-ruído do SDSS, Os autores utilizaram uma grade de modelos desenvolvida por D. Koester e a forma como foram ajustados os modelos aos espectros incluiu todo espectro na região do ótico, incluindo as linhas de Balmer, desde H₈ até H_{α}; também foram utilizadas cores fotométricas *u*, *g*, *r* e *i* para filtros do Sloan Digital Sky Survey, para renormalização de fluxo. Neste capítulo apresento os resultados que obtive para estes mesmos espectros porém com grade de modelos extendida e técnica de ajuste diferente, embora também tenha feito minhas determinações utilizando espectro ótico total, incluindo linhas e contínuo.

Além disto, também faço comparações com outros resultados apresentados por outros autores que utilizam grades de modelos atmosféricos diferentes, desenvolvidos por P. Bergeron. A comparação é com os resultados que obtive para as estrelas em comum que temos em nossa amostra de espectros com os resultados apresentados por Bergeron et al. (2001) que fazem análise de uma amostra de anãs brancas frias; apresentamos a comparação na tabela 6.2. Outro artigo que utiliza a grade de modelos de P. Bergeron, e que apresenta estrelas comum com este trabalho é Liebert et al. (2005), que apresenta as determinações de parâmetros atmosféricos de todas estrelas do catálogo Palomar Green; a comparação está na tabela 6.3. Também faço comparações das estrelas que temos em comum com Gianninas et al. (2005) na tabela 6.4; nesse último artigo é apresentado uma determinação empírica da faixa de instabilidade com os parâmetros atmosféricos de várias anãs brancas variáveis e não variáveis, com T_{ef} e log *g* ao redor da faixa de instabilidade, similar ao nosso trabalho.

6.1 Comparação: Mukadam et al. (2004a)

Na figura 6.1, nos painéis superiores desta figura, apresento na forma gráfica as diferenças entre os resultados que obtive e Mukadam et al. (2004). Em ambos cálculos foram utilizados os mesmos espectros, grade de modelos de atmos-

fera semelhante, nossa grade tem espaçamento menor, em temperatura e log g e é maior (log g5 - 10). A técnica de comparação entre grade de modelos e espectros também é diferente. A maneira como fiz a comparação entre espectro e grade de modelos está descrita nos capítulos 4 e 3 (perfíl de linha - LPT); enquanto que a forma como Mukadam et al. (2004) fazem esta comparação é utilizando o contínuo e as linhas de Balmer, e um calibração por um polinômio de ordem 10, de forma a tornar o contínuo do espectro semelhante aos modelos. A média das diferenças é de 291 K em temperatura sendo os resultados que obtive mais quentes 291 K em relação aos apresentados por Mukadam et al. (2004a); e -0, 26 para média das diferenças em log g. Aparentemente o gráfico da figura 6.1 sugere uma correlação entre as diferenças de T_{ef} quanto log g, possívelmente devido as diferenças de técnica empregada no ajuste de espectro e grade de modelos de atmosfera além de calibrações tanto de fotometria quanto de espectroscopia.

6.2 Comparação: Bergeron et al. (2001)

Continuando a figura 6.1, nos painéis intermediários apresento a comparação com Bergeron et al. (2001). Neste trabalho são apresentados os resultados fotométricos no ótico BVRI e no infravermelho JHK além da espectroscopia até H_{α} para uma amostra de 152 estrelas com $T_{
m ef} \leq 12\,000~K$. A técnica empregada na determinação dos parâmetros atmosféricos por Bergeron et al. 2001, consiste no ajuste das linhas de Balmer desde H_9 até H_{α} , com uma grade de modelos de atmosfera desenvolvido por P. Bergeron. Na comparação de resultados, ambos trabalhos utilizam grades de modelos de atmosfera com mesmos parâmetros de MLT $(ML2/\alpha = 0, 6)$ porém os código numéricos que geram os modelos são diferentes. A média das diferenças entre meus resultados e Bergeron et al. (2001) mostra que meus resultados são em $T_{
m ef} \sim 60$ K mais frios, e para $\log g \sim 0, 11$ maior, a média quadrática das diferenças para T_{ef} indica diferenças de 418 K e para $\log g$ 0,3. Vale lembrar que apesar das pequenas diferenças podemos observar que os modelos de atmosfera são diferentes e os espectros também são diferentes, ambos com alta razão sinal-ruído, porém deve-se levar em conta as incertezas externas uma vez que os espectros foram obtidos sob circunstâncias diferentes em diferentes observatório e com diferente calibração de fluxo.

6.3 Comparação dos resultados deste trabalho e Liebert et al. (2005).

O trabalho apresentado por Liebert et al. (2005) são os resultados de um extenso trabalho a respeito das estrelas anãs brancas DA do catálogo PG survey, num total de 348 anãs brancas do tipo DA; dentre as estrelas observadas nesta

Tab. 6.1 Comparação	entre os valores	$de T_{ef} e \log g$	deste trabalho	e Mukadam et
al. (2004a).				

Nome	$T_{\rm ef}({\rm Anjum})$	$\log g$ (Anjum)	$T_{\rm ef}({\rm Alex})$	$\log g$ (Alex)
WD0102-0032	11050	8.24	12632	7.51
WD0111+0018	11510	8.26	11118	7.99
WD0214-0823	11570	7.92	11571	7.80
WD0318+0030	11040	8.07	13000	8.18
WD0332-0049	11040	8.25	10866	7.49
WD0815+4437	11620	7.93	11970	7.25
WD0825+4119	11820	8.49	10842	8.47
WD0842+3707	11720	7.73	10317	7.39
WD0847+4510	11680	8.00	10871	7.73
WD0906-0024	11520	8.00	13689	8.08
WD0923+0120	11150	8.74	12202	8.41
WD0939+5609	11790	8.22	10278	7.76
WD0942+5733	11260	8.27	11902	7.98
WD0940-0000	11180	8.22	13600	8.07
WD0958+0130	11680	7.99	11939	7.94
WD1015+0306	11580	8.14	11521	7.90
WD1015+5954	11630	8.02	12156	8.08
WD1056-0006	11020	7.86	11288	7.66
WD1122+0358	11070	8.06	11123	7.85
WD1125+0345	11600	7.99	11734	7.61
WD1157+0553	11050	8.15	11592	7.96
WD1345-0055	11800	8.04	11220	8.07
WD1354+0108	11700	8.00	11581	8.12
WD1417+0058	11300	8.04	10631	7.74
WD1447+0134	10830	8.15	13600	7.36
WD1502-0001	11200	8.00	12250	7.58
WD1617+4324	11190	8.03	11874	7.64
WD1700+3549	11160	8.04	11908	7.72
WD1711+6541	11310	8.64	10819	8.45
WD1724+5835	11540	7.89	11029	7.52
WD1732+5905	10860	7.99	10200	7.90
WD2350-0054	10350	8.31	10810	8.14

Tab. 6.2 Comparações entre os valores de $T_{\rm ef}$ e $\log g$ deste trabalho e Bergeron et al. (2001).

Nome	$T_{\rm ef}({\rm Bergeron})$	$\log g$ (Bergeron)	$T_{\rm ef}({\rm Alex})$	$\log g$ (Alex)
G 31–35	9610	8.40	9353	8.02
G 1–7	10700	8.66	10638	8.58
G 2–40	8500	7.20	8496	6.96
G 61–17	10280	7.88	10532	7.78
BPM 37093	11550	8.63	11518	8.80
Case 2	11320	7.12	12427	7.48
G 21–15	12240	7.00	10533	7.85
G 21–16	9480	7.94	9126	7.96
G 19–20	13470	8.11	12545	7.68
G 180–65	9940	8.13	9929	7.99
G 207–9	11240	8.13	11794	8.39
G 67–23	10330	8.57	10573	8.77
G 1–45	8080	7.55	8.431	7.60
EC 1124-296	9440	7.10	9402	8.08

tese apresentamos 32 estrelas em comum com aquelas apresentadas por Liebert et al. (2005). Na figura 6.1, nos painéis inferiores mostro na forma gráfica a comparação entre meus resultados e Liebert et al. (2005). A forma como foram determinados os parâmetros atmosféricos por Liebert et al. (2005) e esta tese foi comparando os perfís das linhas de Balmer desde H_{β} até H_8 , com modelos de eficiência convectiva $ML2/\alpha = 0, 6$, porém o código que gerou as grades de modelos não é o mesmo. A média das diferenças indica que o resultados que obtive são em $T_{\rm ef}$ = 288 K mais frios que Liebert et al. (2005), e em log $g \sim 0,14$ menores; as diferenças quadráticas médias sugerem $T_{\rm ef} \sim 477$ K e 0,23 para log g. As diferenças estão associadas a diferença nas grades de modelos, além das incertezas externas, uma vez que os espectros são das mesmas estrelas porém em situações e observatórios diferentes.

6.4 Comparação dos resultados deste trabalho e Gianninas et al. (2005)

Outro trabalho importante para fazer comparação com estrelas comuns a esta tese é o artigo de Gianninas et al. (2005). Os resultados da comparação são apresentados nos painéis superiores da figura 6.2. No trabalho de Gianninas et al. (2005), algumas estrelas foram observadas pelos próprios autores, porém alguns resultados apresentados naquele trabalho são resultados de outras referências na literatura. Aquelas estrelas que foram observadas foram analisadas com base na mesma técnica relatada nas comparações com Bergeron et al. 2001 e Liebert et al. 2005. Portanto as diferenças estão na grade de modelos empregada, e no erro externo associado às observações em telescópios diferentes. Nesta comparação apresentamos 54 estrelas em comum e a média das diferenças em $T_{\rm ef}$ é de 92 K e em log g de 0,13, enquanto que as diferenças quadráticas ficam em 108 K para $T_{\rm ef}$ e apenas 0,02 para log g.

Tab. 6.4: Tabela de Comparação entre os resultados obtidos no capítulo 3 e o
resultados apresentados por Gianninas et al. (2005).

Nome	$T_{\rm ef}$ (Gianninas)	$\log g$ (Gianninas)	$T_{\rm ef}({\rm Alex})$	$\log g$ (Alex)
G 31–35	9640	8.16	9353	8.02
G 1–7	10980	8.83	10638	8.58
G 1–45	8530	8.27	8345	7.75
G 269–93	13290	7.83	13163	7.72
G 71–41	12330	7.86	13020	7.54
GD 31	13550	8.66	14800	8.87

continua ...

Nome	$T_{\rm ef}$ (Gianninas)	$T_{\rm ef}({\rm Alex})$	$\log g$ (Alex)	
BPM 02819	10560	8.1	10050	7.72
Rubin 70	12640	7.39	12213	7.22
GD 47	12470	7.98	12955	7.80
HZ 4	14030	8.19	13916	8.06
G 8-8	12240	7.99	13336	7.65
HZ 10	13620	7.79	13211	7.78
GD 77	14000	8.21	13990	8.00
G 116–52	12820	7.55	12368	7.35
BPM 19738	12400	7.68	14412	7.43
PG 1119+386	16500	7.94	16258	7.92
G 121–22	10200	8.14	10004	7.99
EC 12043-1337	11180	8.24	10834	8.35
Case 1	13920	8.16	16737	7.76
G 61–17	10680	8.06	10532	7.78
GD 320	13970	7.59	13724	7.51
PG 1418-005	14290	7.82	12450	7.85
G 66-32	14170	7.75	12612	7.81
GD 176	10100	7.75	10062	7.42
GD 348	9740	8.15	9645	7.99
GD 189	10080	8.30	9967	8.20
L 48-60	10580	8.09	10549	8.44
GD 194	14260	8.25	14373	8.25
G 152–B4B	13960	7.83	13172	7.77
Case 2	12690	7.74	12427	7.48
GD 202	13620	7.81	12284	7.87
G 180+65	10150	8.17	9929	7.99
GD 515	15070	7.63	15164	7.66
G 169-34	9310	8.20	9368	8.00
G 19–20	13210	7.77	12595	7.68
G 21–15	11970	7.57	10533	7.85
G 21–16	9210	8.16	9126	7.96
G 155–19	13300	7.63	13000	7.63
G 155–34	10170	8.23	9971	8.07
G 141–54	9920	8.12	9868	8.00
G 142–B2A	13270	7.85	14245	7.99

Tab. 6.4: Tabela de Comparação entre os resultados obtidos no capítulo 3 e o	os
resultados apresentados por Gianninas et al.(2005)	

continua ...

Nome	$T_{\rm ef}$ (Gianninas)	$\log g$ (Gianninas)	$T_{\rm ef}({\rm Alex})$	$\log g$ (Alex)
BPM 01266	12620	8.25	10395	7.95
BPM 27273	9760	8.13	9240	7.54
G 261–43	15290	7.84	15141	7.79
G 126–18	10210	8.10	10216	8.06
GD 397	13080	7.87	13076	7.86
GD 236	15280	7.62	15500	7.66
GD 556	11180	8.15	11118	7.83
PG 2322+207	13060	7.84	13028	7.64
BPM 15727	13420	7.39	14000	7.37
G 130–5	12570	7.93	13081	7.56
G 210–36	14070	8.21	14000	8.01
GD 133	12090	8.06	12318	7.79
G 226–29	12260	8.31	12237	8.15

Tab. 6.4: Tabela de Comparação entre os resultados obtidos no capítulo 3 e os resultados apresentados por Gianninas et al.(2005)

6.5 Comparação dos resultados deste trabalho e Lajoie et al. (2007)

Lajoie et al. (2007) determinam $T_{\rm ef}$ para uma amostra de 140 estrelas usando as linhas de Balmer através de espectros na região do ótico e comparam seu resultados os resultados previstos com análise de espectros das mesmas estrelas, na região do ultra-violeta. Observando a amostra de 140 estrelas, analisadas neste artigo, verifiquei que tem 29 estrelas em comum com as estrela que observei para esta tese, com alta razão sinal-ruído. A comparação de resultados apresento nos dois painéis inferiores da figura 6.2. A comparação observada na figura 6.2 refere-se aos resultados apresentados para os espectros na região do ótico. Em relação às diferenças de técnicas de análise: Lajoie et al. (2007) utilizam a mesma técnica empregada por Gianninas et al. 2005 e Bergeron et al. (2000), que consiste no prefil das linhas de Balmer, a mesma técnica que utilizei nos resultados apresentados no capítulo 3. As diferenças são novamente devido a grade de modelos não ser a mesma que utilizei neste trabalho, além das incertezas externas, uma vez que as estrelas foram observadas em locais diferentes com diferentes condições atmosféricas. A média das diferenças sugere que meus resultados são cerca de 562 K em $T_{\rm ef}$ mais frios que o resultados apresentados por Lajoie et al. (2007) e menor em $\log g \sim$ 0,06; as diferenças quadráticas sa
õ $T_{\rm ef} \sim$ 335 K e para $\log g \sim$

Nome	$T_{\rm ef}$ (Liebert)	$\log g$ (Liebert)	$T_{\rm ef}({\rm Alex})$	$\log g$ (Alex)	
G 1–7	10980	8.83	10638	8.58	
G 1–45	8530	8.27	8431	7.60	
G 2–40	8690	7.84	8496	6.96	
G 117–B15A	11630	7.98	11231	8.24	
Ton 20	14490	7.82	14136	7.74	
G 116–52	12820	7.55	12368	7.35	
G 163–50	15140	7.85	14200	7.60	
GD 133	12290	8.05	12318	7.79	
PG 1119+386	16500	7.94	16258	7.92	
PG 1129+072	13360	7.91	13544	7.86	
G 121–22	10200	8.14	10004	7.99	
G 61–17	10680	8.06	10532	7.78	
G 238–53	11880	7.91	11470	7.92	
GD 165	11980	8.06	12384	8.07	
G 66-32	14170	7.75	12612	7.81	
GD 348	9740	8.15	9646	7.99	
GD 194	14260	8.25	14373	8.25	
R 808	11160	8.04	10876	7.78	
GD 196	14390	7.84	14112	7.72	
G 180–65	10150	8.17	9929	7.99	
GD 515	15070	7.63	15164	7.66	
G 67–23	10650	8.80	10573	8.77	
G 29–38	11820	8.15	11482	7.98	
G 130–5	12570	7.93	13081	7.56	
GD 189	10080	8.30	9967	8.20	
PG 2303+243	11480	8.09	11453	8.41	
PG 2306+131	13250	7.92	13293	7.89	
PG 2322+207	13060	7.84	13028	7.64	
PG 1022+050	11680	7.64	11344	7.50	
PG 1026+024	12570	7.98	12094	7.88	
PG 1101+364	13040	7.24	12181	7.12	
PG 1418-005	14290	7.82	12450	7.85	

Tab. 6.3 Comparações entre os valores de $T_{\rm ef}$
e $\log g$ deste trabalho e Liebert et al. (2005).

0,04.

6.6 Comparação dos resultados deste trabalho e Kepler et al. (2007)

Um trabalho bastante completo a respeito da análise das estrelas do SDSS foi apresentado por Kepler et al. (2007), com um total de 7167 estrelas para as quais foram determinados seus parâmetros atmosféricos e massa. Desta amostra selecionei uma sub-amostra com 1634 espectros e utilizei uma técnica diferente da utilizada por Kepler et al. (2007) na determinação dos parâmetros atmosféricos. A forma como Kepler et al. (2007) determinaram $T_{\rm ef}$ e log(g), foi pela mesma técnica descrita na comparação com Anjum et al. (2004), e consiste no ajuste do espectro inteiro, incluindo linhas de Balmer e contínuo, à grade de modelos de atmosfera. A técnica empregada nesta tese foi a mesma descrita no capítulo 3, a fitagem dos perfís das linhas de Balmer para determinar $T_{\rm ef}$ e log(g). As grades de modelos atmosféricos utilizada em ambas análises é muito semelhante; a grade que utilizei tinha menor espaçamento em $T_{\rm ef}$ e log(g). No entanto a média das diferenças em $T_{\rm ef}$ observadas foi de 306 K e para log g de 0.13 e as diferenças quadráticas de 110 K para $T_{\rm ef}$ e 0,01 para log g

Tab.	6.5	Comparaçõ	bes er	ntre o	DS	valores	de	$T_{\rm ef}$	e	$\log g$	e	massa	deste	trabalho	e
Lajo	oie e	t al. (2007).													

Nome	$T_{\rm ef}$	$\log g$	$T_{\rm ef}(UV)$	$T_{\mathrm{ef}(V)}$	Massa	$T_{\rm ef}({\rm Alex})$	$\log g(\text{Alex})$	Massa(Alex)
Ross 548	11986	7.98	12054	11979	0.60	11883	7.763	0.478
GD 31	13552	8.66	12949	13152	1.02	14800	8.875	1.134
BPM 2819	10608	8.15	10564	10251	0.70	10050	7.718	0.450
HZ 4	14033	8.19	13964	13699	0.73	13916	8.061	0.646
G8-8	12240	7.99	12200	12291	0.60	13336	7.648	0.430
40 Eri B	16480	7.87	16093	16483	0.55	15486	7.720	0.467
G117-B15A	11627	7.98	12132	12028	0.59	11231	8.237	0.746
G116-52	12822	7.55	13868	13807	0.39	12368	7.353	0.326
BPM 6082	13930	7.76	13894	14200	0.49	12911	7.720	0.461
LP 550-52	13828	7.47	11745	11645	0.36	14119	7.329	0.328
GD 123	29425	7.88	28487	27772	0.58	9140	8.813	1.098
PG 1116+026	12286	8.05	12198	12211	0.63	12318	7.790	0.492
BPM 37093	11809	8.84	11656	11887	1.12	11518	8.801	1.093
L19-2	12098	8.21	12244	12203	0.74	12348	8.208	0.733
L481-60	10583	8.09	10436	10259	0.66	10549	8.445	0.884
G180-23	11160	8.04	11235	11045	0.63	11089	8.028	0.620
G226-29	12460	8.29	12223	12272	0.79	12237	8.153	0.696
G207-9	11958	8.36	11952	12055	0.83	11794	8.393	0.849
GD 219	14430	8.06	14521	14935	0.65	14157	8.032	0.629
G185-32	12123	8.06	12024	12039	0.64	12167	7.937	0.566
G210-36	14069	8.21	14064	14291	0.74	14000	8.079	0.656
BPM 1266	10794	8.19	10385	10674	0.72	10395	7.947	0.572
GW +73 8031	15287	7.84	15012	15393	0.53	15141	7.791	0.500
G261-45	16905	7.86	16782	17488	0.55	10216	8.065	0.639
G93-48	17360	7.93	16801	17248	0.58	10578	8.315	0.797
G67-23	10647	8.80	10161	10559	1.10	10573	8.769	1.075
G29-38	11817	8.15	11632	11626	0.70	11482	7.976	0.591
L1512-34B	12573	7.93	12339	12420	0.57	13081	7.560	0.393
L362-81	8544	8.44	7832	8148	0.88	8513	8.430	0.870

Fig. 6.1 Comparação de meus resultados com outros trabalhos: Mukadam et al. (2004) no painel superior. Verificamos desvios sistemáticos na comparação com Mukadam et al. (2004). No painel intermediário mostramos a comparação de resultados com Bergeron et al. (2001) e, no painel inferior, mostramos a comparação com resultados obtidos por Liebert et al. (2005).

Fig. 6.2 Nos painéis superiores mostramos a comparação de meus resultados com os apresentados por Gianninas et al. (2005) referentes a $T_{\rm ef} e \log(g)$. Nos painéis inferiores podemos verificar a comparação entre os nossos resultados e os de Lajoie et al. (2007) referente aos valores de $T_{\rm ef}$ com espectros ultra-violeta.

Fig. 6.3 Comparação de meus resultados (LPT) com os apresentados por Kepler et al. (2007)(ALL). A média das diferenças são $T_{\rm ef} = 306 \ K$ e em $\log(g) = -0.130$, ou seja, que na média minhas determinações de $T_{\rm ef}$ são 306 K maior que as apresentadas por Kepler et al. 2007, assim como para $\log(g)$ meus resultados em média são 0.130 menores que os apresentados por Kepler et al. (2007).

7. DISTRIBUIÇÃO DE MASSA

Neste capítulo será feita uma comparação entre a distribuição de massa obtida neste trabalho e a de outros trabalhos da literatura.

7.1 Relação Massa inicial - Massa final

Um assunto importante a ser tratado nesta seção é a distribuição de massa. Através da estatística desta distribuição, podemos estimar as características das estrelas que podem tornar-se anãs brancas em seu estágio final de evolução. Segundo as previsões dos modelos de evolução estelar, as progenitoras das anãs brancas são estrelas que na seqüência principal possuíam massa inicial entre $0.8M_{\odot} \leq M \leq 10.5M_{\odot}$. Conhecer melhor a relação entre a massa inicial e a massa final é fundamental para a compreensão de muitos problemas da astrofísica, e pode ser a chave para se entender o enriquecimento químico durante a formação de estrelas nas galáxias. A maior parte do Fe vem de SNIa¹, quando a anã branca recebe massa da companheira em sistemas binários interagentes e sobrepassa a $M_{Chandrasekhar}$. Estas relações podem ser descobertas estudando as propriedades das anãs brancas em aglomerados abertos, ou mesmo em uma distribuição de anãs brancas de campo.

Vários estudos mostram que, de modo geral, a distribuição de massa das anãs brancas apresenta um pico próximo a $\langle M \rangle = 0.6 M_{\odot}$ por exemplo Koester & Weidemann (1980), M = 0.57 ± 0.1 M_☉, Liebert et al. (2003) M=0.621 ± 0.144 M_☉. O completo entendimento da distribuição de massa pode nos mostrar informações importantes também a respeito da origem das anãs brancas e seus "progenitores". Estudos mais detalhados sobre grandes amostras de anãs brancas para as estrelas dos catálogos Palomar Green (PG), Liebert et al. (2005); e Sloan Digital Sky Survey (SDSS), Kepler et al. (2007), que mostram a importância das anãs brancas massivas ($M > 0.8 M_{\odot}$), quando feita a correção baseada no limite de magnitude, que depende da luminosidade intrínseca da anã branca; as anãs brancas de maior massa são mais fracas por terem raios menores. Os primeiros resultados para as anãs brancas magnéticas do catálogo PG, apresentados por Liebert, Bergeron e Holberg (2005), mostram que, quando feitas estas correções, a distribuição

¹ Super-nova do tipo Ia

de massa mostra que a densidade espacial de anãs brancas magnéticas prevista pela função de massa inicial-final é mais que o dobro da previamente estimada, de 4% para ~ 10%; e a distribuição de todas as estrelas DA (magnéticas e não magnéticas) mostra que cerca de 30% das anãs brancas possuem massa maior que 0.8 M_{\odot} .

7.2 Distribuição de Massa

Koester (1976) sugere que para as estrelas DA com $T_{\rm ef}$ próximo de 12 000 K acontece um mistura convectiva entre a camada superficial de H e a camada inferior e mais espessa constituída por He, tornando a estrela com atmosfera rica em H em uma estrela de atmosfera de He. Entretanto, a temperatura em que ocorre a mistura convectiva é uma função da massa da camada de H: para camadas de H muito finas, modelos teóricos indicam que a mistura inicia em 10 000 K se a massa for $\sim 10^{-10} M_{\star}$ e 7 000 K se for de $\sim 10^{-7} M_{\star}$. Em particular, é possível que uma estrela com atmosfera de H tornar-se uma estrela de He do tipo DC após a mistura convectiva, ou seja, desta forma é eliminada totalmente a separação entre as camadas de He e H. No entanto, esta hipótese é difícil de ser testada, uma vez que o He torna-se invisível espectroscopicamente próximo de 12 000 K, e a presença de He só pode ser inferida através de métodos indiretos.

Por exemplo, Liebert & Wehrse (1983) propõem que a abundância de He pode ser inferida examinando-se com mais detalhes as linhas mais altas da série de Balmer, uma vez que a presença de He aumenta a pressão fotosférica e provoca o achatamento dos níveis mais altos do átomo de Hidrogênio. Bergeron et al. (1990) analisaram 37 anãs brancas frias usando o método de ajuste espectroscópico das linhas de Balmer, utilizando modelos atmosféricos que consideram a mistura convectiva de Hidrogênio e Hélio. Seus resultados mostram que os efeitos produzidos nas linhas de Hidrogênio em altos log g não podem ser distingüidos do efeito da presença de Hélio. Bergeron et al. (2006) propõe que problema pode, no entanto, ser explorado do ponto de vista estatístico; assumindo um valor médio de log g = 8.0 para todas as estrelas da amostra, seria possível determinar a quantidade de Hélio necessária na atmosfera.

Kepler et al. (2007) detectaram um problema nas distribuições de massa das anãs brancas DAs com T_{ef} no intervalo $8\,000~K \le T_{\rm ef} \le 12\,000~K$, assim como para as DBs com T_{ef} $\lesssim 16\,000~K$. Kepler et al. (2007) discutem este problema de forma bastante completa e concluem que a massa das estrelas nestes intervalos de T_{ef} são super-estimadas, não pelo problema da quantidade de He, mas possivelmente pela forma como os modelos de atmosfera tratam o alargamento colisional por átomos ionizados ou neutros, importantes para estes intervalos de temperatura. E o problema se mostra de forma consistente para outros resultados independen-

Tab. 7.1 Massa média para amostragem de estrelas com espectros observados para este trabalho

Massa média	σ	Numero de estrelas	critério
0.618	0.202	170	todas
0.573	0.182	92	$T_{ m ef} \geq 12000~{ m K}$
0.680	0.205	74	$8500~K \le T_{\rm ef} \le 12000~K$

tes, como os resultados de Liebert et al. (2005) que determinam a massa para 377 estrelas do catálogo PG, com espectros de alta razão sinal-ruído. Em Kepler et al. (2007) estes tópicos são abordados e a estatística mostra que este problema não se limita ao sinal-ruído, sendo os mesmos resultados obtidos para espectros de baixa razão sinal-ruído do SDSS e os espectros de alta razão sinal-ruído do catálogo PG. Também para as estrelas DBs do SDSS foi observado este aumento de massa, porém nas proximidades de $T_{ef} \leq 16\,000\,K$, o que não pode ser devido à mistura de He subfotosférico, já que as DBs só tem He na atmosfera, a camada de He é expessa, de modo que trazer C para a superfície não é provável além do fato de o C não causar aumento na densidade, pois possui o mesmo peso molecular médio por elétron que o He.

Neste capítulo trataremos separadamente as distribuições de massa, primeiramente as estrelas em que nós extraímos os espectros, depois, vamos discutir como ficam as distribuições do SDSS e 2df apresentadas nos capítulos anteriores. Farei esta diferença apenas porque os espectros do 2df e do SDSS apresentam baixa razão sinal-ruído.

Na Tabela 7.1 é feita a discriminação do número de estrelas, e sua massa média utilizando diferentes critérios. Primeiramente observamos a massa média de todas as estrelas da nossa amostra espectroscópica de alta razão S/R é $(0,618 \pm 0,20)M_{\odot}$. Destas estrelas, agora dividimos a amostra em estrelas "quentes" e "frias". As sub-amostras são compostas por estrelas com temperatura maior ou igual 12000 K e menor que 12000 K. Para a amostra de espectros de alto S/Robservados para este trabalho, possuímos um total de 170 espectros. Destes 170 espectros temos 92 com $T_{\rm ef} \geq 12000$ K e 78 com temperatura abaixo de 12000K.

Também podemos observar a presença de 18 estrelas com massa menor que $0, 4 M_{\odot}$, correspondendo a 10.5% da amostra, coerente com a previsão de Iben & Tutukov (1987), de que 10% das estrelas anãs brancas são produto de binárias próximas. As evidências de que as estrelas anãs brancas com massa menor que $0, 4 M_{\odot}$ são resultado da interação de sistemas binários surgem dos modelos de evolução estelar para sistema isolados que prevê que as estrelas progenitoras das anãs brancas de massa inferior à $0, 4 M_{\odot}$ têm massa menor que o limite para ini-

Fig. 7.1 Distribuição de magnitudes da nossa amostra de estrelas DA; no painel superior a distribuição de magnitudes das estrelas do SDSS que utilizei no capítulo 4. No painel intermediário, mostramos a distribuição de magnitude das estrelas do 2df discutidas no capítulo 5. E por fim no painel inferior apresento minha distribuição de magnitudes, para as estrelas cujos espectros são de alta razão S/R e foram observados para esta tese.

Fig. 7.2 Distribuição de massa da amostra de 170 estrelas DA observadas com alto S/R, e que apresenta massa média de 0.620 M_{\odot} .

Fig. 7.3 Distribuição de temperaturas da amostra de 170 estrelas DA observadas. Obtivemos temperatura a média de 12213 K.

Fig. 7.4 No gráfico acima mostramos a distribuiçao de massa da sub amostra de espectros observados que apresentam $T_{\rm ef} \leq 12000 \ K$. Esta sub amostra apresenta massa média de $\langle M \rangle = 0.671 \pm 0.214 M_{\odot}$ num total de 74 estrelas. No gráfico inferior apresentamos a distribuição de massa da estrelas com $T_{\rm ef} \geq 12000 \ K$ em um total de 92 estrelas. Obtivemos massa média de $\langle M \rangle = 0.573 M_{\odot} \pm 0.182$. Detectamos portanto uma aumento de massa para baixas $T_{\rm ef}$, similar aos observados em Liebert et al. (2005), Kepler et al. (2007). Como as anãs brancas em 12 000 K só têm menos de 1 Gano, este efeito não é devido a evolução das estrelas massivas.

Massa média	σ	Numero de estrelas	critério		
0.604	0.280	2467	todas		
0.605	0.274	1649	$T_{\rm ef} \ge 12000 \; K$		
0.629	0.257	610	$8500 K \le T_{\rm ef} \le 12000 K$		

Tab. 7.2 Massa Média para a nossa fitagem LPT de espectros do SDSS

ciar a fusão de hélio no núcleo, e apresentam tempo de vida na seqüência principal maior que a idade da Galáxia. Entretanto, Kalirai et al. (2007) observaram anãs brancas de baixa massa em um aglomerado aberto de 7 Ganos e alta metalicidade, indicando altíssima perda de massa já na fase de gigante vermelha.

Quanto às estrelas mais massivas, nossa amostra de alto S/R agora inclui 27 estrelas com massa maior que $0, 8 M_{\odot}$; provavelmente suas progenitoras possuíam $M > 4M_{\odot}$. O pequeno número de estrelas anãs brancas provenientes de estrelas mais massivas é um resultado esperado das teorias evolucionárias e podemos verificar nesta amostragem que correspondem a $\pm 16\%$ da amostra de espectros observados, sem correção por volume.

Quanto a excesso de massa observado nas estrelas com $T_{\rm ef} \leq 12000$ K, observe que estas apresentam massa média de $\langle M \rangle = (0.671 \pm 0.213) M_{\odot}$ e as estrelas que mais quentes que $T_{\rm ef} \geq 12000$ K apresentam $\langle M \rangle = (0.573 \pm 0.182) M_{\odot}$. Sendo a diferença em massa de 0.098 M_{\odot} , mostrando que o excesso de massa não pode ser desprezado. Entretanto a teoria de evolução estelar prediz $M_H \sim 10^{-4} M_{\star}$, e a contaminação de hélio nos modelos só passa a ser significativa para $M_H \leq 10^{-10} M_{\star}$.

7.3 Distribuição de massa das 2467 estrelas do dr1 - SDSS

Nesta seção apresentamos uma discussão a respeito da distribuição de massa dos 2467 espectros do SDSS apresentados no capítulo 4. Esta discussão será semelhante à feita para os 170 espectros que observamos ao longo de quase 10 anos.

Nesta amostra de espectros do SDSS, podemos verificar que 463 estrelas apresentam massa inferior $0, 4M_{\odot}$, correspondem a aproximadamente 19% da amostra, ou seja quase o dobro da quantidade de anãs brancas prevista segundo os modelos de evolução estelar de Iben & Tutukov (1987), que prevêm 10% das estrelas anãs brancas são resultado de binárias próximas. Então, a proporção de estrelas DAs com núcleo de He dobrou segundo esta amostra de espectros. Observamos também que temos 442 estrelas com massa maior que $0, 8M_{\odot}$, correspondendo a aproximadamente 18% da amostra, novamente a quantidade média aumentou em

Massa média	σ	Numero de estrelas	critério		
0.654	0.280	466	todas		
0.759	0.321	107	$T_{ m ef} \geq 12000~{ m K}$		
0.617	0.196	332	$8500 \ K \le T_{\rm ef} \le 12000 \ K$		

Tab. 7.3 Massa Média para amostragem de espectros do 2df

relação às previsões dos modelos de evolução estelar.

Esta é uma pequena amostra de todos os 9316 espectros de anãs brancas do catálogo SDSS apresentados por Eisenstein et al. (2006). Vale a pena discutir os resultados apresentados por Kepler et al. (2007), que abordam a distribuição de massa de um total de 7755 espectros de estrelas DAs em obtém uma massa média de $\langle M \rangle = 0.670 \pm 0.007 M_{\odot}$. Quando a amostra é sub-dividida, por exemplo, observando apenas as 2823 estrelas mais brilhante que g=19 e mais quentes que $T_{ef} = 8500 \text{ K}$ a massa média obtida é de $\langle M \rangle = 0.660 \pm 0.003 M_{\odot}$, e como podese perceber, estas médias são significativamente maiores que os resultados de outros trabalhos que mostram o pico em torno de $\langle M \rangle \sim 0.6 M_{\odot}$. Continuando sobre o trabalho de Kepler et al. 2007, observa-se que analisando apenas as estrelas com magnitude g menor que 19 e mais quentes que 12000 K, em número de 1859, a massa média fica em torno de $\langle M \rangle = 0.593 \pm 0.016 M_{\odot}$. Eles também discutem a distribuição de massa das estrelas com $8500~K \le T_{\rm ef} \le 12\,000~K$ em um total de 964 estrelas com $g \leq 19.0$ encontram massa média de $\langle M \rangle = 0.789 \pm 0.005 M_{\odot}$. Mas as massas determinadas pelas cores não apresentam este excesso, para baixas T_{ef} demonstrando que o problema parece ser no cálculo do alargamento das linhas por colisões de átomos neutros (efeitos de Van de Walls) e ionizados nos modelos de atmosfera.

7.4 Distribuição de massa de 466 espectros do catálogo 2df

De forma semelhante às duas seções anteriores, vamos mostrar nesta uma discussão com mais detalhes da amostra de 466 espectros de razão sinal-ruído maior que 10 dos espectros obtidos pelo 2df.

Dentre estes 466 espectros, podemos observar 34 estrelas com massa inferior $0, 4M_{\odot}$, que equivale a aproximadamente 7% da amostra. Dos 466 espectros do 2df, 107 estrelas apresentam massa superior a $0, 8M_{\odot}$, que corresponde a 22% da amostra de estrelas.

Fig. 7.5 Distribuição de massa dos 2253 espectros do SDSS. Massa média obtida é de $(0.613\pm0.269)M_{\odot}$

Fig. 7.6 Distribuição de massa dos espectros do SDSS separados por $T_{\rm ef} \geq 12000$ K e $8\,500 \leq T_{\rm ef} \leq 12000$ K. No painel inferior, apresentamos a distribuição de massa dos 1647 espectros com $T_{\rm ef} \geq 12000~K$. No painel superior mostramos a distribuição de massa dos espectros com $8\,500 \leq T_{\rm ef} \leq 12000~K$.

Fig. 7.7 Distribuição de massa dos 466 melhores espectros do 2df. Massa média obtida é de $(0.654\pm0.242)M_{\odot}$

Fig. 7.8 Distribuição de massa dos espectros do 2df separados por $T_{\rm ef} \geq 12000$ K e $T_{\rm ef} < 12000$ K. No gráfico superior mostramos as estrelas com $T_{\rm ef} < 12000$ K, já no gráfico inferior observamos a distribuição de massa das estrelas mais quentes com $T_{\rm ef} \geq 12000$ K.

Fig. 7.9 Distribuição de massa dos 332 estrelas do 2df classificados com $8\,500~K \le T_{\rm ef} \le 12\,000~K.$

Trabalho	$\langle T_{\rm ef} \rangle$	$\sigma_{T_{ m ef}}$	$\langle \log g \rangle$	$\sigma_{\log g}$	$\langle M \rangle / M_{\odot}$	σ_M/M_{\odot}	Número. Estrelas
BSL	22055	5667	7,909	0,257	0,562	0,137	129
BRB	22394	13496	7,974	0,314	0,603	0,169	52
WK	11663	2189	8,020	0,220	0,580	0,130	70
FKB	39844	14576	7,893	0,325	0,570	0,060	174
MacMahan	19732	17810	7,910	0,402	0,554	0,197	51
VTGD	42849	11742	7,990	0,454	0,653	0,241	92
NGS	37609	10134	8,000	0,327	0,670	0,160	43
Marsh 1997	41187	12583	7,900	0,380	0,644	0,188	89
LBH	26050	15899	7,923	0,313	0,621	0,144	377
BLR	7256	1970	7,911	0,842	0,606	0,199	96
DAs desta Tese	12115	1954	7,989	0,412	0,617	0,196	170
2df	14003	8054	8,066	0,595	0,677	0,238	449
SDSS desta Tese	19251	11427	7,818	0,821	0,613	0,269	2253
Kepler	16764	10471	8,039	0,450	0,664	0,215	7167
Lajoie	32015	19633	7,932	0,313	0,636	0,140	140

Tab. 7.4 Resultados estatísticos obtidos neste trabalho e por outros que tratam da distribuição de massa das anãs brancas.

7.5 Comparação com outras distribuições de massa

Na Fig 7.10, 7.11, 7.12 apresentamos a distribuição de massa da nossa amostra, comparada com a distribuição de massa de outros autores: Kepler et al. (2007; Kepler); Lajoie & Bergeron (2007; LB), Liebert, Bergeron & Holberg (2005; LBH); Bergeron, Leggett & Ruiz (2001; BLR), Bergeron, Saffer & Liebert (1992; BSL), Bragaglia, Renzine & Bergeron (1995; BRB), Weidemann & Koester (1984; WK) e Finley, Koester & Basri (1997; FKB), Napiwotzki, Green & Saffer (1999; NGS), MacMahan (1989), Vennes, Thejll,Galvan, Dupuis (1997; VTGD), Marsh et al.(1997). Os parâmetros estatísticos de cada distribuição de massa determinados por estes autores encontram-se na Tab 7.4

A forma como a massa é determinada pode ser diferenciada em cada trabalho. Nas distribuições de BRB e FKB a massa é determinada através do valor de log g e uma grade de modelos de evolução de anãs brancas calculados por Wood (1995). Estes modelos consideram que a atmosfera da estrela é composta apenas por hidrogênio e a massa máxima de $\sim 1, 2M_{\odot}(\log g = 9)$. Já na distribuição de BSL, a massa também é calculada com auxílio do log g, porém utilizam modelos sem hidrogênio para determinar a massa da estrela, apesar de se tratar de estre-

Fig. 7.10 Esta figura nos mostra uma comparação entre a distribuição de massa dos espectros de alto S/R obtidos para este trabalho (histogramas hachurados) e outras distribuições de massa da literatura (histogramas abertos). WK = Weidemann & Koester (1984); BRB = Bragaglia, Renzine & Bergeron (1995); FKB = Finley, Koester & Basri (1997); BSL = Bergeron, Saffer & Liebert (1992).

Fig. 7.11 Esta figura nos mostra uma comparação entre a distribuição de massa dos espectros de alto S/R obtidos para este trabalho (histogramas hachurados) e outras distribuições de massa da literatura (histogramas abertos). NGS = Napiwotzki, Green & Saffer (1999); Marsh et al.(1997); MacMahan (1989); VTGD = Vennes, Thejll,Galvan, Dupuis (1997).

Fig. 7.12 Esta figura nos mostra uma comparação entre a distribuição de massa dos espectros de alto S/R obtidos para este trabalho (histogramas hachurados) e outras distribuições de massa da literatura (histogramas abertos). BLR = Bergeron, Leggett & Ruiz (2001); LB = Lajoie & Bergeron (2007); LBH = Liebert, Bergeron & Holberg (2004).

Fig. 7.13 Esta figura mostra de outra forma o aumento de massa das estrelas de $8000 K \le T_{\rm ef} \le 12000 K$. No eixo "x"representa a temperatura onde dividimos em intervalos discretos de 14000 K até 8500 K, e determinamos a massa média das estrelas nestes nestes intervalos. Os círculos representam a massa média das estrelas que foram observadas neste projeto e os discos indicam os resultados publicados por Liebert et al. 2005.

las DA. A determinação da massa de WK, a mais antiga, foi feita utilizando os índices de cor fotométricos de Strömgren. A distribuição de massa de MacMahan (1989), consiste de 51 estrelas, em que as estrelas são estudadas via espectroscopia de média resolução, e sua amostra apresenta estrelas com temperaturas variando desde 7000 K até 34000 K. Na amostra de Marsh et al. (1997), os parâmetros atmosféricos também foram calculados a partir de espectros óticos, e utilizando modelos de atmosfera e para o cálculo da massa ele utiliza o modelos de Wood (1992), com superfície de He, mesmo modelo utilizado por BSL em sua análise da distribuição de massa; todas as 89 estrelas desta amostra apresentam temperatura > 20000 K. Na amostra de Vennes et al. (1997) as estrelas também são mais quentes que as deste trabalho, com 25000 K $\leq T_{ef} \leq$ 75000 K, da mesma forma analisadas via espectroscopia ótica e também utilizando os modelos com atmosfera de hélio. Em NGS os parâmetros atmosféricos são calculados com os modelos atmosféricos sem equilíbrio termodinâmico local (NLTE) desenvolvido por Werner (1986); sua amostra de estrelas também é de estrelas mais quentes que a deste trabalho. Napiwotzki et al. 2006 mostra que os efeitos NLTE só são importantes para $T_{\rm ef} > 40\,000$ K. A distribuição LBH inclui todas as estrelas do catálogo Palomar-Green um total de 377 estrelas. Neste caso também foram obtidos espectros óticos com razão sinal-ruído próximo a 100. A distribuição de BRL inclui apenas estrelas frias, esta é a distribuição de massa com menor $T_{\rm ef}$; o trabalho trata de estrelas tanto DAs quanto DBs, porém selecionei apenas as DAs para este trabalho.

Na Tabela 7.5 apresento o valor da massa média para as principais distribuições de massa de anãs brancas separadas por diferentes intervalos de temperatura, estes resultados também podem ser visualizados na figura 7.13, em ambos verificamos que a massa média das estrelas DAs está aumentando entre 14000 K e 8000 K e este aumento não deve ser devido à contaminação por Hélio, pois esta contaminação não deve ocorrer para as massas de H mais espessas que $10^{-10}M_{\star}$. Uma possível explicação pode vir através da forma em que são tratados os átomos neutros (iteração de Van der Walls) nos modelos de atmosfera para estas temperaturas, uma vez que, abaixo de 8 000 K é maior o número de partículas neutras.

Tab. 7.5 Massa média de algumas distribuições separadas em intervalos de temperatura.

	14 000 K	13 000 K	12000 K	11 000 K	10 000 K	9000 K	8000 K
Murillo	0.560	0.576	0.580	0.658	0.712	0.641	0.540
$\sigma_{Murillo}$	0.236	0.155	0.193	0.153	0.202	0.201	0.241
Ν	15	30	33	26	28	19	4
Liebert et al.(2004)	0.610	0.541	0.600	0.665	0.785	0.867	0.707
$\sigma_{Liebert}$	0.159	0.090	0.114	0.165	0.179	0.139	0.104
Ν	17	16	6	13	13	7	6
dr1 (Murillo)	0.488	0.618	0.518	0.540	0.629	0.747	0.748
σ_{dr1}	0.172	0.393	0.199	0.171	0.198	0.342	0.334
Ν	145	144	127	228	204	122	120
dr4 (Kepler 2007)	0.574	0.581	0.616	0.679	0.755	0.795	0.879
σ_{dr4}	0.163	0.142	0.174	0.171	0.175	0.189	0.217
Ν	402	507	453	460	526	606	648

8. FAIXA DE INSTABILIDADE

As estrelas anãs brancas pulsam em 3 diferentes faixas de instabilidade ao longo do diagrama H-R. As chamadas ZZ Ceti ou DAVs encontram-se na faixa de instabilidade mais fria ao longo da seqüência de esfriamento das anãs brancas, e também a mais estreita, com temperaturas entre 10 850 e 12 270 K (Bergeron et al. 1995; Koester & Allard 2000; Mukadam et al. 2004a; Bergeron et al. 2004; Gianninas et al. 2005;2006). Enquanto que as estrelas pulsantes PG1159 encontram-se na parte mais quente, com temperaturas entre 200 000 e 65 000 K (Dreizler et al. 1998; Nagel & Werner 2004; Quiron et al. 2004), ainda existe uma classe intermediária, que são as chamadas DBVs com sua faixa de instabilidade localizada entre 30 000 e 22 000 K (Beauchamp et al. 1999; Castanheira et al. 2005a). Como as estrelas esfriam muito mais lentamente para baixas T_{ef}, a faixa das DAVs (ou ZZ Cetis) dura ~ 10⁹ anos, muito mais do que as DBVs e DOVs, apesar de ser muito mais estreita. A temperatura média desta faixa é de 11 600 K e sua largura é de aproximadamente 1 500 K.

A determinação exata dos extremos da faixa de instabilidade nos permitirá obter informações importantes a respeito da estrutura interna das estrelas ZZ Cetis. Conforme Winget et al. (1982) a localização no plano $T_{\rm ef}$ versus $\log g$ da borda quente (azul) é dependente da eficiência convectiva na zona de ionização parcial do hidrogênio do modelo. Já a localização da borda fria (vermelha) é mais complicada, porém, pode ser compreendia através de um mecanismo capaz de suspender o fenômeno ZZ Ceti. Wu (2001) propõe que a interação das pulsações com a convecção extingua as pulsações.

A determinação precisa da faixa de instabilidade das estrelas ZZ Cetis é de extrema dificuldade; os parâmetros atmosféricos de um objeto podem diferir em mais de 200 K em T_{ef} na literatura. Para os espectros óticos existe uma forte dependência com a grade de modelos; no capítulo 6 mostramos que deve haver uma diferença em torno de 300 K para T_{ef} entre a grade de modelos de D. Koester e P. Bergeron, mesmo com ambos empregando os mesmos parâmetros da teoria de convecção ($ML2/\alpha = 0, 6$). As estrelas ZZ Cetis apresentam grande sensibilidade na determinação dos parâmetros atmosféricos, justamente por localizarem-se na região de máximo alargamento das linhas de Balmer, pequenas diferenças no processo de redução ou calibração por fluxo podem provocar diferenças em T_{ef} maiores que 2000 K. Assim sendo, a pureza e a localização exata no plano T_{ef}

versus $\log g$ da faixa de instabilidade é dependente dos modelos, da redução e também da razão sinal-ruído dos espectros óticos.

O problema da eficiência convectiva na atmosfera das ZZ Ceti foi atacado por Bergeron et al. (1995) que usou observações espectroscópicas na região do ótico e do ultravioleta de todas as estrelas ZZ Cetis conhecidas até então (22) e concluiu que os modelos com parametrização $ML2/\alpha = 0, 6$ na MLT apresentam resultados mais consistentes para observações de espectros na região ótico e ultravioleta, para determinações por paralaxe trigonométrica e desvio gravitacional (red shift); Koester & Vauclair (2001) mostram que os modelos com $ML1/\alpha = 1,75$ produz os mesmos resultados que $ML2/\alpha = 0, 6$. Com o problema da parametrização de eficiência convectiva equacionado, a técnica da espectroscopia ótica usando os perfis de linha de Balmer para determinação de T_{ef} e log g passou a ser a técnica mais utilizada na determinação dos parâmetros atmosféricos das estrelas anãs brancas, principalmente por permitir a determinação simultânea dos parâmetros atmosféricos (T_{ef} e log g). Para que estes resultados sejam de precisão (incerteza menor que 1/3 da faixa de instabilidade), é necessário que os espectros observados apresentem razão Sinal/Ruído > 70.

As previsões teóricas da localização da faixa de instabilidade das ZZ Cetis mostram a forte dependência da borda azul com a eficiência empregada no modelo atmosférico para o transporte de energia (Winget et al. 1981, Bradley & Winget 1994; Brassard et al. 1995). Os modelos de convecção usualmente são descritos através da teoria de comprimento de mistura com escolha arbitrária dos parâmetros a, b e c e a razão de comprimento de mistura frente à altura de escala de pressão. (veja seção 3.1)

As anãs brancas com atmosfera de hidrogênio, DA, que são pulsantes, são chamadas de ZZ Ceti (McGraw 1977; McGraw & Robinson 1977). Suas pulsações ou oscilações acontecem de forma multi-periódica, com períodos conhecidos de 70 segundos até 1500 segundos, e a amplitude de suas pulsações são da ordem de 0.2% até 30%, na sua curva de luz. As pulsações ocorrem por modos-g, provocados por mecanismo $\kappa - \gamma$ em uma zona de convecção devido ao aumento de opacidade provocado pela zona de ionização parcial do hidrogênio, ou por excitação convectiva [Brickhill (1992), Goldreich & Wu 1999, Wu & Goldreich 1999]. Quando a anã branca atinge a temperatura de 12 000 K, a zona de convecção aumenta, facilitando as pulsações.

Dentro da classe das ZZ Ceti, existem diferenças entre aquelas estrelas que são mais quentes e aquelas que são mais frias; estas diferenças podem ser observadas em suas curvas de luz. As estrelas localizadas na chamada borda azul apresentam temperaturas mais elevadas e em suas curvas de luz a amplitude de suas pulsações são $\leq 2\%$ e os períodos são curtos ≤ 300 segundos. Já para as estrelas mais frias, localizadas na chamada borda vermelha, suas curvas de luz apresentam altas amplitudes $\leq 30\%$ e períodos mais longos que 600 segundos. Apesar de tudo, nem
todas as ZZ Cetis da borda fria apresentam amplitudes altas. Temos pelo menos 7 estrelas com períodos longos e amplitudes mais baixas que 10 mma, e além disto a curva de luz destas estrelas não são do tipo senoidal, por causa da distorção provocada pela zona de convecção mais estendida (Brickhill 1992; Wu 2001; Ising & Koester 2001, Montgomery 2004). Outra subdivisão, ou diferenciação na forma da curva de luz ZZ Ceti, pode ser observada nas estrelas de alta massa $\geq 1.0M_{\odot}$; a forma da curva de luz das estrelas deste tipo apresenta distintos períodos por consequência da cristalização do núcleo (Winget et al. 1997; Montgomery & Winget 1999; Metcalfe et al. 2004; Kanaan et al. 2005); as pulsações não podem se propagar no interior de um núcleo cristalizado, provocando então distorções na distribuição de períodos diminuindo a amplitude das pulsações e sua estabilidade; Córsico et al. (2004, 2005) trata modelos evolucionários para as estrelas ZZ Cetis massivas e os efeitos da cristalização sobre as propriedades pulsacionais da estrela BPM 37093.

Nos últimos 3 anos ocorreu uma verdadeira avalanche de novas estrelas ZZ Cetis, a grande maioria selecionadas e testadas fotometricamente a partir do catálogo de espectros óticos do SDSS. Só para se ter idéia, nestes últimos 3 anos praticamente se triplicou o número de novas ZZ Cetis, sendo atualmente de 143 estrelas ZZ Cetis conhecidas, conforme mostra a Tabela 1.2.

A maior parte destas novas ZZ Cetis foi selecionada do SDSS como mencionado acima e, portanto, possuímos seu espectros óticos, porém com Sinal/Ruído baixo. Estas novas ZZ Cetis do SDSS podem ser obtidas na literatura em Mukadam et al. (2004a), Mullally et al. (2005), Kepler et al. (2005) e Castanheira et al. (2006, 2007). A Tabela 8.1 mostra os parâmetros atmosféricos para todas as ZZ Cetis que obtemos espectros, para este trabalho.

8.1 Faixa de instabilidade das estrelas do SDSS

Nesta seção vamos apresentar uma discussão a respeito da faixa de instabilidade determinada pelos espectros óticos das estrelas ZZ Cetis e de outras estrelas que são não variáveis, cujos espectros apresentam razão Sinal/Ruído maior que 40. Estas estrelas são mostradas na Tabelas 8.3 e 8.4.

Na determinação da Faixa de instabilidade das ZZ Cetis, com as estrelas do SDSS publicadas por Mukadam et al. (2004b), Mullally et al. (2005), foram encontradas uma série de estrelas aparentemene **não variáveis** no interior da faixa de instabilidade, o que sugere que a faixa de instabilidade é impura. As determinações dos parâmetros atmosféricos publicadas neste artigo, realizada por Scot Kleinman, foram feitas com a versão 1d_21 da calibração de fluxo do SDSS e são chamadas *auto 21*. Nesta versão, o programa de fitagem dos espectros faz comparação dos espectros observados pelo SDSS com os modelos atmosfera de

Tabela 8.1. Estrelas ZZ Cetis que possuímos espectro ótico para análise estatística da Faixa de Instabilidade da Estrelas DAs; os valores de $T_{ef} e \log(g)$ são determinados usando a técnica de perfil das linhas de Balmer

Coordenadas	Nome	T_{ef}	$\sigma_{T_{ef}}$	$\log(g)$	$\sigma_{\log(g)}$	Massa	σ_{massa}
0018+0031	WD 0018+0031	11465.	332.	7.809	0.010	0.500	0.003
0104-464	BPM 30551	11745.	242.	8.240	0.003	0.749	0.005
0133-116	R 548	11883.	241.	7.763	0.003	0.478	0.006
0145-221	MCT 0145-2211	11104.	188.	8.121	0.029	0.675	0.002
0341-459	BPM 31594	12014.	169.	8.060	0.017	0.643	0.062
0416+272	Hl Tau-76	11720.	995.	7.750	0.000	0.471	0.005
0818+3131	WD 0818+3131	11395.	13.	8.164	0.016	0.701	0.005
0921+354	G 117-B15A	11231.	385.	8.237	0.002	0.746	0.005
0958+0130	WD 0958+0130	11939.	242.	7.938	0.016	0.570	0.001
1015+0306	WD 1015+0306	11521.	177.	7.896	0.037	0.546	0.014
1056-0006	WD 1056-0006	11288.	272.	7.665	0.017	0.430	0.003
1116+026	GD 133	12318.	585.	7.790	0.015	0.492	0.008
1157+0553	WD 1157+0553	11592.	57.	7.965	0.007	0.585	0.003
1222-0243	WD 1222-0243	11586.	34.	8.342	0.015	0.815	0.002
1236-495	BPM 37093	11518.	279.	8.801	0.019	1.093	0.002
1345-0055	WD 1345-0055	11220.	69.	8.070	0.018	0.645	0.003
1350+656	G 238-53	11470.	197.	7.918	0.023	0.558	0.008
1354+0108	WD 1354+0108	11581.	41.	8.118	0.024	0.673	0.004
1401-147	EC 14012-1446	11119.	218.	8.146	0.014	0.689	0.002
1422+095	GD 165	12384.	57.	8.074	0.033	0.649	0.019
1425-811	L 19-2	12348.	273.	8.208	0.017	0.733	0.006
1559+369	R 808	10876.	359.	7.785	0.008	0.485	0.002
1647+591	G 226-29	12237.	91.	8.153	0.031	0.696	0.005
1700+3549	WD 1700+3549	11908.	307.	7.721	0.005	0.458	0.004
1711+6541	WD 1711+6541	10819.	75.	8.453	0.008	0.890	0.004
1714-547	BPM 24754	11282.	331.	8.060	0.017	0.639	0.002
1855+338	G 207-9	11794.	12.	8.393	0.031	0.849	0.007
1935+276	G 185-32	12179.	85.	7.933	0.030	0.568	0.000
1950+250	GD 385	12116.	169.	8.273	0.006	0.772	0.009
2254+126	GD 244	11438.	85.	8.115	0.025	0.671	0.005
2303+242	PG 2303+242	11453.	133.	8.414	0.016	0.864	0.002
2326+049	G 29-38	11482.	267.	7.976	0.007	0.591	0.003
2347+128	G 30-20	11268.	258.	7.943	0.011	0.571	0.006
2348-2424	EC 2348-2424	11883.	215.	8.163	0.022	0.701	0.009

Fig. 8.1 Esta figura mostra a Faixa de instabilidade onde estão sendo mostradas apenas as estrelas que possuímos espectros óticos com S/R > 50. As estrelas ZZ Cetis que definem a faixa de instabilidade são na borda azul **GD133 e GD165** e a borda vermelha é definida pelas estrelas **R808 e EC1402–1446** com $T_{\rm ef}$ e massas, respectivamente, 12318 K, 12384 K, 11089 K, 11119 K e $0.492M_{\odot}$, $0.649M_{\odot}$, $0.620M_{\odot}$, $0.689M_{\odot}$.

D. Koester, incluindo as linhas de Balmer e também o contínuo, e usa como fator de calibração, os índices de cor fotométrica obtidos no projeto SDSS (g, r e i). Um dos problemas enfrentados nesta fase foi o espaçamento em $\log g$ e T_{ef} dos modelos que era muito grande, e por conseqüência não muito preciso.

Uma nova versão de T_{ef} e $\log g$ foi obtida na versão $1d_23$, onde os espectros óticos foram recalibrados em fluxo, e com isso os valores de T_{ef} e $\log g$ paras as estrelas ZZ Cetis do SDSS foram alterados (Kleinman et al. 2004). Mais tarde, Eisenstein et al. (2006), publicaram uma nova versão de parâmetros atmosféricos, onde foram empregados os espectros $1d_23$ para as $10\,000$ estrelas do dr4. Na tabela 8.2 mostramos os diferentes valores de T_{ef} e $\log g$ obtidos com cada uma das versões *auto 21, auto 23* e Eisenstein et al. (2006).

Tabela 8.2.Resultados fornecidos pelos auto 21, auto 23 e auto 22

Nome	T_{ef} auto 21	$\log g$ auto 21	T_{ef} auto 23	$\log g$ auto 23	T_{ef} auto 22	$\log g$ auto 22	g'
WD0018+0031			11696±76	$7.93 {\pm} 0.04$	11756 ± 101	$7.94{\pm}0.05$	
WD0020+0044			9160±10	$9.00 {\pm} 0.01$	9099±11	$8.85 {\pm} 0.02$	
WD0023-0033			15522 ± 81	$8.01 {\pm} 0.02$	15503 ± 86	$8.01 {\pm} 0.02$	
WD0037+0031	10942 ± 45	$8.39 {\pm} 0.03$	10957±48	8.41 ± 0.03	10961 ± 50	$8.43 {\pm} 0.03$	17.48
WD0040-0021	15231±69	$7.79 {\pm} 0.01$	16159±62	$7.88 {\pm} 0.01$	16216±63	$7.88 {\pm} 0.01$	14.83
WD0046+1339			11077±71	$8.31 {\pm} 0.06$	11067 ± 78	$8.29 {\pm} 0.06$	
WD0048+1521			11290±116	$8.23 {\pm} 0.08$	11300 ± 127	$8.23 {\pm} 0.08$	
WD0050-0023	11245 ± 50	$8.79 {\pm} 0.04$	11494±92	$8.98 {\pm} 0.03$	11512 ± 108	$8.97 {\pm} 0.03$	18.81
WD0054-0025			10104±57	$8.02 {\pm} 0.07$	10102 ± 55	$8.02 {\pm} 0.07$	18.55
WD0057+1510			10074 ± 68	$8.16 {\pm} 0.08$	10042 ± 70	$8.13 {\pm} 0.09$	
WD0102-0032	11062 ± 90	$8.16 {\pm} 0.06$	11048 ± 97	$8.26 {\pm} 0.08$	11041 ± 99	$8.23 {\pm} 0.08$	18.21
WD0106-0014	14000 ± 90	$7.57 {\pm} 0.05$	14359±209	$7.50 {\pm} 0.04$	14404 ± 222	$7.50 {\pm} 0.05$	18.18
WD0111+0018	11413 ± 90	$8.16 {\pm} 0.05$	11507 ± 105	$8.26 {\pm} 0.06$	11533 ± 108	$8.26 {\pm} 0.05$	18.76
WD0122+0030			11798±47	$7.87 {\pm} 0.02$	11949±59	$7.86 {\pm} 0.02$	
WD0135-0057	12680 ± 170	$7.61 {\pm} 0.06$	12569 ± 450	$7.80 {\pm} 0.10$	12581 ± 474	$7.81 {\pm} 0.10$	18.52
WD0152+0100	12326 ± 60	$7.82 {\pm} 0.02$	12494±71	$7.84 {\pm} 0.02$	12512±59	$7.83 {\pm} 0.02$	16.43
WD0208+0053			13401 ± 150	7.77 ± 0.02	13447 ± 197	$7.76 {\pm} 0.02$	
WD0210+1243	16828 ± 84	$7.85 {\pm} 0.02$	17155 ± 88	$7.90 {\pm} 0.02$	17219±76	$7.90 {\pm} 0.02$	16.86
WD0214-0823	11494±79	$7.85 {\pm} 0.04$	11565±93	$7.92 {\pm} 0.05$	11565 ± 109	$7.94 {\pm} 0.06$	17.92
WD0215-0015	15160 ± 170	$7.77 {\pm} 0.04$	16149±176	$7.89 {\pm} 0.04$	15721 ± 137	$7.83 {\pm} 0.04$	16.65
WD0217+0058	14150 ± 180	$7.98 {\pm} 0.03$	13596±238	$7.94 {\pm} 0.04$	13782 ± 328	$7.95 {\pm} 0.04$	17.53
WD0221+0049			10608 ± 65	8.21 ± 0.06	10599 ± 62	$8.20 {\pm} 0.06$	
WD0222-0100	12180 ± 420	$7.88 {\pm} 0.08$	12060 ± 118	$8.12 {\pm} 0.05$	12115 ± 122	$8.11 {\pm} 0.05$	18.04
WD0224+0038	9553 ± 67	$8.00 {\pm} 0.01$	9785±76	8.11 ± 0.12	9749±72	$8.08 {\pm} 0.12$	19.05
WD0236-0038	13520 ± 510	$7.97 {\pm} 0.16$	14282 ± 437	$7.65 {\pm} 0.09$	14379 ± 459	$7.66 {\pm} 0.10$	19.25
WD0238+0049	13360 ± 230	$8.01 {\pm} 0.06$	13298±298	$7.88 {\pm} 0.06$	13277 ± 329	$7.89 {\pm} 0.07$	18.79
WD0249-0100			6301±2	8.44 ± 0.41	6301±2	$8.33 {\pm} 0.47$	
WD0257+0046			12215±83	8.01 ± 0.03	12311±84	7.99 ± 0.03	
WD0257+0101	16510 ± 200	8.24 ± 0.03	16579±213	8.29 ± 0.04	16656 ± 204	$8.30 {\pm} 0.08$	17.66
WD0303-0808	11490 ± 120	$8.49 {\pm} 0.05$	11403 ± 114	8.49 ± 0.06	11418 ± 119	$8.50 {\pm} 0.07$	18.78
WD0311-0003			14537±197	8.32 ± 0.04	14454 ± 203	8.31 ± 0.04	
WD0318+0030	11160 ± 67	$8.26 {\pm} 0.05$	11038 ± 65	8.07 ± 0.05	11021 ± 65	8.07 ± 0.05	17.81
WD0318+0044	18560 ± 230	7.92 ± 0.04	18287±239	7.87 ± 0.04	18414 ± 235	$7.88 {\pm} 0.04$	18.35
WD0323+0005			13030 ± 158	7.98 ± 0.04	12970 ± 130	7.99 ± 0.04	
WD0325-0111			18267 ± 86	7.59 ± 0.02	18354 ± 80	7.58 ± 0.02	
WD0326+0018	14130 ± 100	7.85 ± 0.02	12145±79	8.09 ± 0.03	12233 ± 86	8.07 ± 0.03	17.42
WD0329-0007	17140 ± 260	7.92 ± 0.06	16689 ± 332	7.82 ± 0.07	16722 ± 338	7.81 ± 0.07	19.13
WD0330+0024	14130 ± 240	7.85 ± 0.04	14499 ± 596	7.75 ± 0.09	14690 ± 552	7.78 ± 0.09	18.97
WD0332-0057			17476 ± 109	7.77 ± 0.02	17543 ± 116	7.77 ± 0.02	
WD0332-0049	11131±69	8.26 ± 0.05	11041 ± 68	8.25 ± 0.06	11028 ± 70	8.24 ± 0.05	18.18
WD0336-0006	10485 ± 44	8.28 ± 0.04	10396 ± 43	8.26 ± 0.04	10392 ± 43	8.27 ± 0.05	17.93
WD0340+0106	12050 ± 120	8.05 ± 0.04	12063 ± 136	8.06 ± 0.05	12168 ± 144	8.05 ± 0.05	18.23
WD0345-0036	11710 ± 200	7.73 ± 0.07	11426 ± 150	7.76 ± 0.09	11423 ± 171	7.72 ± 0.11	19.00
WD0733+2831	14490 ± 190	7.78 ± 0.05	14609 ± 288	7.80 ± 0.06	14690 ± 283	7.82 ± 0.05	18.83
WD0740+2505	18100 ± 160	8.22 ± 0.03	18550 ± 191	8.28 ± 0.04	18598 ± 199	8.27 ± 0.04	17.83
WD0/46+3510	16519±54	7.92 ± 0.01		5 0 0 1 0 00			16.69
WD0747+2503	11170 ± 110	7.86 ± 0.06	11053 ± 114	7.93 ± 0.08	11016 ± 104	7.93 ± 0.08	18.39
WD0751+4335	18650 ± 170	8.04 ± 0.03	19325 ± 200	8.11 ± 0.03	19407±194	8.12 ± 0.03	18.38
WD0753+3543	16660 ± 190	8.28±0.04	16617 ± 236	8.28 ± 0.04	16656 ± 231	8.29±0.04	18.46
WD0756+2020	15200 100	7 75 1 0 05	11713±109	8.01±0.06	11765 ± 140	8.03±0.06	10.72
WD0756+3803	15380 ± 190	7.75 ± 0.05	16036 ± 250	7.84 ± 0.05	15990 ± 249	7.83±0.05	18.72
WD0814+4608	11220 ± 430	8.04 ± 0.12	14445 ± 232	7.60±0.06	14613 ± 242	/.63±0.06	17.79
wD0816+3307	15460 ± 150	1.77 ± 0.03	15455±204	1.15 ± 0.04	154/4±181	/./5±0.04	17.78

Nome	T_{ef} auto 21	$\log g$ auto 21	T_{ef} auto 23	$\log g$ auto 23	T_{ef} auto 22	$\log g$ auto 22	g'
WD0818+3131			11801+77	8.07+0.03	11881+98	8.08 ± 0.03	
WD0815+4437	11340 ± 130	8.21 ± 0.07	11616 ± 171	7.93 ± 0.09	11637 ± 191	7.93 ± 0.10	19.30
WD0825+0329			11801 ± 105	8.33±0.04	11828 ± 97	8.31±0.04	
WD0825+4119	11910 ± 160	$8.39 {\pm} 0.05$	11817 ± 166	8.49 ± 0.06	11853 ± 145	8.50 ± 0.06	18.50
WD0827+4224	16201 ± 89	7.91 ± 0.02	16412 ± 91	7.92 ± 0.02	16412 ± 91	7.92 ± 0.02	17.44
WD0842+3707	11870 ± 150	7.42 ± 0.07	11715 ± 166	7.73 ± 0.08	11778 ± 176	7.70 ± 0.09	18.75
WDJ0843+0431			11250 ± 63	$8.18 {\pm} 0.04$	11258 ± 65	$8.18 {\pm} 0.04$	
WD0847+4510	11850 ± 110	$7.88 {\pm} 0.05$	11683 ± 114	$8.00 {\pm} 0.07$	11713 ± 131	$8.02 {\pm} 0.07$	18.32
WD0851+0605			11306 ± 48	8.11±0.03	11306 ± 48	8.12 ± 0.03	
WD0853+0005	11680 ± 92	$8.04{\pm}0.05$	11748 ± 112	8.11 ± 0.06	11806 ± 124	8.12 ± 0.06	18.23
WD0906-0024	11610 ± 86	$7.90 {\pm} 0.05$	11520 ± 87	$8.00 {\pm} 0.06$	11509 ± 89	$8.03 {\pm} 0.06$	17.73
WD0911+0310			11634 ± 126	$8.11 {\pm} 0.08$	11667 ± 135	$8.12 {\pm} 0.08$	
WD0913+4036			11677 ± 78	$7.87 {\pm} 0.04$	11740 ± 98	$7.86 {\pm} 0.05$	
WD0917+0926			11341±64	$8.15 {\pm} 0.04$	11349±69	$8.16 {\pm} 0.04$	
WD0939+5609	11660 ± 110	$7.95 {\pm} 0.06$	11787±163	$8.22 {\pm} 0.07$	11817 ± 161	$8.22 {\pm} 0.07$	18.70
WD0942+5733	11183 ± 60	$8.00 {\pm} 0.05$	11260 ± 65	$8.27 {\pm} 0.05$	11270 ± 71	$8.26 {\pm} 0.05$	17.43
WD0946+5814	9091 ± 21	$8.35 {\pm} 0.04$	8938±22	$8.26 {\pm} 0.04$	8970±22	$8.29 {\pm} 0.04$	17.39
WD0949-0000	$11280{\pm}140$	$7.98 {\pm} 0.07$	11178±134	$8.22 {\pm} 0.11$	11173±146	8.22 ± 0.11	18.80
WD0949-0019	10751 ± 28	$8.15 {\pm} 0.06$	10707 ± 30	$8.15 {\pm} 0.03$	10705 ± 30	$8.15 {\pm} 0.03$	16.51
WD0953-0051	10602 ± 87	$8.44 {\pm} 0.07$	10687 ± 104	$8.64 {\pm} 0.11$	10692 ± 98	$8.70 {\pm} 0.10$	18.85
WD0958+0130	11778 ± 55	$7.97 {\pm} 0.03$	11677±57	$7.99 {\pm} 0.03$	11705 ± 76	$8.01 {\pm} 0.03$	16.70
WD1002+5818			11707±131	$7.92 {\pm} 0.07$	11784 ± 165	$7.93 {\pm} 0.08$	
WD1007+5245			11426 ± 130	$8.08{\pm}0.08$	11426 ± 132	$8.11 {\pm} 0.08$	
WD1012+6108			11842 ± 131	$8.39 {\pm} 0.04$	11853 ± 106	$8.38 {\pm} 0.05$	
WD1015+0306	11688 ± 33	$8.09 {\pm} 0.01$	11584 ± 32	$8.14 {\pm} 0.01$	11605 ± 32	$8.15 {\pm} 0.01$	15.66
WD1015+5954	11672 ± 92	$7.56 {\pm} 0.06$	11626 ± 110	$8.02 {\pm} 0.06$	11645 ± 132	$8.06 {\pm} 0.06$	17.95
WD1019+0000	12510 ± 140	$8.16 {\pm} 0.05$	12747 ± 142	$8.30 {\pm} 0.06$	12802 ± 153	$8.29 {\pm} 0.06$	18.16
WD1031+6122	11440 ± 120	$7.27 {\pm} 0.07$	11481 ± 178	$7.68 {\pm} 0.12$	11512 ± 195	$7.64 {\pm} 0.13$	18.71
WD1045-0018			9540 ± 42	$8.09 {\pm} 0.06$	9578±38	$8.18 {\pm} 0.05$	18.36
WD1054+5307			11118 ± 76	$8.01 {\pm} 0.05$	11094 ± 73	$8.02 {\pm} 0.05$	
WD1056-0006	11087 ± 51	$7.85 {\pm} 0.03$	11016 ± 51	$7.86 {\pm} 0.03$	10983 ± 43	$7.86 {\pm} 0.03$	17.52
WD1103+0037	10611 ± 47	8.27 ± 0.04	10537 ± 48	$8.22 {\pm} 0.05$	10531 ± 48	8.22 ± 0.05	17.64
WD1105+0016	12844 ± 62	8.21 ± 0.02	12847 ± 59	$8.26 {\pm} 0.02$	12930±63	8.24 ± 0.02	15.20
WD1106+0005			10990 ± 62	$8.09 {\pm} 0.05$	10971 ± 62	$8.08 {\pm} 0.05$	
WD1122+0358	11099 ± 99	7.93 ± 0.05	11072 ± 80	$8.06 {\pm} 0.06$	11057 ± 78	$8.06 {\pm} 0.06$	18.13
WD1125+0345	11610 ± 100	$7.89 {\pm} 0.05$	11600 ± 123	7.99 ± 0.07	11618 ± 147	8.02 ± 0.07	18.07
WD1126+5144	12390 ± 170	8.01 ± 0.07	11898 ± 149	8.03 ± 0.07	11986 ± 171	8.03 ± 0.07	18.41
WD1136-0136	11803 ± 75	7.98 ± 0.03	11707 ± 73	7.96 ± 0.04	11773 ± 107	7.97 ± 0.04	17.76
WD1138+6239	14860 ± 140	7.90 ± 0.04	14651 ± 234	7.89 ± 0.05	14694 ± 214	7.90 ± 0.05	18.38
WD1141+0420			11520 ± 187	7.53 ± 0.13	11562 ± 143	7.46 ± 0.10	
WD1157+0553	11074 ± 49	8.11 ± 0.04	11053 ± 53	8.15 ± 0.04	11045 ± 56	8.15 ± 0.04	17.59
WD1216+0922			11293 ± 109	8.29 ± 0.08	11303 ± 117	8.27 ± 0.07	
WD1216+6158	12290 ± 140	8.20 ± 0.05	12195 ± 183	8.19 ± 0.07	12230 ± 190	8.16 ± 0.07	18.19
WD1218+0042			11123 ± 93	8.16 ± 0.07	11123 ± 98	8.15 ± 0.06	
WD1222-0243			11398 ± 44	8.35 ± 0.03	11431 ± 49	8.33 ± 0.03	
WD1229-0017	13590 ± 120	7.89 ± 0.03	13163 ± 175	7.89 ± 0.04	13060 ± 179	7.89 ± 0.04	17.36
WD1235+5206	12560 ± 150	7.93 ± 0.05	12142±99	8.06 ± 0.04	12263 ± 98	8.03 ± 0.04	16.87
WD1243+6248	12210 ± 130	7.72 ± 0.06	11994 ± 126	8.05 ± 0.06	12083 ± 145	8.04 ± 0.06	17.85
WD1255+0211			11385±154	8.16±0.11	11395 ± 160	8.17±0.10	
WD1257+0124			11523±158	8.34 ± 0.09	11560±159	8.33 ± 0.08	
wD1301+0004	10(00 20	0.00 1.0.00	10985 ± 31	8.10 ± 0.02	10973 ± 29	8.09 ± 0.02	16.55
wD1302-0050	10690 ± 30	8.28±0.02	10635 ± 27	8.30 ± 0.02	10628 ± 29	8.31 ± 0.02	16.55
WD1510-0159			10992±05	7.92±0.05	1093/±3/	7.92±0.05	

Tabela 8.2 (continuação)

Nome	T_{ef} auto 21	$\log g$ auto 21	T_{ef} auto 23	$\log g$ auto 23	T_{ef} auto 22	$\log g$ auto 22	g'
WD1315-0131	12800±150	$7.80 {\pm} 0.05$	12553±206	$8.12 {\pm} 0.08$	12575±191	$8.09 {\pm} 0.07$	18.24
WD1337+0104			11533 ± 156	$8.55 {\pm} 0.08$	11557 ± 172	8.56 ± 0.09	
WD1338-0023	11887 ± 70	$8.07 {\pm} 0.03$	11653 ± 86	$8.08 {\pm} 0.05$	11680 ± 95	$8.10 {\pm} 0.05$	17.09
WD1342-0159	11340 ± 140	$8.10 {\pm} 0.08$	11323 ± 158	$8.42 {\pm} 0.09$	11351 ± 169	8.41 ± 0.09	18.80
WD1345-0055	11820 ± 53	$8.07 {\pm} 0.02$	11795 ± 58	$8.04 {\pm} 0.03$	11890 ± 81	$8.05 {\pm} 0.03$	16.70
WD1345+0328	11570 ± 120	$7.85 {\pm} 0.06$	11624 ± 142	$7.80 {\pm} 0.08$	11656 ± 164	7.79 ± 0.09	18.58
WD1354+0108	11702 ± 46	$8.03 {\pm} 0.02$	11702 ± 49	$8.00 {\pm} 0.02$	11743 ± 66	$8.02 {\pm} 0.02$	16.36
WD1355+5454			11576 ± 144	$7.95 {\pm} 0.08$	11592 ± 155	7.96 ± 0.09	
WD1400+6431			10995 ± 53	$8.08 {\pm} 0.04$	10980 ± 53	$8.07 {\pm} 0.04$	
WD1408+0445			10938 ± 64	$8.06 {\pm} 0.04$	10930 ± 62	$8.06 {\pm} 0.04$	
WD1417+0058	11385 ± 80	$8.03 {\pm} 0.04$	11295 ± 84	$8.04 {\pm} 0.05$	11275 ± 83	$8.06 {\pm} 0.05$	18.03
WD1431-0012	12320 ± 160	$7.92 {\pm} 0.05$	12203 ± 177	$7.92 {\pm} 0.07$	12275 ± 158	$7.92 {\pm} 0.06$	18.40
WD1432+0146	11255 ± 73	$8.05 {\pm} 0.05$	11290 ± 73	$8.23 {\pm} 0.06$	11318 ± 86	$8.22 {\pm} 0.05$	17.49
WD1443-0006	$11930{\pm}120$	$7.95 {\pm} 0.05$	11957 ± 148	$7.87 {\pm} 0.07$	12043 ± 158	$7.87 {\pm} 0.07$	18.66
WD1443+0134	10430 ± 100	$7.70 {\pm} 0.09$	$10834{\pm}154$	$8.15 {\pm} 0.20$	10841 ± 156	$8.14{\pm}0.22$	18.72
WD1444-0059	12606 ± 66	$8.34 {\pm} 0.02$	15745 ± 74	$8.05 {\pm} 0.02$	15794 ± 74	$8.05 {\pm} 0.02$	16.22
WD1450+5543	10886 ± 42	$8.08 {\pm} 0.03$	15013 ± 121	$7.48 {\pm} 0.03$	15022 ± 116	$7.46 {\pm} 0.03$	17.21
WD1502-0001	11116±96	$8.18 {\pm} 0.06$	11200 ± 117	$8.00 {\pm} 0.08$	11175 ± 116	$8.01 {\pm} 0.08$	18.68
WD1503-0052	11560 ± 110	$8.18 {\pm} 0.06$	11602 ± 126	$8.21 {\pm} 0.07$	11637 ± 129	$8.21 {\pm} 0.06$	18.39
WD1529+0020	10413 ± 49	$8.54 {\pm} 0.04$	10489 ± 61	$7.91 {\pm} 0.06$	10511 ± 59	$7.89 {\pm} 0.06$	18.21
WD1545+0321	15150 ± 230	$7.88 {\pm} 0.05$	15045 ± 386	$7.88 {\pm} 0.07$	15126 ± 345	$7.90 {\pm} 0.07$	18.76
WD1533-0206			11303 ± 38	$8.18 {\pm} 0.02$	11311 ± 38	$8.18 {\pm} 0.02$	
WD1617+4324	11336 ± 92	$7.86 {\pm} 0.05$	11190 ± 97	$8.03 {\pm} 0.07$	11165 ± 96	$8.04 {\pm} 0.07$	18.33
WD1618-0023			10855 ± 164	$8.16 {\pm} 0.12$	10834 ± 165	$8.15 {\pm} 0.12$	
WD1642+3824	17960 ± 130	$8.32 {\pm} 0.03$	18813 ± 204	$8.40 {\pm} 0.03$	18919 ± 206	8.41 ± 0.04	17.98
WD1651+6334	$14730{\pm}140$	$7.80 {\pm} 0.03$	14189 ± 148	$7.68 {\pm} 0.03$	14298 ± 170	$7.70 {\pm} 0.04$	18.21
WD1653+6254	13630 ± 160	$8.03 {\pm} 0.04$	13225 ± 174	7.94 ± 0.04	13239 ± 170	$7.93 {\pm} 0.05$	18.71
WD1657+6244	13930 ± 170	$7.81 {\pm} 0.04$	13607 ± 253	7.77 ± 0.05	13718 ± 299	$7.78 {\pm} 0.05$	18.87
WD1658+3638	10762 ± 83	8.00 ± 0.07	11111 ± 118	$8.36 {\pm} 0.08$	11121 ± 125	$8.36 {\pm} 0.09$	19.15
WD1659+6209	12368 ± 73	8.04 ± 0.03	12405 ± 76	8.11 ± 0.02	12463 ± 77	8.09 ± 0.02	17.88
WD1700+3549	11237 ± 55	7.95 ± 0.03	11155 ± 54	8.04 ± 0.04	11136 ± 54	8.05 ± 0.04	17.26
WD1706+6316	13006 ± 87	8.52 ± 0.03	10405 ± 28	8.17 ± 0.03	10400 ± 26	8.17 ± 0.03	17.72
WD1711+6541	11392 ± 44	8.60 ± 0.02	11313 ± 43	8.64 ± 0.03	11300 ± 46	8.68 ± 0.03	16.89
WD1717+3026			11637 ± 54	8.13 ± 0.02	11656 ± 54	8.15 ± 0.02	
WD1717+6031	13740 ± 260	8.27 ± 0.10	13711 ± 481	8.17 ± 0.14	13703 ± 451	8.17 ± 0.14	19.41
WD1718+5621	13860 ± 130	7.90 ± 0.02	12811 ± 88	8.12 ± 0.03	12789 ± 62	8.10 ± 0.02	17.47
WD1718+5909	12950 ± 280	8.13 ± 0.09	12432 ± 350	7.94 ± 0.11	12454 ± 292	7.95 ± 0.10	18.64
WD1720+6350	11330 ± 100	8.67 ± 0.07	11694 ± 171	8.08 ± 0.09	11748 ± 192	8.09 ± 0.09	18.63
WD1723+5546		0.00 1.0.04	11726 ± 117	8.07 ± 0.06	11795 ± 146	8.10 ± 0.06	18.91
WD1724+5835	11565 ± 74	8.03 ± 0.04	11544 ± 82	7.89 ± 0.05	11533 ± 103	7.92 ± 0.06	17.54
WD1724+6205	13050 ± 280	7.78 ± 0.08	13585 ± 300	7.81±0.06	$1364/\pm 336$	7.81±0.06	18.41
WD1724+6323	15750 ± 210	7.98±0.07	14529 ± 394	7.79 ± 0.09	14558 ± 404	7.80 ± 0.09	19.01
WD1726+5331	11000 ± 96	8.12 ± 0.07	11002 ± 106	8.23 ± 0.08	11009 ± 108	8.23 ± 0.09	18.75
WD1726+5518	13440 ± 220	7.71 ± 0.08	12834 ± 356	7.69 ± 0.11	12789 ± 341	7.68 ± 0.11	19.69
WD1732+5905	11160±99	8.20 ± 0.08	10862 ± 101	7.99 ± 0.08	10862 ± 96	7.99 ± 0.08	18.74
WD1735+5356	13250 ± 280	7.84 ± 0.07	12940 ± 282	7.85 ± 0.07	12900 ± 274	7.85 ± 0.07	18.65
WD1735+5730	$139/0\pm160$	7.89±0.02	13408 ± 164	7.86 ± 0.03	$1303/\pm 307$	7.91 ± 0.04	16.51
WD1/3/+5844			11195 ± 224	7.79 ± 0.14	11148 ± 232	7.77 ± 0.15	
WD2128-0007			11439 ± 101	0.29 ± 0.07	11481 ± 110 11180 ± 114	0.20 ± 0.07	
WD2155-0745			11188 ± 117	/.0/±0.09	11180 ± 114 12022 + 141	/.03±0.09	
WD2155-0/51			11920 ± 127	0.0/±0.00	12023 ± 141	0.01 ± 0.00	
WD2155+1258			12332 ± 200 11705 ± 160	0.11 ± 0.07	12441 ± 387 11740 ± 150	0.09 ± 0.07	
WD2139+1322			11/03±100	0.01±0.07	11/40±159	0.04±0.07	

Tabela 8.2 (continuação)

Tabela 8.2 (continuação)

Nome	T_{ef} auto 21	$\log g$ auto 21	T_{ef} auto 23	$\log g$ auto 23	T_{ef} auto 22	$\log g$ auto 22	g'
WD2214-0025			11439±78	8.33±0.05	11478±84	$8.32 {\pm} 0.04$	
WD2222+1238			13888 ± 142	$7.58 {\pm} 0.03$	13919±169	$7.58 {\pm} 0.03$	
WD2231+1346			$11084{\pm}102$	$7.95 {\pm} 0.06$	11050±92	$7.96 {\pm} 0.07$	
WD2252+1436			17027±219	$7.86 {\pm} 0.04$	17096±226	$7.86 {\pm} 0.04$	
WD2307-0847			11055 ± 107	$8.19 {\pm} 0.09$	11048 ± 109	$8.19 {\pm} 0.08$	
WD2311+1424			12475 ± 170	$8.01 {\pm} 0.06$	12509 ± 146	$7.99 {\pm} 0.05$	
WD2326-0023	10635 ± 45	$8.28 {\pm} 0.04$	10622 ± 47	$8.33 {\pm} 0.04$	10619 ± 47	$8.35 {\pm} 0.05$	17.52
WD2334-0014	12590 ± 180	$7.96 {\pm} 0.06$	13365 ± 248	$7.86 {\pm} 0.05$	13326±314	$7.85 {\pm} 0.05$	18.83
WD2336-0051	12510 ± 140	$7.73 {\pm} 0.05$	13249 ± 247	$7.86 {\pm} 0.05$	13211±274	$7.86 {\pm} 0.06$	18.28
WD2337-1041			16164 ± 109	$7.89 {\pm} 0.02$	16159±119	$7.89 {\pm} 0.02$	
WD2341+0032	13180 ± 170	$7.85 {\pm} 0.04$	13383 ± 330	$7.90 {\pm} 0.08$	13394±363	$7.90 {\pm} 0.08$	19.16
WD2341-0109	12750±110	$7.85 {\pm} 0.04$	13088±173	$7.92 {\pm} 0.04$	12960±157	$7.93 {\pm} 0.04$	18.04
WD2346-0037	13250 ± 290	$7.92 {\pm} 0.06$	12983±334	$7.97 {\pm} 0.08$	12907±307	$7.98 {\pm} 0.08$	18.34
WD2350-0054	10254 ± 56	$7.85{\pm}0.07$	10351 ± 60	$8.31 {\pm} 0.06$	10353 ± 60	$8.33 {\pm} 0.07$	18.10

Fig. 8.2 Esta figura mostra a comparação entre os valores de $T_{ef} e \log g$ publicados por Eisenstein et al. (2006) e Kleinman et al. (2004).

Fig. 8.3 Esta figura mostra a comparação entre os valores de T_{ef} e $\log g$ obtido com os programas LPT e auto 21 .

Fig. 8.4 Esta figura mostra a comparação entre os valores de T_{ef} e $\log g$ obtido com os programas LPT e auto 23 .

Fig. 8.5 Esta figura mostra a comparação entre os valores de T_{ef} e $\log g$ obtido com os programas **auto 22** Eisenstein et al. 2006.

Fig. 8.6 Esta figura mostra a faixa de instabilidade determinada utilizando os valores determinados por Eisenstein et al. (2006). Observe que com as 68 estrelas detectadas pelo SDSS, a faixa de instabilidade não é pura, em desacordo com as determinações por Bergeron et al. (2004) e Gianninas et al. (2005). Com estas determinações, dentro da faixa de instabilidade surgem algumas estrelas não-variáveis que Mukadam et al. (2004a) e Mullally et al. (2005) classificaram como NOV (Not Observed Variation). Algumas destas estrelas classificadas como NOV foram novamente observadas e classificadas como DAV [Castanheira et al. (2007a)]

Fig. 8.7 Esta figura mostra a Faixa de instabilidade empírica com todas as estrelas que observamos seus espectros e as estrelas do SDSS que temos feita a fotometria de séries temporais. Quando incluímos as estrelas do SDSS a faixa de instabilidade torna-se impura, devido às determinações imprecisas de $T_{\rm ef}$ e log g para os espectros de baixa razão sinal-ruído, e aos limites de detecção acima de 3 mma.

Tabela 8.3. Espectros do SDSS na região do ótico para análise estatística da Faixa de Instabilidade, com parâmetros atmosféricos calculados com perfíl de linhas de Balmer.

Nome	$T_{\rm ef}$	$\sigma_{T_{ m ef}}$	$\log(g)$	$\sigma_{\log(g)}$	Massa	σ_{massa}	Classificação Fotométrica
WD0000-0046	10857.	187.	8.611	0.010	0.988	0.001	ZZ Ceti
WD0018+0031	11465.	332.	7.809	0.010	0.500	0.003	ZZ Ceti
WD0023-0033	14693.	737.	8.027	0.009	0.627	0.003	N. V.
WD0040-0021	12641.	227.	8.047	0.015	0.634	0.014	N. V.
WD0048+1521	11290.	633.	8.276	0.003	0.771	0.005	ZZ Ceti
WD0050-0024	12666	340	7.673	0.008	0.438	0.004	NV
WD0054-0025	15927	303	7 427	0.008	0.359	0.001	N V
WD0055+0635	11025	192	8 281	0.005	0 774	0.005	N V
WD0102-0032	12632	868	7 513	0.001	0.372	0.005	ZZ Ceti
WD0111+0018	11118	663	7 993	0.001	0.600	0.004	ZZ Ceti
WD0122+0030	11655	187	7 840	0.001	0.517	0.009	N V
WD0208+0053	15061	706	7.040	0.020	0.317	0.001	N V
WD0214-0823	11571	217	7 700	0.007	0.400	0.001	77 Ceti
WD0214-0025	14414	54	7 873	0.007	0.475	0.002	N V
WD0213-0015	14414.	720	7.023	0.010	0.515	0.002	N. V.
WD0222-0100	0461	759.	1.992 8.266	0.001	0.002	0.004	IN. V.
WD0224+0038	9401. 15106	239.	0.200 7.670	0.001	0.701	0.004	IN. V.
WD0303+0808	13160.	1070	7.079 9.24C	0.008	0.447	0.001	
WD0311-0003	14348.	1272.	8.240	0.001	0.757	0.001	N. V.
WD0318+0030	13000.	2.	8.180	0.009	0./14	0.001	ZZ Ceti
WD0325-0111	10320.	130.	8.087	0.017	0.652	0.001	N. V.
WD0329-0007	9742.	48.	7.917	0.007	0.553	0.001	N. V.
WD0332-0049	10866.	534.	7.495	0.001	0.358	0.001	ZZ Ceti
WD0/33+2831	15017.	/6.	7.825	0.008	0.517	0.001	N. V.
WD0/40+2505	16/66.	146.	8.278	0.004	0.781	0.001	N. V.
WD0/4/+2503	11089.	301.	7.642	0.011	0.419	0.002	N. V.
WD0753+3543	13570.	92.	8.141	0.012	0.692	0.002	N. V.
WD0756+2020	11705.	306.	8.573	0.008	0.967	0.001	ZZ Ceti
WD0815+4437	11670.	1184.	7.247	0.000	0.296	0.003	ZZ Ceti
WD0816+3307	16546.	255.	7.956	0.005	0.591	0.001	N. V.
WD0818+3131	11395.	13.	8.164	0.016	0.701	0.005	ZZ Ceti
WD0825+0329	11361.	248.	8.041	0.005	0.628	0.002	N. V.
WD0825+4119	10842.	290.	8.472	0.003	0.903	0.002	N. V.
WD0827+4224	16346.	349.	7.812	0.015	0.514	0.001	N. V.
WD0842+3707	10317.	349.	7.388	0.011	0.327	0.002	ZZ Ceti
WD0843+0431	11921.	218.	8.340	0.013	0.814	0.004	ZZ Ceti
WD0847+4510	10871.	414.	7.727	0.003	0.457	0.001	ZZ Ceti
WD0851+0605	12280.	214.	7.896	0.021	0.547	0.001	ZZ Ceti
WD0906-0024	13689.	310.	8.082	0.011	0.657	0.001	ZZ Ceti
WD0911+0310	11517.	274.	8.095	0.010	0.660	0.002	ZZ Ceti
WD0913+4036	11745.	469.	7.788	0.006	0.490	0.004	ZZ Ceti
WD0916+3855	11285.	278.	7.939	0.015	0.569	0.008	N. V.
WD0917+0926	14200.	2.	7.560	0.011	0.397	0.008	ZZ Ceti
WD0923+0120	12202.	7.	8.414	0.011	0.865	0.006	N. V.
WD0939+5609	10279.	403.	7.765	0.001	0.473	0.002	ZZ Ceti
WD0942+5733	11902.	840.	7.981	0.003	0.595	0.002	ZZ Ceti
WD0949-0000	13600.	2.	8.069	0.006	0.649	0.002	ZZ Ceti
WD0958+0130	11939.	242.	7.938	0.016	0.570	0.001	ZZ Ceti
WD1002+5818	13000.	1.	7.599	0.013	0.408	0.001	ZZ Ceti
WD1007+5245	10494.	338.	7.805	0.006	0.494	0.002	ZZ Ceti
WD1012+6108	13069.	1042.	8.261	0.002	0.765	0.002	N. V.
WD1015+0306	11521.	177.	7.896	0.037	0.546	0.014	ZZ Ceti
WD1015+5954	12156.	167.	8.085	0.011	0.655	0.006	ZZ Ceti
WD1019+0000	12703.	898.	7.974	0.003	0.593	0.006	N. V.

Nome	$T_{\rm ef}$	$\sigma_{T_{ m ef}}$	$\log(g)$	$\sigma_{\log(g)}$	Massa	σ_{massa}	Classificação Fotométrica
WD1031+6122	12350.	193.	7.605	0.011	0.407	0.006	N. V.
WD1045-0018	10723.	202.	8.401	0.012	0.854	0.006	N. V.
WD1054+5307	11287.	597.	8.240	0.001	0.748	0.005	ZZ Ceti
WD1056-0006	11288.	272.	7.665	0.017	0.430	0.003	ZZ Ceti
WD1105+0016	12968.	131.	8.064	0.026	0.645	0.005	N. V.
WD1106+0115	10777.	474.	7.739	0.001	0.462	0.001	ZZ Ceti
WD1122+0358	11123.	224.	7.851	0.013	0.520	0.002	ZZ Ceti
WD1125+0345	11734.	324.	7.609	0.014	0.407	0.001	ZZ Ceti
WD1126+5144	12656.	403.	7.800	0.006	0.499	0.001	N. V.
WD1136-0136	11143.	514.	7.465	0.006	0.351	0.001	N. V.
WD1138+6239	13295.	642.	7.721	0.004	0.463	0.001	N. V.
WD1141+0420	11538.	407.	7.345	0.012	0.321	0.004	N. V.
WD1157+0553	11592.	57.	7.965	0.007	0.585	0.003	ZZ Ceti
WD1216+0922	11110.	309.	8.071	0.008	0.645	0.002	ZZ Ceti
WD1216+6158	12350.	191.	8.176	0.008	0.710	0.002	N. V.
WD1218+0042	10795.	16.	8.342	0.009	0.814	0.003	ZZ Ceti
WD1222-0243	11586.	34.	8.342	0.015	0.815	0.002	ZZ Ceti
WD1235+5206	11928.	228.	8.178	0.012	0.710	0.005	N. V.
WD1243+6248	10995.	35.	7.960	0.005	0.581	0.004	N. V.
WD1255+0211	12400.	0.	8.854	0.009	1.093	0.004	ZZ Ceti
WD1257+0124	9975.	133.	7.573	0.007	0.385	0.002	ZZ Ceti
WD1301-0107	10844.	202.	8.054	0.011	0.635	0.007	ZZ Ceti
WD1310-0159	10060.	141.	7.668	0.010	0.427	0.003	ZZ Ceti
WD1337+0104	11402.	41.	8.269	0.002	0.767	0.003	ZZ Ceti
WD1338-0023	12560.	145.	7.846	0.018	0.522	0.001	ZZ Ceti
WD1342-0159	12272.	356.	7.603	0.010	0.406	0.001	N. V.
WD1345-0055	11220.	69.	8.070	0.018	0.645	0.003	ZZ Ceti
WD1354+0108	11581.	41.	8.118	0.024	0.673	0.004	ZZ Ceti
WD1355+5454	14379.	139.	7.443	0.006	0.359	0.004	ZZ Ceti
WD1417+0058	10631.	381.	7.744	0.001	0.464	0.002	ZZ Ceti
WD1443+0134	13884.	299.	7.402	0.009	0.347	0.002	ZZ Ceti
WD1450+5543	15151.	287.	7.572	0.013	0.402	0.002	N. V.
WD1502-0001	12250.	268.	7.580	0.009	0.396	0.004	ZZ Ceti
WD1529+0020	13049.	225.	7.700	0.007	0.452	0.004	N. V.
WD1533-0206	10999.	3.	8.101	0.024	0.663	0.004	ZZ Ceti
WD1617+4324	11874.	271.	7.642	0.014	0.422	0.004	ZZ Ceti
WD1618-0023	9550.	545.	8.540	0.003	0.944	0.004	N. V.
WD1642+3824	11017.	40.	8.852	0.013	1.275	0.004	N. V.
WD1644+3521	12519.	446.	7.929	0.007	0.566	0.001	N. V.
WD1659+6209	11908.	181.	8.143	0.029	0.689	0.010	N. V.
WD1700+3549	11908.	707.	7.721	0.005	0.458	0.004	ZZ Ceti
WD1711+6541	10819.	75.	8.453	0.008	0.890	0.004	ZZ Ceti
WD1717+3026	11346.	594.	8.010	0.002	0.611	0.003	N. V.
WD1720+6350	14210.	40.	7.603	0.010	0.414	0.002	N. V.
WD1724+5835	11029	570	7.515	0.002	0.366	0.002	ZZ Ceti
WD1732+5905	10200	1	7.899	0.009	0.544	0.001	ZZ Ceti
WD1735+5356	13433	95	7.626	0.014	0.421	0.002	N V
WD2128-0007	12967	1339	8.000	0.000	0.609	0.004	ZZ Ceti
WD2135-0743	10550	528.	7.510	0.001	0.362	0.001	ZZ Ceti
WD2147-0013	11996	24	7.634	0.010	0.418	0.001	N V
WD2153-0731	12954	140	8 108	0.014	0.410	0.001	ZZ Ceti
WD2155+1238	11732	456	7.959	0.005	0.582	0.002	N V
WD2159+1322	13046	590	8.271	0.002	0.771	0.003	ZZ Ceti
WD2157T1522	15040.	570.	0.271	0.002	0.771	0.005	

Tabela 8.3 (continuação)

Tabela 8.3 (continuação)

Nome	T_{ef}	$\sigma_{T_{\rm ef}}$	$\log(g)$	$\sigma_{\log(g)}$	Massa	σ_{massa}	Classificação Fotométrica
WD2214-0025	10831.	428.	8.510	0.001	0.929	0.003	N. V.
WD2222+1238	12044.	954.	7.499	0.000	0.364	0.003	N. V.
WD2231+1346	12082.	228.	8.134	0.012	0.684	0.003	ZZ Ceti
WD2252+1436	17168.	748.	7.722	0.003	0.474	0.002	N. V.
WD2307-0847	10961.	270.	7.430	0.007	0.341	0.001	ZZ Ceti
WD2311+1424	11266.	419.	8.290	0.005	0.780	0.005	N. V.
WD2334+0103	10419.	131.	8.578	0.006	0.968	0.005	N. V.
WD2337-1041	15823.	630.	7.776	0.005	0.494	0.002	N. V.
WD2350-0054	10810.	24.	8.139	0.011	0.685	0.002	ZZ Ceti

Name	$T_{\rm ef}$	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Mass	σ_{Mass}	Classificação Fotométrica
WD0000-0046	10586.	141.	7.707	0.005	0.447	0.017	ZZ Ceti
WD0018+0031	11698.	663.	7.514	0.091	0.369	0.017	ZZ Ceti
WD0023-0033	16593.	438.	7.984	0.045	0.607	6.140	N. V.
WD0050-0024	11828.	236.	7.798	0.008	0.495	0.001	N. V.
WD0054-0025	15390.	221.	7.834	0.019	0.522	0.001	N. V.
WD0055+0635	10694.	379.	8.052	0.189	0.633	0.007	N. V.
WD0102-0032	11856.	151.	7.624	0.023	0.414	0.007	ZZ Ceti
WD0111+0018	11434.	720.	7.746	0.001	0.468	0.007	ZZ Ceti
WD0122+0030	12152.	112.	7.623	0.181	0.414	0.007	N. V.
WD0208+0053	14106.	452.	7.739	0.043	0.474	0.007	N. V.
WD0214-0823	11160.	779.	7.482	0.005	0.356	0.007	ZZ Ceti
WD0215-0015	17750.	80.	9.500	0.000	1.116	0.001	N. V.
WD0222-0100	12745.	149.	7.877	0.205	0.539	0.001	N. V.
WD0224+0038	9536	464	8.031	0.260	0.618	0.001	N V
WD0303+0808	11105	295	8.097	0.220	0.660	0.001	ZZ Ceti
WD0311-0003	12376	77	7.832	0.168	0.514	0.001	N V
WD0318+0030	17750.	70.	9.500	0.000	1.116	0.001	ZZ Ceti
WD0325-0111	9860	406	7 864	0.258	0.524	0.001	N V
WD0329-0007	10950	383	8.041	0.019	0.627	0.001	N V
WD0332-0049	13726	463	7 720	0.191	0.627	0.001	ZZ Ceti
WD0733+2831	14859	221	7 575	0.021	0.403	0.001	N V
WD0740+2505	17750	50	7 629	0.083	0.435	0.001	N V
WD0747+2503	11049	416	7 795	0.005	0.491	0.001	N V
WD0753+3543	16344	332	8 330	0.171	0.451	0.001	N V
WD0756+2020	10924	341	7 813	0.194	0.500	0.001	ZZ Ceti
WD0815+4437	11955	937	7 486	0.003	0.360	0.001	ZZ Ceti
WD0816+3307	16109	556	7 7 7 5 9	0.005	0.300	0.001	N V
WD0818+3131	11596	15	7 833	0.007	0.513	0.001	77 Ceti
WD0825+0329	13245	130	7 900	0.188	0.513	0.003	N V
WD0825+4119	12891	1330	8.010	0.001	0.614	0.003	N V
WD0827+4224	17712	80	7 857	0.178	0.541	0.003	N V
WD0842+3707	13165	185	7 282	0.007	0.312	0.001	ZZ Ceti
WD0843+0431	10481	527	7.758	0.036	0.312	0.001	ZZ Ceti
WD0847+4510	11511	270	7 631	0.039	0.416	0.001	ZZ Ceti
WD0851+0605	11253	387	7 7 16	0.153	0.453	0.001	ZZ Ceti
WD0906-0024	13496	283	7 548	0.206	0.389	0.001	ZZ Ceti
WD0911+0310	11053	203. 784	7 997	0.001	0.602	0.001	ZZ Ceti
WD0913+4036	15366	340	7 787	0.140	0.499	0.049	ZZ Ceti
WD0916+3855	11622	59	7 888	0.183	0.542	0.001	N V
WD0917+0926	11068	380	7.813	0.217	0.500	0.001	ZZ Ceti
WD0923+0120	10859	339	7.703	0.018	0.446	0.001	N V
WD0939+5609	12083	459	7 814	0.211	0 504	0.001	ZZ Ceti
WD0942+5733	11330	206	7.609	0.211	0.406	0.001	ZZ Ceti
WD0949-0000	10936	497	7.435	0.008	0.342	0.001	ZZ Ceti
WD0958+0130	11868	205	7 420	0.226	0.342	0.001	ZZ Ceti
WD1002+5818	13600	61	7.607	0.016	0.414	0.001	ZZ Ceti
WD1007+5245	12600	57	6.751	0.026	0.233	0.001	ZZ Ceti
WD1012+6108	10914	717	7.979	0.124	0.592	0.001	N V
WD1015+0306.	12564.	138	7.673	0.178	0.438	0.001	ZZ Ceti
WD1015+5954	11584	193	7.526	0.006	0.373	0.001	ZZ Ceti
WD1019+0000	11877	533.	7.717	0.153	0.456	0.001	N. V.
WD1031+6122.	11354.	541.	7.778	0.006	0.484	0.001	N. V.
WD1045-0018	10177.	159.	8.792	0.023	1.087	0.001	N. V.
							1

Tabela 8.4.	Parâmetros atmosféricos calculados para algumas estrelas ZZ Cetis
e NV	do SDSS usando todo espectro (linhas de Balmer e contínuo)

Name	T_{ef}	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Mass	σ_{Mass}	Classificação Fotométrica
WD1054+5307	14151.	141.	7.818	0.169	0.513	0.001	ZZ Ceti
WD1056-0006	12978.	291.	7.512	0.096	0.373	0.001	ZZ Ceti
WD1105+0016	13600.	51.	7.845	0.157	0.525	0.001	N. V.
WD1106+0115	11520.	255.	8.120	0.249	0.675	0.083	ZZ Ceti
WD1122+0358	14065.	177.	7.681	0.020	0.447	0.083	ZZ Ceti
WD1125+0345	11603.	17.	7.556	0.019	0.385	0.083	ZZ Ceti
WD1126+5144	11838.	294.	7.959	0.015	0.582	0.083	N. V.
WD1136-0136	11419.	675.	7.744	0.119	0.468	0.083	N. V.
WD1138+6239	14199.	74.	7.758	0.001	0.483	0.083	N. V.
WD1141+0420	11000.	60.	7.486	0.233	0.356	0.083	N. V.
WD1157+0553	10714.	243.	7.600	0.227	0.399	0.083	ZZ Ceti
WD1216+0922	10961.	179.	7.916	0.237	0.555	0.083	ZZ Ceti
WD1216+6158	11908.	498.	8.053	0.193	0.636	0.083	N. V.
WD1218+0042	10734.	351.	7.675	0.245	0.432	0.083	ZZ Ceti
WD1222-0243	17750.	50.	7.426	0.063	0.365	0.083	ZZ Ceti
WD1235+5206	11460.	221.	7.844	0.214	0.518	0.083	N. V.
WD1243+6248	12251.	219.	7.927	0.051	0.565	0.083	N. V.
WD1255+0211	11396.	75.	8.353	0.017	0.822	0.083	ZZ Ceti
WD1257+0124	11920.	271.	8.404	0.018	0.857	0.083	ZZ Ceti
WD1301-0107	10972.	135.	7.813	0.186	0.500	0.083	ZZ Ceti
WD1310-0159	10547.	553.	7.736	0.003	0.460	0.083	ZZ Ceti
WD1337+0104	11146.	107.	9.694	0.000	1.151	0.001	ZZ Ceti
WD1338-0023	11286.	314.	7.928	0.034	0.563	0.001	ZZ Ceti
WD1342-0159	10559.	186.	8.576	0.010	0.968	0.001	N. V.
WD1345-0055	14642.	148.	7.705	0.124	0.459	0.001	ZZ Ceti
WD1354+0108	13050.	271.	7.474	0.013	0.362	0.001	ZZ Ceti
WD1355+5454	12568.	189.	8.310	0.218	0.796	0.001	ZZ Ceti
WD1417+0058	14590.	23.	7.850	0.042	0.529	0.001	ZZ Ceti
WD1443+0134	11030.	832.	8.003	0.001	0.606	0.001	ZZ Ceti
WD1450+5543	13000.	50.	6.739	0.086	0.235	0.001	N. V.
WD1502-0001	17063.	187.	7.416	0.249	0.361	0.001	ZZ Ceti
WD1529+0020	11466.	1253.	8.036	0.014	0.626	0.006	N. V.
WD1533-0206	14404.	14.	8.077	0.152	0.655	0.001	ZZ Ceti
WD1617+4324	11344.	367.	7.289	0.168	0.305	0.001	ZZ Ceti
WD1618-0023	11321.	1138.	8.002	0.000	0.606	0.001	N. V.
WD1642+3824	17750.	50.	8.541	0.055	0.956	0.001	N. V.
WD1644+3521	10756.	176.	8.137	0.279	0.683	0.001	N. V.
WD1659+6209	11107.	247.	7.872	0.209	0.531	0.001	N. V.
WD1700+3549	10635.	135.	7.594	0.222	0.396	0.001	ZZ Ceti
WD1711+6541	13460.	725.	8.024	0.180	0.623	0.001	ZZ Ceti
WD1717+3026	11859.	358.	8.208	0.158	0.729	0.001	N. V.
WD1720+6350	15814.	444.	7.720	0.003	0.468	0.001	N. V.
WD1724+5835	15801.	195.	7.572	0.170	0.405	0.001	ZZ Ceti
WD1732+5905	16328.	408.	8.428	0.248	0.879	0.001	ZZ Ceti
WD1735+5356	12364.	193.	7.933	0.220	0.568	0.110	N. V.
WD2128-0007	10912.	282.	7.836	0.226	0.512	0.110	ZZ Ceti
WD2135-0743	11287.	385.	7.919	0.044	0.558	0.110	ZZ Ceti
WD2147-0013	10443.	666.	7.558	0.007	0.381	0.110	N.V.
WD2153-0731	11518.	863.	7.737	0.093	0.465	0.110	ZZ Ceti
WD2155+1238	11515.	243.	7.859	0.223	0.526	0.110	N.V.
WD2159+1322	10997.	28.	7.962	0.009	0.582	0.110	ZZ Ceti
WD2214-0025	11510.	234.	8.133	0.189	0.682	0.110	N. V.
wD2222+1238	15750.	50.	7.349	0.161	0.338	0.030	N. V.

Tabela 8.4 (continuação)

Name	T _{ef}	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Mass	σ_{Mass}	Classificação Fotométrica
WD2231+1346	10920.	345.	7.907	0.049	0.550	0.001	ZZ Ceti
WD2252+1436	16654.	287.	7.897	0.190	0.559	0.001	N. V.
WD2307-0847	10645.	654.	7.753	0.001	0.469	0.001	ZZ Ceti
WD2311+1424	11384.	130.	7.789	0.201	0.489	0.001	N. V.
WD2334+0103	10592.	42.	7.840	0.016	0.513	0.001	N. V.
WD2337-1041	16082.	179.	7.919	0.176	0.569	0.001	N. V.
WD2350-0054	11185.	105.	7.800	0.023	0.494	0.001	ZZ Ceti

Tabela 8.4 (continuação)

8.2 Discussão dos Resultados

Na figura 8.7 mostramos a determinação empírica da faixa de instabilidade usando as estrelas do SDSS com seus parâmetros atmosféricos determinados por Eisenstein (2006). Verificamos uma grande quantidade de estrelas não variáveis no interior da faixa de instabilidade. Estas estrelas são classificadas como NOV (Not Observed to Vary) por Mukadam et al. (2004) e Mullaly et al. (2005). Porém, Castanheira et al. 2007a e 2007b) detectaram pulsações de baixa amplitude em 4 estrelas classificadas anteriormente como NOV. A título de comparação, na figura 8.7 mostramos a faixa de instabilidade com nossas determinações para as estrelas do SDSS. No capítulo 5 mostramos as comparações de T_{ef} e log g entre nossas determinações e as de Eisenstein et al. (2006).

Na tabela 8.3 apresentamos nossos resultados quanto ao ajuste dos parâmetros atmosféricos e massa usando a técnica que vem sendo aplicada longamente em diversos trabalhos científicos que consiste em usar o perfil das linhas de Balmer para estimar os valores de T_{ef} e $\log g$; já na tabela 8.4 redeterminamos os parâmetros atmosféricos usando todo o espectro, incluindo o contínuo. Esta solução pode nos auxiliar na escolha entre 2 valores de T_{ef} , que geralmente surgem quando usamos a técnica de perfil de linha conforme já explicado no capítulo 3 devido ao alargamento máximo das linhas de Balmer na região em que se encontram as estrelas ZZ Cetis. Na figura 8.5 apresentamos nossa faixa de instabilidade com parâmetros atmosféricos determinados por perfil de linha, incluindo apenas as estrelas que durante este projeto, tiveram seus espectros óticos extraídos, com $S/R \ge 50$. Verfique que desta forma a faixa de instabilidade é pura, ou seja, não existe nenhuma estrela não variável no seu interior, e no seu exterior também não aparece nenhuma estrela ZZ Ceti. Este resultado é coerente com o que foi apresentado por Gianninas et al. (2005), ou seja, a faixa de instabilidade é pura. Na figura 8.5 utilizamos estrelas variáveis (ZZ Cetis) para delimitar os extremos da faixa de instabilidade. Em termos de estrelas ZZ Cetis que definem a faixa de instabilidade são na borda azul GD133 e GD165 e a borda vermelha é definida pelas estrelas

Fig. 8.8 Esta figura mostra a faixa de instabilidade para as estrelas do SDSS, utilizando as minhas determinações de $T_{\rm ef}$ e $\log(g)$ utilizando a técnica do ajuste o perfíl de linha da série de Balmer.

R808 e EC1402–**1446** com $T_{\rm ef}$ e massas, respectivamente, 12318 K, 12384 K, 11089 K, 11119 K e $0.492M_{\odot}$, $0.649M_{\odot}$, $0.620M_{\odot}$, $0.689M_{\odot}$.

Determinamos a faixa de instabilidade para as estrelas que fizemos medidas espectroscópica, e verificamos que a faixa de instabilidade é pura. Na seqüência vamos estimar como fica a região da faixa de instabilidade incluindo nossos resultados para 2800 estrelas do SDSS e 900 do 2df. Destas estrelas, temos como informação apenas seus espectros de baixa razão sinal/ruído.

#WD	T_{ef}	$\log(g)$	Referência
0021+0049	10608	8.21	Mullally (2005)
0037+0031	10942	8.39	Mukadam (2004)
0046+1339	11077	8.31	Mullally (2005)
0122+0030	11798	7,87	Mullally (2005)
0152+0100	12326	7.82	Mukadam (2004)
0257+0046	12215	8.01	Mullally (2005)
0326+0018	12124	8.07	Mullally (2005)
0340+0106	12050	8.05	Mukadam (2004)
0345-0036	11710	7.73	Mukadam (2004)
0747+2503	11170	7.86	Mukadam (2004)
0814+4608	11220	8.04	Mukadam (2004)
0853+0005	11680	8.04	Mukadam (2004)
1012+6108	11842	8.39	Mullally (2005)
1031+6122	11440	7.27	Mukadam (2004)
1103+0037	10611	8.27	Mukadam (2004)
1126+5144	12390	8.01	Mukadam (2004)
1136-0136	11803	7.98	Mukadam (2004)
1141+0420	11520	7.53	Mullally (2005)
1216+6158	12290	8.20	Mukadam (2004)
1235+5206	12560	7.93	Mukadam (2004)
1243+6248	12210	7.72	Mukadam (2004)
1302-0050	10690	8.28	Mukadam (2004)
1337+0104	11104	8.17	Mukadam (2004)
1342-0159	11340	8.10	Mukadam (2004)
1345+0328	11570	7.85	Mukadam (2004)
1400+6431	10995	8.08	Mullally (2005)
1431-0012	12320	7.92	Mukadam (2004)
1432+0146	11255	8.05	Mukadam (2004)
1432+0146	11290	8.23	Mullally (2005)
1443-0006	11930	7.95	Mukadam (2004)
1450+5543	10886	8.08	Mukadam (2004)
1503-0052	11560	8.18	Mukadam (2004)
1658+3638	10762	8.00	Mukadam (2004)
1658+3638	10843	8.26	Mullally (2005)
1720+6350	11330	8.67	Mukadam (2004)
1726+5331	11000	8.12	Mukadam (2004)
1737+5844	11195	7.79	Mullally (2005)
2155+1238	12332	8.11	Mullally (2005)
2311+1424	12475	8.01	Mullally (2005)
2326-0023	10635	8.28	Mukadam (2004)

Tabela 8.5. Lista de estrelas em que não foram detectadas variações em sua curva de luz, porém apresentam $T_{\rm ef}$ na faixa de instabilidade; resultados publicados por Mukadam et al. (2004) e Mullally et al. (2005).

Fig. 8.9 Esta figura mostra a faixa de instabilidade para as estrelas do SDSS, utilizando as minhas determinações de $T_{\rm ef}$ e $\log(g)$ utilizando a técnica do ajuste total do espectro (ALL). Os círculos representam as estrelas ZZ Cetis e os pontos as estrelas classificadas como NOV, segundo Mukadam et al. 2004 e Mullally et al. 2005

9. CONCLUSÃO

Neste capítulo vamos sumarizar nossas conclusões obtidas nas discussões dos capítulos anteriores e apresentar novas possibilidades de futuros trabalhos baseados nas conclusões desta tese.

Em primeiro lugar vou discutir sobre aquele que foi o principal foco desta tese, a faixa de instabilidade das estrelas ZZ Ceti. No último capítulo apresentei alguns resultados importantes para melhor definirmos a faixa de instabilidade das estrelas ZZ Cetis. Da figura 9.1, a mesma do capítulo anterior, o que podemos concluir é que a faixa de instabilidade é pura, ou seja, não existem estrelas constantes no interior da faixa de instabilidade, fato que é claro somente para a amostra que contém apenas espectros de alta razão S/R. Quando determinamos $T_{\rm ef} \ e \ \log(g)$ nas amostras de baixo sinal-ruído, pelo método do perfil das linhas de Balmer usado por Bergeron et al. (1995,2004) e o método de ajuste de todo espectro com a grade de modelos de atmosfera, surge uma faixa de instabilidade contaminada por estrelas constantes e estrelas ZZ Ceti fora da faixa de instabilidade, nos resultados apresentados por Mukadam et al. (2004) e Mullally et al. (2005). Apresentamos seus resultados no capítulo anterior (figura 8.7) e também fizemos uma determinação de sua faixa de instabilidade (figuras 8.8 e 8.9). Bergeron et al. (2004), Gianninas et. al (2005) e Gianninas et al. (2007) também apresentam uma faixa de instabilidade para as estrelas ZZ Cetis, mostrada na figura 9.3, absolutamente pura, e sua amostra consiste somente de espectros de alta razão S/R.

Gianninas et al. (2005) apresentam uma grande revisão bibliográfica, onde é mostrada uma faixa de instabilidade absolutamente pura com base em determinações de $T_{\rm ef}$ e massa apresentados em diversos artigos na literatura. Neste artigo também é questionada a faixa de instabilidade impura para as estrelas do SDSS. No entanto, o que podemos concluir é que a faixa de instabilidade das estrelas ZZ Cetis é pura, dependendo da razão S/R dos espectros envolvidos. A figura 9.5 mostra os resultados apresentados por Gianninas et al. (2005). Kepler et al. (2007a) mostraram que os parâmetros atmosféricos determinados com os espectros de baixo S/R do SDSS são incertos.

Outro resultado a que podemos concluir assim como Kepler et al. (2007) e Mukremin et al. (2007), é que a técnica do ajuste total de espectro (ALL) é a melhor para determinar os parâmetros atmosféricos das anãs brancas, contrariando a

Fig. 9.1 Esta é a faixa de instabilidade obtida com espectros de alta razão S/R, com observações feitas especialmente para este trabalho.

Fig. 9.2 Esta é a faixa de instabilidade apenas para as estrelas ZZ Ceti apresentada por Bergeron et. (2004), observe que não existem estrelas constantes no interior da Faixa de instabilidade.

Fig. 9.3 Esta é a faixa de instabilidade apenas para as estrelas ZZ Ceti e algumas estrelas constantes apresentada por Gianninas et. (2007). Nesta figura mostro apenas as estrelas variáveis.

Fig. 9.4 Esta é a faixa de instabilidade apenas para as estrelas ZZ Ceti e algumas estrelas constantes pesquisadas na literatura e apresentadas por Gianninas et. (2005), observe que não existem estrelas constantes no interior da Faixa de instabilidade. Todos os resultados são referentes a espectros de alta razão S/R.

até então pouco questionada técnica do perfil das linhas de Balmer (LPT) proposto por Bergeron et al. (1995). O principal problema da LPT é que esta depende que a razão sinal/ruído do espectro seja alta ≥ 70 , fato que acaba limitando muito a técnica, além de necessitar uma solução externa para a duplicidade de soluções próximas a 13 000 K. No entanto, a técnica do ALL é mais útil, podendo ser empregada em espectros de razão S/R mais baixa que ≤ 50 , e apresenta resultados satisfatórios na maioria das vezes, desde que a calibração de fluxo seja boa. Na figura 6.3 podemos observar algumas discrepâncias grandes nas comparações dos resultados que obtive e os apresentados por Kepler et al. (2007). Estas grandes diferenças aconteceram para aqueles espectros cuja calibração de fluxo não foi boa. Tanto que a média das diferenças entre meus resultados e os de Kepler et al. 2007 foi de apenas 300 K em $T_{\rm ef}$ e 0.130 para $\log(g)$.

E finalmente, nossa última conclusão confirma o que já foi apresentado por Kepler et al. (2007). No capítulo da distribuição de massa verificamos que existe um grande problema referente à determinação de massa para estrelas com $T_{\rm ef} \leq 12\,000~K$. As massas para as estrelas com $T_{\rm ef} \leq 12\,000~K$ são em geral superestimadas, o que não pode ser justificado pela contaminação por Hélio proposto em séries de artigos por Bergeron et al. desde 1982. O problema provavelmente é causado pelos modelos de atmosfera na forma em que é aproximado o alargamento por colisão nas linhas de Balmer para as estrelas com $T_{\rm ef}$ nesta região, onde número de partículas neutras deve ser alto, mesmo que o efeito Stark permaneça dominante. Este grande problema acaba diretamente afetando a faixa de instabilidade, pois está é exatamente a região de $T_{\rm ef}$ em que esta se encontra; possivelmente seus contornos serão afetados, mas as diferenças não são tão grandes como abaixo de 8000 K, onde a grande maioria das partículas são neutras.

Além disto, devemos destacar que o centro da faixa de instabilidade das estrelas DAs é absolutamente puro; no entanto suas bordas necessitam ser analisadas com melhor detalhe; uma vez que em ambas as bordas as amplitudes de pulsação são muito baixas. Em outubro de 2007 foi descoberta uma nova estrela variável WD 0122+0030, com a menor amplitude de pulsação conhecida, apenas 1.5mma. A figura 9.7 mostra que a amplitude de pulsação das estrelas ZZ Cetis em suas bordas são muito menores que as estrelas localizadas no centro da faixa, historicamente já houve casos dentre os quais posso destacar as estrelas BPM 37093 e a GD 133 que foram classificadas como não variáveis. Porém, em observações posteriores mostraram ser variáveis de amplitudes baixas. Portanto, para definirmos de forma mais precisa as bordas da faixa de instabilidade, necessitamos diminuir pelo menos para 1 mma os limites de não variabilidade para as estrelas localizadas nos extremos da faixa de instabilidade das ZZ Cetis.

Fig. 9.5 Nesta figura fazemos a superposição da faixa apresentada por Gianninas et al. (2005) e a faixa de instabilidade resultante deste trabalho com os espectros de alta razão sinal/ruído. A linha continua representa a faixa de instabilidade deste trabalho e a linha tracejada uma possível faixa de instabilidade dos resultados de Gianninas et al. (2005).

Fig. 9.6 Esta figura mostra mais uma faixa de instabilidade contendo todas as estrelas deste trabalho, em verde e com barras de erro, em preto representamos a faixa de instabilidade das estrelas do SDSS, e em vermelho a faixa de instabilidade de Gianninas et al. (2005).

Fig. 9.7 Esta figura mostra a relação entre período e amplitude de pulsação para todas as ZZ Cetis conhecidas Observe que nas bordas (menores e maiores) da faixa de instabilidade dos períodos de pulsação das ZZ Cetis as amplitudes são bem menores que no centro da faixa de instabilidade.

10. APÊNDICE A

Neste capítulo apresentamos os resultados de $T_{\rm ef}$ e log g para os 2467 espectros, apresentados no capítulo estrelas do SDSS.

Nome	T _{ef}	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51608-0267-099	10881.	49.	8.758	0.007	1.063
spSpec-51608-0267-271	37550.	135.	9.999	0.000	1.370
spSpec-51609-0292-052	13433.	18.	7.906	0.032	0.555
spSpec-51609-0292-097	10514.	35.	7.920	0.040	0.555
spSpec-51609-0292-136	8302.	15.	8.105	0.042	0.659
spSpec-51609-0292-281	7788.	8.	8.151	0.000	0.686
spSpec-51609-0292-315	15500.	0.	5.281	0.022	0.250
spSpec-51609-0292-366	18472.	12.	7.992	0.016	0.615
spSpec-51609-0292-494	26820.	65.	7.554	0.007	0.434
spSpec-51609-0292-543	14055.	34.	8.047	0.033	0.637
spSpec-51612-0280-043	21192.	104.	7.725	0.013	0.484
spSpec-51612-0280-063	14586.	4.	8.072	0.026	0.653
spSpec-51612-0280-068	14000.	0.	5.275	0.017	0.244
spSpec-51612-0280-251	12532.	35.	7.737	0.017	0.464
spSpec-51612-0280-507	16121.	28.	8.032	0.035	0.632
spSpec-51613-0305-134	48760.	156.	7.617	0.032	0.532
spSpec-51613-0305-210	10941.	44.	7.950	0.005	0.573
spSpec-51613-0305-512	16250.	0.	7.105	0.021	0.296
spSpec-51613-0305-514	18370.	31.	7.789	0.016	0.507
spSpec-51614-0281-162	16250.	0.	5.384	0.034	0.254
spSpec-51614-0281-163	15123.	32.	8.009	0.005	0.617
spSpec-51614-0281-307	14800.	0.	5.323	0.032	0.248
spSpec-51614-0281-402	10617.	8.	7.944	0.025	0.569
spSpec-51614-0281-431	32660.	82.	7.465	0.002	0.434
spSpec-51614-0281-476	12158.	22.	8.184	0.029	0.717
spSpec-51615-0303-057	12000.	0.	6.186	0.002	0.233
spSpec-51615-0303-124	12000.	0.	5.633	0.002	0.234
spSpec-51615-0303-228	9863.	32.	8.517	0.007	0.918
spSpec-51615-0303-588	9042.	16.	7.878	0.038	0.527
spSpec-51630-0266-026	10942.	31.	7.755	0.008	0.470
spSpec-51630-0266-031	17210.	12.	8.097	0.017	0.673
spSpec-51630-0266-032	14370.	7.	7.565	0.021	0.415
spSpec-51630-0266-037	11553.	35.	7.938	0.037	0.568
spSpec-51630-0266-057	8376.	19.	8.518	0.004	0.919
spSpec-51630-0266-314	11064.	44.	8.049	0.039	0.631
spSpec-51630-0266-336	34030.	50.	9.480	0.003	1.312
spSpec-51630-0266-365	18748.	0.	7.832	0.015	0.528
spSpec-51630-0266-395	23592.	29.	7.628	0.015	0.458
spSpec-51630-0266-629	13101.	58.	7.973	0.024	0.591
spSpec-51633-0268-008	74700.	58.	5.447	0.024	0.451
spSpec-51633-0268-129	11600.	0.	5.799	0.003	0.231
spSpec-51633-0268-137	31332.	92.	7.671	0.008	0.492
spSpec-51633-0268-503	11101.	67.	8.681	0.049	1.017
spSpec-51637-0306-194	42070.	219.	5.816	0.014	0.345
spSpec-51637-0306-196	12574.	12.	7.824	0.035	0.509
spSpec-51637-0306-388	9528.	10.	8.060	0.044	0.634
spSpec-51637-0306-483	15702.	18.	7.971	0.023	0.597
spSpec-51658-0282-067	27944.	6.	6.967	0.037	0.297
spSpec-51658-0282-102	14660.	28.	8.043	0.027	0.636
spSpec-51658-0282-111	19060.	37.	8.179	0.014	0.726
spSpec-51658-0282-115	8658.	21.	7.802	0.017	0.485
spSpec-51658-0282-157	8284.	11.	7.504	0.005	0.367
spSpec-51658-0282-230	11115.	62.	8.956	0.033	1.182

Tabela 10.1.	Tabela de resultados $T_{\rm ef}$ e log	g usando modelos com	$ML2\alpha = 0.6$
atr	avés do ajuste de todo espectro	o. Total de 2467 espectr	os.

Nome	T _{ef}	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51658-0282-364	21093.	149.	6.138	0.033	0.275
spSpec-51658-0282-423	26320.	37.	7.318	0.018	0.374
spSpec-51658-0282-537	9348.	35.	7.823	0.042	0.498
spSpec-51658-0282-541	17325.	22.	7.562	0.018	0.424
spSpec-51658-0282-575	32800.	86.	7.198	0.004	0.365
spSpec-51662-0308-052	14748.	18.	7.496	0.018	0.396
spSpec-51662-0308-054	12909.	33.	7.758	0.007	0.475
spSpec-51662-0308-083	7237.	74.	6.666	0.124	0.164
spSpec-51662-0308-091	11290.	57.	8.240	0.008	0.751
spSpec-51662-0308-163	18908.	32.	8.433	0.017	0.884
spSpec-51662-0308-195	12604.	3.	8.213	0.028	0.736
spSpec-51662-0308-256	12642.	28.	7.926	0.031	0.564
spSpec-51662-0308-294	17250.	0.	6.259	0.020	0.258
spSpec-51662-0308-307	26604.	69.	7.795	0.008	0.533
spSpec-51662-0308-345	16832.	38.	8.006	0.024	0.619
spSpec-51662-0308-357	11478.	41.	7.774	0.019	0.480
spSpec-51662-0308-418	27500.	33.	8.087	0.013	0.688
spSpec-51662-0308-427	8166.	15.	8.255	0.000	0.754
spSpec-51662-0308-436	26176.	14.	8.669	0.028	1.025
spSpec-51663-0307-008	42030.	166.	7.249	0.000	0.407
spSpec-51663-0307-048	22000.	0.	6.743	0.023	0.278
spSpec-51663-0307-090	45270.	28.	9.100	0.052	1.259
spSpec-51663-0307-129	15432.	22.	7.978	0.018	0.600
spSpec-51663-0307-401	12754.	28.	7.193	0.018	0.295
spSpec-51663-0307-406	14529.	21.	7.253	0.026	0.320
spSpec-51663-0307-429	19422.	35.	7.716	0.031	0.476
spSpec-51663-0307-452	17927.	19.	7.825	0.018	0.524
spSpec-51663-0307-547	18971.	17.	7.461	0.014	0.402
spSpec-51663-0307-556	10173.	10.	7.623	0.043	0.421
spSpec-51663-0307-595	16177.	18.	8.072	0.023	0.656
spSpec-51663-0307-631	13800.	0.	5.377	0.003	0.243
spSpec-51663-0315-060	11311.	31.	8.055	0.026	0.635
spSpec-51663-0315-077	21136.	104.	7.649	0.014	0.459
spSpec-51663-0315-177	28620.	66.	7.829	0.014	0.554
spSpec-51663-0315-321	10633.	10.	7.613	0.024	0.419
spSpec-51663-0315-624	15250.	0.	5.657	0.028	0.249
spSpec-51665-0311-345	8578.	32.	8.002	0.001	0.596
spSpec-51665-0311-461	11331.	19.	8.349	0.027	0.817
spSpec-51665-0311-575	33830.	78.	6.816	0.027	0.316
spSpec-51671-0299-022	10985.	7.	7.646	0.033	0.431
spSpec-51671-0299-137	6359.	13.	6.000	0.000	0.195
spSpec-51671-0299-194	8167.	15.	8.119	0.000	0.667
spSpec-51671-0299-305	44820.	17.	9.377	0.047	1.394
spSpec-51671-0299-357	6372.	1.	9.340	0.001	1.313
spSpec-51671-0299-385	11103.	54.	7.695	0.041	0.445
spSpec-51671-0299-420	32207.	88.	9.165	0.010	1.233
spSpec-51671-0299-443	18244.	3.	7.981	0.025	0.608
spSpec-51671-0299-531	13582.	11.	7.717	0.029	0.463
spSpec-51671-0348-144	21256.	101.	7.938	0.013	0.591
spSpec-51671-0348-222	26116.	9.	8.286	0.024	0.804
spSpec-51671-0348-310	41770.	139.	9.184	0.014	1.240
spSpec-51671-0348-317	18556.	35.	8.177	0.023	0.724
spSpec-51671-0348-502	27932.	5.	9.131	0.050	1.220

Tabela 10.1 (continuação)

[
Nome	T _{ef}	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51671-0348-579	33340.	66.	9.049	0.005	1.191
spSpec-51673-0313-519	75470.	329.	5.428	0.066	0.454
spSpec-51673-0313-543	11437.	15.	7.287	0.026	0.312
spSpec-51673-0313-548	42150.	153.	8.152	0.007	0.751
spSpec-51673-0313-550	60550.	150.	9.478	0.033	1.172
spSpec-51688-0302-474	21108.	67.	8.325	0.016	0.820
spSpec-51688-0302-479	10404.	2.	8.336	0.037	0.809
spSpec-51689-0293-101	25836.	11.	9.110	0.033	1.212
spSpec-51689-0293-176	33860.	50.	7.847	0.012	0.575
spSpec-51689-0293-192	13518.	56.	8.265	0.018	0.770
spSpec-51689-0293-211	10904.	40.	8.123	0.040	0.676
spSpec-51689-0293-284	7429.	12.	6.731	0.012	0.172
spSpec-51689-0293-324	12021.	10.	7.372	0.027	0.341
spSpec-51689-0293-358	15869.	40.	8.137	0.019	0.694
spSpec-51689-0293-394	14030.	10.	7.805	0.026	0.503
spSpec-51689-0293-421	9872.	33.	7.499	0.000	0.374
spSpec-51689-0293-482	17134.	28.	7.770	0.017	0.494
spSpec-51689-0293-508	30828.	56.	8.426	0.013	0.896
spSpec-51689-0293-572	41100.	80.	7.233	0.003	0.400
spSpec-51689-0293-603	11280.	61.	7.754	0.005	0.470
spSpec-51689-0293-616	13139.	20.	7.789	0.027	0.492
spSpec-51689-0312-056	8579.	38.	7.350	0.050	0.315
spSpec-51689-0312-085	27728.	18.	8.570	0.018	0.977
spSpec-51689-0312-332	19000.	0.	5.812	0.027	0.265
spSpec-51689-0312-338	47880.	246.	7.517	0.004	0.495
spSpec-51689-0312-371	26396.	43.	7.763	0.003	0.517
spSpec-51689-0312-586	10737.	20.	7.834	0.028	0.509
spSpec-51690-0341-020	13732.	22.	7.768	0.011	0.485
spSpec-51690-0341-061	6374.	1.	9.999	0.000	1.669
spSpec-51690-0341-266	20936.	58.	9.141	0.006	1.222
spSpec-51690-0341-300	7714.	6.	7.894	0.052	0.532
spSpec-51690-0341-331	13600.	0.	8.843	0.029	1.093
spSpec-51690-0341-370	18750.	0.	5.271	0.026	0.264
spSpec-51690-0341-400	15250.	0.	7.358	0.044	0.353
spSpec-51690-0341-489	16430.	20.	8.374	0.025	0.844
spSpec-51690-0345-197	7574.	18.	7.999	0.000	0.588
spSpec-51690-0345-198	9805.	25.	7.701	0.021	0.444
spSpec-51690-0345-267	11588.	5.	7.918	0.027	0.557
spSpec-51690-0345-446	24352.	30.	8.163	0.015	0.389
spSpec-51690-0345-463	16250.	0.	6.128	0.024	0.254
spSpec-51690-0345-532	14400.	0.	5.382	0.005	0.246
spSpec-51690-0345-555	13347.	30.	9.999	0.000	1.810
spSpec-51690-0345-565	10544.	16.	7.762	0.008	0.472
spSpec-51690-0345-630	7903.	18.	7.075	0.000	0.236
spSpec-51691-0342-008	42280.	223.	5.999	0.000	0.346
spSpec-51691-0342-029	19488.	4.	8.124	0.014	0.693
spSpec-51691-0342-123	26772.	102.	7.249	0.021	0.358
spSpec-51691-0342-155	10124.	26.	8.440	0.039	0.872
spSpec-51691-0342-209	17594.	27.	8.103	0.019	0.678
spSpec-51691-0342-211	21056.	112.	7.319	0.015	0.373
spSpec-51691-0342-316	21071.	77.	7.378	0.012	0.389
spSpec-51691-0342-382	25296.	45.	7.803	0.016	0.533
spSpec-51691-0342-410	13138.	39.	7.998	0.003	0.606

Tabela 10.1 (continuação)
Nome	T _{ef}	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51691-0342-419	14526.	17.	7.801	0.017	0.503
spSpec-51691-0342-464	21316.	109.	7.920	0.012	0.582
spSpec-51691-0342-547	17210.	20.	7.687	0.017	0.458
spSpec-51691-0342-565	10834.	12.	7.623	0.028	0.423
spSpec-51691-0342-639	12800.	0.	8.816	0.028	1.098
spSpec-51691-0342-640	24388.	34.	8.138	0.015	0.711
spSpec-51691-0350-007	14480.	26.	7.818	0.027	0.510
spSpec-51691-0350-063	17564.	38.	7.992	0.016	0.612
spSpec-51691-0350-239	21444.	283.	7.907	0.013	0.575
spSpec-51691-0350-301	78050.	685.	7.711	0.031	0.642
spSpec-51691-0350-304	8332.	24.	8.541	0.016	0.933
spSpec-51691-0350-362	11453.	31.	8.420	0.030	0.860
spSpec-51691-0350-366	32660.	193.	5.888	0.013	0.312
spSpec-51691-0350-518	28024.	2.	8.757	0.019	1.060
spSpec-51691-0350-588	22560.	105.	6.809	0.015	0.280
spSpec-51692-0339-115	16070.	39.	7.991	0.022	0.609
spSpec-51692-0339-145	15500.	0.	5.249	0.016	0.250
spSpec-51692-0339-331	10818.	12.	7.943	0.031	0.568
spSpec-51692-0339-629	10963.	19.	7.698	0.036	0.445
spSpec-51692-0343-078	9733.	6.	7.668	0.038	0.434
spSpec-51692-0343-191	19732	11	7.947	0.020	0.592
spSpec-51692-0343-367	21132.	25.	6.499	0.000	0.275
spSpec-51692-0343-369	11000.	0.	8.128	0.035	0.679
spSpec-51692-0343-385	14400.	0.	7.637	0.020	0.436
spSpec-51692-0343-393	14200	0	5,750	0.015	0.245
spSpec-51692-0343-402	10772.	3.	8.399	0.030	0.847
spSpec-51692-0343-446	19750.	0.	5.324	0.028	0.269
spSpec-51692-0343-462	18747.	2.	7.964	0.016	0.600
spSpec-51693-0344-111	9173.	20.	7.686	0.046	0.438
spSpec-51693-0344-387	11288.	44.	7.923	0.033	0.559
spSpec-51693-0344-463	40900.	69.	6.569	0.017	0.341
spSpec-51693-0344-523	14200.	0.	5.359	0.006	0.245
spSpec-51693-0344-568	17674.	19.	7.563	0.018	0.426
spSpec-51693-0346-099	33780.	52.	8.966	0.004	1.158
spSpec-51693-0346-109	11244.	37.	8.024	0.033	0.617
spSpec-51693-0346-191	50000.	0.	5.240	0.050	0.366
spSpec-51693-0346-252	24500.	45.	8.435	0.026	0.893
spSpec-51693-0346-346	40990.	65.	8.652	0.016	1.028
spSpec-51693-0346-355	17864.	40.	8.120	0.026	0.688
spSpec-51693-0346-368	11152.	21.	7.674	0.030	0.439
spSpec-51693-0346-421	57650.	549.	6.334	0.057	0.387
spSpec-51693-0346-427	11425.	13.	7.226	0.017	0.296
spSpec-51693-0346-576	8834.	40.	7.152	0.038	0.261
spSpec-51693-0346-630	20984.	127.	6.938	0.026	0.274
spSpec-51694-0338-343	10703.	36.	8.286	0.030	0.779
spSpec-51694-0338-349	14832.	10.	8.061	0.024	0.647
spSpec-51694-0338-436	32032.	95.	9.665	0.010	1.340
spSpec-51694-0338-445	16484.	7.	8.202	0.029	0.736
spSpec-51694-0338-549	42540.	171.	6.764	0.016	0.346
spSpec-51694-0352-016	10817.	8.	7.827	0.047	0.505
spSpec-51694-0352-043	7860.	20.	7.567	0.019	0.390
spSpec-51694-0352-059	23768.	16.	8.039	0.011	0.653
spSpec-51694-0352-073	21098.	91.	7.435	0.007	0.404

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51694-0352-085	13270.	24.	7.842	0.026	0.520
spSpec-51694-0352-126	17414.	44.	7.419	0.019	0.383
spSpec-51694-0352-143	16157.	23.	7.814	0.036	0.513
spSpec-51694-0352-163	11179.	7.	8.143	0.028	0.689
spSpec-51694-0352-224	9740.	4.	7.694	0.036	0.441
spSpec-51694-0352-242	41140.	113.	5.653	0.028	0.342
spSpec-51694-0352-477	30989.	62.	8.014	0.002	0.654
spSpec-51694-0352-519	27392.	39.	7.629	0.014	0.464
spSpec-51694-0352-536	18826.	60.	7.701	0.026	0.468
spSpec-51694-0352-555	23156.	50.	7.703	0.006	0.482
spSpec-51694-0352-595	17944.	23.	7.730	0.016	0.478
spSpec-51694-0352-599	31220.	81.	7.591	0.014	0.461
spSpec-51699-0349-030	12579.	7.	8.394	0.027	0.844
spSpec-51699-0349-057	9798.	12.	9.220	0.042	1.341
spSpec-51699-0349-097	14247.	17.	7.797	0.027	0.500
spSpec-51699-0349-177	21040.	73.	7.932	0.009	0.587
spSpec-51699-0349-193	42300.	219.	5.721	0.021	0.346
spSpec-51699-0349-208	12302.	48.	7.734	0.015	0.463
spSpec-51699-0349-220	6372.	1.	9.358	0.001	1.323
spSpec-51699-0349-265	13832.	9.	7.557	0.021	0.411
spSpec-51699-0349-330	8754.	2.	7.309	0.046	0.303
spSpec-51699-0349-495	17374.	35.	8.106	0.022	0.679
spSpec-51699-0349-520	10641.	20.	8.381	0.036	0.836
spSpec-51699-0349-530	18833.	42.	8.014	0.013	0.628
spSpec-51699-0349-552	24212.	19.	7.608	0.019	0.454
spSpec-51699-0349-564	15000.	0.	5.358	0.043	0.248
spSpec-51703-0353-007	40630.	39.	7.841	0.023	0.589
spSpec-51703-0353-164	61670.	563.	8.291	0.018	0.862
spSpec-51703-0353-233	10030.	18.	8.097	0.046	0.658
spSpec-51703-0353-586	20996.	74.	7.644	0.012	0.457
spSpec-51780-0351-030	14200.	0.	5.716	0.005	0.245
spSpec-51780-0351-199	10811.	7.	7.943	0.028	0.569
spSpec-51780-0351-255	51390.	267.	9.174	0.044	1.235
spSpec-51780-0351-372	11573.	11.	7.902	0.028	0.548
spSpec-51780-0351-385	21108.	87.	7.764	0.002	0.501
spSpec-51780-0351-507	21112.	77.	7.981	0.003	0.615
spSpec-51780-0351-580	11800.	0.	6.104	0.001	0.232
spSpec-51780-0351-636	19089.	46.	7.752	0.016	0.490
spSpec-51780-0360-047	11578.	10.	7.982	0.025	0.593
spSpec-51780-0360-053	40560.	35.	7.746	0.001	0.547
spSpec-51780-0360-107	15242.	5.	7.701	0.030	0.460
spSpec-51780-0360-123	16626.	31.	8.075	0.029	0.659
spSpec-51780-0360-164	12629.	9.	7.570	0.026	0.411
spSpec-51780-0360-165	16908.	21.	8.040	0.016	0.638
spSpec-51780-0360-166	15563.	43.	7.953	0.020	0.586
spSpec-51780-0360-181	13991.	4.	7.734	0.026	0.471
spSpec-51780-0360-196	14058.	50.	7.956	0.023	0.584
spSpec-51780-0360-212	13990.	8.	7.941	0.030	0.575
spSpec-51780-0360-218	12400.	0.	6.838	0.005	0.225
spSpec-51780-0360-336	11443.	14.	8.121	0.028	0.676
spSpec-51780-0360-409	11035.	10.	7.454	0.000	0.364
spSpec-51780-0360-443	14646.	30.	7.488	0.027	0.393
spSpec-51780-0360-547	11250.	11.	7.058	0.018	0.256

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51780-0360-610	10915.	27.	8.648	0.042	0.997
spSpec-51782-0391-262	8981.	5.	8.890	0.042	1.143
spSpec-51782-0391-443	27196.	48.	7.828	0.008	0.550
spSpec-51782-0391-520	10080.	43.	8.101	0.054	0.661
spSpec-51782-0391-629	14800.	0.	5.413	0.032	0.248
spSpec-51783-0395-636	26952.	62.	7.947	0.029	0.610
spSpec-51788-0355-135	10398.	1.	8.017	0.034	0.610
spSpec-51788-0355-203	7840.	19.	8.167	0.021	0.696
spSpec-51788-0355-217	19686.	22.	7.867	0.029	0.550
spSpec-51788-0355-507	41780.	174.	6.052	0.006	0.344
spSpec-51788-0355-540	32640.	117.	6.610	0.009	0.312
spSpec-51788-0355-548	6448.	7.	6.000	0.000	0.195
spSpec-51788-0355-608	63960.	319.	6.605	0.054	0.407
spSpec-51788-0386-003	15750.	0.	5.267	0.020	0.252
spSpec-51788-0386-035	16000.	0.	7.414	0.021	0.374
spSpec-51788-0386-092	9942.	19.	8.113	0.028	0.667
spSpec-51788-0386-135	10526	31	8.093	0.043	0.657
spSpec-51788-0386-170	17090	40	8 240	0.025	0.057
spSpec-51788-0386-258	7926	14	7 430	0.035	0.338
spSpec-51788-0386-297	14042	38	7.986	0.035	0.601
spSpec-51788-0386-540	10421	17	7.918	0.042	0.553
spSpec-51788-0401-086	6987	2	6 730	0.042	0.170
spSpec-51788-0401-211	10966	10	7 858	0.000	0.522
spSpec-51788-0401-242	32740	102	9,999	0.000	1 370
spSpec-51788-0401-434	11200	0	5 302	0.000	0.230
spSpec-51780-0308-338	1/200.	24	7 571	0.005	0.230
spSpec-51791-0387-005	18668	2 4 . 26	8 648	0.020	1 010
spSpec-51791-0387-166	24496	20. 62	7 267	0.012	0.355
spSpec-51791-0387-347	7304	10	7 735	0.006	0.355
spSpec-51792-0354-041	15500	0	7.8/3	0.000	0.526
spSpec-51792-0354-041	23688	25	7 363	0.014	0.320
spSpec-51792-0354-054	24084	23. 7	8.028	0.015	0.570
spSpec-51792-0354-075	10799	0	8 564	0.020	0.040
spSpec-51792-0354-124	16812	37	8 / 95	0.034	0.940
spSpec-51792-0354-124	10012.	23	8 568	0.055	0.920
spSpec-51792-0354-157	7089	16	7 249	0.000	0.275
spSpec-51792-0354-163	26820	59	8.036	0.000	0.658
spSpec-51792-0354-200	10689	۵۶۶. ۵	8 617	0.004	0.050
spSpec-51792-0354-200	18402	38	7 906	0.024	0.567
spSpec-51792-0354-223	31696	107	9.914	0.024	1 364
spSpec-51792-0354-255	17300	33	8 731	0.004	1.048
spSpec-51792-0354-264	12338	17	7 860	0.004	0.527
spSpec-51792-0354-286	10108	35	8 0/18	0.020	0.527
spSpec-51792-0354-280	19100.	0	6 257	0.015	0.040
spSpec-51792-0354-318	11512	34	7 687	0.010	0.207
spSpec_51792-0354-518	9831	20	6 703	0.025	0.101
spSpcc-51792-0354-407	16102	Δ0. Δ1	7 721	0.040	0.171
spSpec-51792-0354-427	15856	33	8 358	0.023	0.470
spSpec=51792-0354-540	10745	21	7 274	0.020	0.305
spSpec=51792-0354-545	23472	3/	7 752	0.020	0.503
spSpcc-51792-0354-505 spSpcc-51702-0354-583	15882	13 43	7 010	0.000	0.505
spSpec-51792-0354-505	21104	ч <i>э</i> . 84	7 746	0.002	0.302
spSpcc-51792-0354-595	10500	<u>⊿</u>	8 056	0.014	0.495
spopee-51792-0554-005	10390.	+.	0.050	0.039	0.054

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51792-0354-620	9944.	18.	7.439	0.040	0.353
spSpec-51792-0354-624	19250.	0.	5.305	0.030	0.266
spSpec-51792-0354-639	11000.	0.	7.662	0.000	0.435
spSpec-51793-0388-001	6374.	1.	7.750	0.000	0.454
spSpec-51793-0388-074	10301.	32.	7.970	0.019	0.582
spSpec-51793-0388-145	6372.	1.	9.258	0.002	1.269
spSpec-51793-0388-242	25500.	1.	5.677	0.002	0.290
spSpec-51793-0388-394	19092.	47.	8.198	0.021	0.737
spSpec-51793-0388-424	23068.	50.	7.897	0.012	0.574
spSpec-51793-0388-448	53750.	211.	7.359	0.036	0.471
spSpec-51793-0392-063	14000.	0.	7.834	0.027	0.517
spSpec-51793-0392-439	9682.	19.	8.072	0.023	0.641
spSpec-51793-0392-531	11080.	35.	8.082	0.034	0.651
spSpec-51793-0402-114	40910.	59.	8.097	0.017	0.719
spSpec-51793-0402-523	11814.	11.	7.717	0.031	0.454
spSpec-51793-0402-541	17040.	10.	7.823	0.019	0.520
spSpec-51794-0393-017	16750.	0.	5.676	0.022	0.256
spSpec-51794-0393-027	10613.	6.	8.020	0.038	0.613
spSpec-51794-0393-420	13355.	25.	7.903	0.035	0.553
spSpec-51794-0393-573	30681.	44.	8.015	0.004	0.655
spSpec-51795-0389-112	41320.	93.	8.885	0.014	1.123
spSpec-51795-0389-255	8832.	36.	7.507	0.005	0.371
spSpec-51795-0389-431	18754.	2.	7.613	0.023	0.443
spSpec-51795-0389-476	8936.	19.	7.813	0.024	0.492
spSpec-51795-0389-493	9554.	23.	8.131	0.031	0.678
spSpec-51795-0389-530	32417.	86.	9.313	0.011	1.275
spSpec-51795-0389-571	18166.	29.	7.498	0.020	0.410
spSpec-51810-0415-026	16811.	18.	8.071	0.016	0.657
spSpec-51810-0415-076	42020.	153.	8.532	0.002	0.971
spSpec-51810-0415-116	10750.	20.	7.889	0.033	0.538
spSpec-51810-0415-185	14800.	0.	5.668	0.006	0.248
spSpec-51810-0415-206	16416.	20.	7.805	0.024	0.510
spSpec-51810-0415-211	11082.	37.	8.070	0.035	0.644
spSpec-51810-0415-322	32424.	79.	8.476	0.001	0.927
spSpec-51810-0415-431	31542.	109.	9.850	0.020	1.359
spSpec-51810-0415-445	11321.	34.	7.835	0.036	0.511
spSpec-51810-0415-492	7146.	5.	5.999	0.000	0.200
spSpec-51810-0415-516	40450.	33.	6.520	0.010	0.340
spSpec-51810-0415-549	10600.	0.	8.624	0.034	0.983
spSpec-51810-0415-590	17662.	33.	8.175	0.021	0.721
spSpec-51810-0415-595	10480.	44.	7.871	0.046	0.528
spSpec-51811-0381-089	6626.	19.	5.000	0.000	0.197
spSpec-51811-0381-093	64800.	68.	5.655	0.067	0.410
spSpec-51811-0381-306	7069.	15.	6.821	0.043	0.182
spSpec-51811-0381-395	31976.	95.	9.262	0.018	1.262
spSpec-51811-0381-420	11725.	44.	7.450	0.036	0.366
spSpec-51811-0381-425	22784.	68.	9.999	0.026	1.369
spSpec-51811-0381-448	29708.	16.	8.610	0.030	1.002
spSpec-51811-0381-464	12194.	2.	7.877	0.032	0.536
spSpec-51811-0381-497	21026.	66.	7.810	0.015	0.523
spSpec-51811-0381-538	11575.	6.	7.561	0.020	0.404
spSpec-51811-0381-565	15457.	15.	7.733	0.027	0.474
spSpec-51811-0381-566	18272.	8.	7.538	0.015	0.421

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51811-0381-576	8684.	15.	8.346	0.031	0.815
spSpec-51811-0381-579	8312.	22.	8.244	0.004	0.747
spSpec-51811-0381-606	17250.	0.	7.837	0.022	0.528
spSpec-51811-0381-622	16500.	0.	7.838	0.024	0.526
spSpec-51811-0381-629	10866.	41.	7.704	0.010	0.447
spSpec-51811-0416-015	11069.	48.	7.706	0.024	0.449
spSpec-51811-0416-060	31563.	93.	8.047	0.005	0.674
spSpec-51811-0416-111	13600.	0.	5.702	0.003	0.242
spSpec-51811-0416-114	8938.	19.	7.530	0.016	0.381
spSpec-51811-0416-157	18818.	29.	7.625	0.017	0.446
spSpec-51811-0416-170	15522.	7.	7.518	0.033	0.406
spSpec-51811-0416-185	7278.	5.	7.217	0.000	0.267
spSpec-51811-0416-255	10405	2	7,785	0.029	0.483
spSpec-51811-0416-420	11562	18	7.932	0.029	0.565
spSpec-51811-0416-431	18426	20	8 292	0.021	0.796
spSpec-51811-0416-590	7707	6	8.882	0.059	1.138
spSpec-51811-0422-048	25988	1	7.605	0.016	0.450
spSpec-51811-0422-040	9704	14	8 874	0.033	1 1 3 3
spSpec-51811-0422-074	43800	100	9.128	0.032	1 223
spSpec-51811-0422-543	10012	5	9 4 4 9	0.030	1.225
spSpec-51812-0404-131	8370	18	0 506	0.000	1.475
spSpec-51812-0404-151	16757	3	8 4 1 4	0.001	0.870
spSpec-51812-0404-505	25868	10	7 022	0.001	0.594
spSpec-51812-0404-018 spSpec-51816-0382-003	13702	52	7.700	0.020	0.361
spSpec-51816-0382-005	18134	70 70	7.678	0.020	0.301
spSpec-51816-0382-040	10454		7.631	0.010	0.424
spSpec-51816-0382-128	853/	20. 16	6.961	0.034	0.424
spSpec-51816-0382-126	15206	22	7 457	0.020	0.217
spSpec-51816-0382-180	31479	95	7.681	0.025	0.305
spSpec-51816-0382-208	27704	22	7 753	0.000	0.490
spSpec-51816-0382-215	14200	0	5 599	0.001	0.245
spSpec-51816-0382-218	10211	3	8.078	0.002	0.245
spSpec-51816-0382-245	16422	22	7 583	0.021	0.047
spSpec-51816-0382-289	11/66	33	8.450	0.021	0.427
spSpec-51816-0382-332	11/00.	28	7 787	0.004	0.070
spSpec-51816-0382-334	11507	20.	7 849	0.029	0.519
spSpec-51816-0382-375	11607	18	9 142	0.020	1 294
spSpec-51816-0382-501	17310	30	8 160	0.020	0.711
spSpec-51816-0382-502	25360	48 20.	7 368	0.025	0.383
spSpec-51816-0382-536	11084	-+0. 54	7.668	0.037	0.303
spSpec-51816-0382-561	11004.	19	8.091	0.034	0.457
spSpec-51816-0382-580	1/600	0	5 257	0.034	0.037
spSpec-51816-0306-055	23824	10	8 766	0.020	1.061
spSpec-51816-0396-068	1/683	56	7 123	0.040	0.371
spSpec-51816-0396-235	51030	177	8 728	0.022	1.080
spSpec=51816_0306_262	11140	28	7 764	0.007	0.474
spSpcc-51816-0396-460	9351	20. 29	8 717	0.014	1 030
spSpcc-51816-0396-508	69670	111	7 935	0.011	0 705
spSpec-51816_0405_026	18450	19	7 992	0.018	0.615
spSpec_51816_0/05_020	15232	5	8.060	0.021	0.647
spSpcc-51816-0405-051	31913	5. 104	9 999	0.021	1 370
spSpec-51816-0405-301	9627	29	8 353	0.000	0.820
spSpec-51816-0405-501	26700	29. 68	7 553	0.009	0.434
SPSPCC 51010 0405 502	1 20700.	00.	,	0.007	0.154

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51816-0405-519	13971.	17.	7.463	0.025	0.381
spSpec-51816-0405-601	14524.	35.	7.899	0.025	0.553
spSpec-51816-0410-023	23804.	14.	7.786	0.027	0.519
spSpec-51816-0410-049	17260.	5.	8.146	0.037	0.703
spSpec-51816-0410-063	14200.	0.	7.823	0.024	0.512
spSpec-51816-0410-078	10210.	5.	8.454	0.034	0.880
spSpec-51816-0410-104	13325	34	8.429	0.028	0.865
spSpec-51816-0410-135	13400.	0.	7.848	0.024	0.524
spSpec-51816-0410-139	11375	8	7.687	0.021	0.443
spSpec-51816-0410-193	17108	39	8.231	0.024	0.755
spSpec-51816-0410-219	16420.	26.	8.147	0.028	0.702
spSpec-51816-0410-390	10518.	23.	7.749	0.000	0.466
spSpec-51816-0410-499	12325	57	7,709	0.038	0.452
spSpec-51816-0410-501	14948.	25.	7.922	0.024	0.567
spSpec-51816-0410-503	33490.	60.	8.328	0.008	0.842
spSpec-51816-0410-573	17720.	9.	7.778	0.022	0.500
spSpec-51816-0410-578	16758	2	8.326	0.034	0.814
spSpec-51817-0399-040	23756	16	8.091	0.017	0.683
spSpec-51817-0399-121	74320	240	8 7 5 7	0.013	1.081
spSpec-51817-0399-373	19547	23	7.646	0.028	0.454
spSpec-51817-0411-017	19778	13	8 914	0.003	1 1 2 9
spSpec-51817-0411-178	9076	29	8.952	0.018	1.180
spSpec-51817-0418-065	25112	51	7.870	0.013	0.565
spSpec-51817-0418-223	18727	8	8.282	0.019	0.789
spSpec-51817-0418-242	24900	73	7 162	0.009	0.329
spSpec-51817-0418-247	11375	9	7.803	0.025	0.495
spSpec-51817-0418-297	13800	0	9.169	0.033	1.230
spSpec-51817-0418-346	13764.	17.	7.722	0.031	0.466
spSpec-51817-0418-355	33900.	52.	7.670	0.013	0.499
spSpec-51817-0418-386	10507.	23.	7.853	0.029	0.518
spSpec-51817-0418-388	13776.	8.	8.092	0.029	0.663
spSpec-51817-0418-400	32630.	80.	7.735	0.001	0.522
spSpec-51817-0418-469	9218.	9.	8.571	0.030	0.951
spSpec-51817-0418-476	19873.	40.	8.250	0.017	0.771
spSpec-51817-0418-494	25012.	54.	7.899	0.009	0.580
spSpec-51817-0418-522	21052.	65.	8.246	0.000	0.771
spSpec-51817-0418-537	14793.	3.	8.016	0.020	0.620
spSpec-51817-0418-561	11451.	29.	7.524	0.025	0.391
spSpec-51818-0358-001	30142.	9.	7.442	0.000	0.419
spSpec-51818-0358-046	21124.	115.	7.471	0.013	0.413
spSpec-51818-0358-052	10580.	10.	7.942	0.038	0.568
spSpec-51818-0358-104	12002.	1.	7.524	0.028	0.393
spSpec-51818-0358-109	18048.	25.	7.898	0.020	0.561
spSpec-51818-0358-126	50420.	67.	9.360	0.085	1.261
spSpec-51818-0358-141	10474.	24.	7.586	0.032	0.409
spSpec-51818-0358-346	23004.	51.	8.000	0.018	0.629
spSpec-51818-0358-379	15135.	28.	7.760	0.019	0.485
spSpec-51818-0358-392	10610.	4.	7.499	0.002	0.378
spSpec-51818-0358-405	21035.	61.	8.134	0.014	0.702
spSpec-51818-0358-459	15639.	36.	8.175	0.019	0.717
spSpec-51818-0358-466	13200.	0.	8.178	0.026	0.715
spSpec-51818-0358-545	11816.	9.	7.692	0.028	0.446
spSpec-51818-0358-556	15740.	5.	8.190	0.037	0.727

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51818-0358-599	9921.	29.	8.677	0.057	1.014
spSpec-51818-0358-640	19380.	46.	7.951	0.016	0.594
spSpec-51818-0383-111	10774.	11.	8.524	0.025	0.923
spSpec-51818-0383-125	15684.	19.	8.007	0.031	0.617
spSpec-51818-0383-186	24248.	18.	9.477	0.028	1.311
spSpec-51818-0383-208	11350.	16.	8.089	0.026	0.656
spSpec-51818-0383-215	18000.	0.	5.326	0.030	0.261
spSpec-51818-0383-216	27312.	37.	8.780	0.004	1.069
spSpec-51818-0383-323	8430.	14.	7.846	0.030	0.507
spSpec-51818-0383-372	10995.	1.	7.592	0.022	0.413
spSpec-51818-0383-614	21019.	60.	8.325	0.014	0.820
spSpec-51818-0383-620	15500.	0.	7.866	0.023	0.538
spSpec-51818-0383-638	16884.	30.	8.010	0.020	0.621
spSpec-51820-0400-060	13789.	5.	7.765	0.019	0.484
spSpec-51820-0400-136	10595.	2.	7.674	0.034	0.438
spSpec-51820-0400-517	44460.	50.	7.595	0.034	0.501
spSpec-51820-0407-029	14614.	7.	7.753	0.024	0.481
spSpec-51820-0407-039	10078.	40.	8.067	0.049	0.640
spSpec-51820-0407-145	16086.	41.	8.236	0.019	0.756
spSpec-51820-0407-420	12741.	18.	7.517	0.010	0.394
spSpec-51820-0407-507	14400.	0.	8.805	0.026	1.078
spSpec-51820-0407-615	10638.	12.	7.797	0.013	0.490
spSpec-51820-0429-296	8876.	23.	8.781	0.009	1.077
spSpec-51820-0429-311	31920.	98.	9.768	0.015	1.352
spSpec-51820-0429-325	11334.	25.	7.696	0.026	0.446
spSpec-51820-0429-443	24156.	13.	7.857	0.022	0.557
spSpec-51821-0359-055	33830.	60.	7.117	0.014	0.347
spSpec-51821-0359-178	11063.	50.	7.992	0.008	0.597
spSpec-51821-0359-194	14413.	7.	8.166	0.030	0.710
spSpec-51821-0359-197	24300.	30.	7.399	0.015	0.408
spSpec-51821-0359-273	20932.	109.	6.287	0.026	0.247
spSpec-51821-0359-301	10905.	32.	7.753	0.002	0.468
spSpec-51821-0359-389	10230.	9.	8.333	0.042	0.807
spSpec-51821-0359-410	10295.	25.	7.307	0.022	0.312
spSpec-51821-0359-437	10998.	0.	7.585	0.003	0.410
spSpec-51821-0359-460	11045.	25.	7.919	0.028	0.556
spSpec-51821-0359-491	13162.	11.	7.841	0.027	0.519
spSpec-51821-0359-516	22980.	63.	7.500	0.025	0.425
spSpec-51821-0359-523	11129.	26.	8.048	0.023	0.631
spSpec-51821-0359-549	10654.	35.	7.693	0.022	0.443
spSpec-51821-0359-569	11897.	42.	7.825	0.028	0.507
spSpec-51821-0384-008	14461.	22.	7.797	0.027	0.501
spSpec-51821-0384-151	12720.	25.	7.810	0.027	0.502
spSpec-51821-0384-271	9422.	25.	7.966	0.029	0.578
spSpec-51821-0384-383	21028.	78.	7.681	0.009	0.468
spSpec-51821-0384-599	14824.	13.	8.160	0.031	0.706
spSpec-51821-0408-015	14754.	22.	8.181	0.027	0.719
spSpec-51821-0408-023	8056.	17.	7.465	0.016	0.351
spSpec-51821-0408-068	24036.	4.	7.156	0.017	0.325
spSpec-51821-0408-076	14991.	5.	8.177	0.060	0.718
spSpec-51821-0408-094	15250.	0.	5.298	0.030	0.249
spSpec-51821-0408-111	16398.	32.	8.209	0.018	0.740
spSpec-51821-0408-145	11404.	4.	8.219	0.035	0.738

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51821-0408-148	10102.	31.	8.178	0.041	0.708
spSpec-51821-0408-246	17500.	0.	7.824	0.022	0.522
spSpec-51821-0408-270	8105.	40.	7.251	0.001	0.282
spSpec-51821-0408-329	12606.	4.	7.668	0.032	0.441
spSpec-51821-0408-420	12742.	43.	7.964	0.031	0.585
spSpec-51821-0408-461	17835.	26.	8.360	0.023	0.837
spSpec-51821-0408-464	9256.	2.	9.272	0.046	1.373
spSpec-51821-0408-486	17228.	8.	8.257	0.024	0.772
spSpec-51821-0417-084	17107.	36.	8.900	0.031	1.120
spSpec-51821-0417-231	12600.	0.	5.677	0.002	0.236
spSpec-51821-0417-242	18424.	19.	8.332	0.026	0.820
spSpec-51821-0417-308	8466.	8.	8.621	0.042	0.981
spSpec-51821-0417-332	10884.	34.	7.823	0.034	0.503
spSpec-51821-0417-365	7088.	26.	5.823	0.033	0.200
spSpec-51821-0417-365	7180.	12.	6.231	0.033	0.201
spSpec-51821-0417-439	13670.	59.	7.955	0.028	0.583
spSpec-51821-0417-535	18918.	21.	8.057	0.016	0.653
spSpec-51821-0417-596	7564.	13.	8.298	0.019	0.750
spSpec-51821-0421-208	26372.	43.	7.382	0.019	0.391
spSpec-51821-0421-463	12064.	25.	7.629	0.029	0.428
spSpec-51821-0421-595	24176.	13.	8.288	0.016	0.802
spSpec-51821-0423-242	11547.	19.	7.896	0.028	0.545
spSpec-51868-0441-012	18166.	34.	7.898	0.016	0.562
spSpec-51868-0441-033	88270.	817.	7.457	0.051	0.599
spSpec-51868-0441-141	12814.	11.	8.048	0.034	0.634
spSpec-51868-0441-280	14400.	0.	7.614	0.023	0.429
spSpec-51868-0441-300	13588.	7.	7.721	0.026	0.465
spSpec-51868-0441-397	20876.	98.	5.229	0.024	0.274
spSpec-51868-0441-556	15168.	21.	7.825	0.018	0.516
spSpec-51868-0441-586	16396.	26.	8.090	0.020	0.667
spSpec-51868-0441-639	20980.	61.	8.149	0.015	0.711
spSpec-51869-0406-018	9332.	42.	7.311	0.051	0.308
spSpec-51869-0406-031	6450.	5.	6.186	0.040	0.195
spSpec-51869-0406-034	21220.	117.	7.713	0.008	0.480
spSpec-51869-0406-080	11831.	15.	8.168	0.029	0.706
spSpec-51869-0406-152	41590.	118.	8.142	0.010	0.745
spSpec-51869-0406-179	18133.	41.	7.875	0.017	0.550
spSpec-51869-0406-235	10309.	25.	8.290	0.018	0.780
spSpec-51869-0406-251	11320.	28.	7.711	0.022	0.451
spSpec-51869-0406-259	18702.	14.	7.827	0.017	0.526
spSpec-51869-0406-285	7892.	21.	7.715	0.014	0.444
spSpec-51869-0406-298	9012.	6.	7.662	0.038	0.429
spSpec-51869-0406-354	32860.	70.	7.670	0.005	0.496
spSpec-51869-0406-385	10809.	6.	8.198	0.039	0.723
spSpec-51869-0406-494	17309.	15.	7.827	0.019	0.523
spSpec-51869-0406-505	10024.	14.	7.802	0.046	0.490
spSpec-51869-0406-509	26412.	47.	7.468	0.006	0.414
spspec-51869-0406-558	11467.	29.	7.834	0.030	0.511
spspec-51869-0437-013	13286.	29.	8.122	0.027	0.680
spspec-51869-0437-063	9448.	14.	8.225	0.025	0.737
spspec-51869-0437-102	14800.	0.	8.155	0.024	0.691
spspec-51869-0457-115	80/2.	17.	/.804	0.030	0.518
spspec-31009-043/-183	10980.	12.	0.031	0.030	0.020

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51869-0437-244	11134.	30.	8.421	0.030	0.861
spSpec-51869-0437-269	24140.	11.	8.029	0.021	0.648
spSpec-51869-0437-298	17546.	18.	7.777	0.016	0.499
spSpec-51869-0437-326	32200.	83.	7.968	0.002	0.632
spSpec-51869-0437-345	15378.	27.	8.031	0.020	0.630
spSpec-51869-0437-369	12000.	0.	6.173	0.002	0.233
spSpec-51869-0437-370	16136.	29.	8.092	0.030	0.668
spSpec-51869-0437-383	10151.	17.	8.855	0.035	1.122
spSpec-51869-0437-498	18242.	5.	7.471	0.015	0.402
spSpec-51869-0437-519	11730.	36.	7.717	0.029	0.454
spSpec-51869-0437-540	12600.	0.	5.744	0.003	0.236
spSpec-51869-0437-547	13480.	63.	9.999	0.000	1.811
spSpec-51869-0437-586	14648.	30.	8.005	0.008	0.614
spSpec-51869-0437-615	8972.	7.	8.146	0.039	0.685
spSpec-51869-0437-625	14000.	0.	7.427	0.022	0.369
spSpec-51871-0403-085	42040.	153.	8.658	0.007	1.031
spSpec-51871-0403-270	9416.	25.	7.521	0.009	0.380
spSpec-51871-0403-284	7099.	6.	5.999	0.000	0.200
spSpec-51871-0409-142	15712.	13.	7.985	0.019	0.604
spSpec-51871-0409-290	8233.	4.	8.265	0.021	0.760
spSpec-51871-0409-390	17304.	37.	7.719	0.016	0.472
spSpec-51871-0409-539	14791.	2.	7.819	0.017	0.512
spSpec-51871-0409-592	7154.	11.	7.634	0.026	0.413
spSpec-51871-0420-009	13200.	0.	5.754	0.003	0.240
spSpec-51871-0420-060	14224.	15.	7.915	0.032	0.561
spSpec-51871-0420-137	12121.	30.	7.913	0.027	0.555
spSpec-51871-0420-242	18326.	27.	7.799	0.028	0.512
spSpec-51871-0420-278	23756.	15.	8.244	0.002	0.774
spSpec-51871-0420-281	41780.	138.	7.981	0.002	0.659
spSpec-51871-0420-388	12096.	123.	8.233	0.023	0.747
spSpec-51871-0420-453	10522.	34.	8.183	0.042	0.713
spSpec-51871-0420-484	15506.	2.	8.050	0.019	0.642
spSpec-51871-0420-591	10231.	15.	7.916	0.030	0.552
spSpec-51873-0433-013	13346.	28.	9.999	0.000	1.810
spSpec-51873-0433-023	8312.	23.	7.523	0.014	0.375
spSpec-51873-0433-040	16969.	9.	8.030	0.025	0.633
spSpec-51873-0433-074	25396.	33.	8.656	0.013	1.019
spSpec-51873-0433-089	10654.	38.	8.740	0.034	1.053
spSpec-51873-0433-122	11987.	10.	8.008	0.025	0.609
spSpec-51873-0433-130	7880.	36.	6.788	0.077	0.185
spSpec-51873-0433-133	39570.	26.	6.913	0.000	0.336
spSpec-51873-0433-137	27376.	43.	7.619	0.013	0.460
spSpec-51873-0433-140	10240.	21.	8.204	0.022	0.725
spSpec-51873-0433-152	12200.	0.	7.589	0.031	0.416
spSpec-518/3-0433-154	26168.	16.	7.771	0.019	0.521
spSpec-51873-0433-262	15220.	10.	8.308	0.026	0.801
spSpec-51873-0433-272	18/55.	3.	7.398	0.020	0.383
spspec-518/3-0433-289	19094.	44.	8.003	0.015	0.622
spSpec-518/3-0433-304	1/250.	0.	5.830	0.026	0.258
spspec-518/3-0433-324	12652.	19.	1.557	0.028	0.40/
spspec-518/3-0433-335	51845.	101.	9.819	0.017	1.556
spspec-518/3-0433-402	10/30.	0. 24	7.434	0.020	0.384
spopee-318/3-0433-480	13032.	∠0.	1.749	0.024	0.481

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51873-0433-495	9949.	15.	7.657	0.041	0.431
spSpec-51873-0433-502	10175.	8.	8.001	0.002	0.600
spSpec-51873-0433-534	14328.	30.	7.714	0.021	0.464
spSpec-51873-0433-547	12884.	56.	7.655	0.028	0.438
spSpec-51873-0433-617	12616.	6.	8.116	0.030	0.675
spSpec-51873-0443-099	21028.	69.	7.981	0.014	0.615
spSpec-51873-0443-560	12492.	50.	7.728	0.019	0.460
spSpec-51873-0445-378	19250.	0.	6.248	0.018	0.266
spSpec-51873-0445-451	30107.	7.	7.922	0.028	0.604
spSpec-51873-0445-484	7500.	0.	7.559	0.096	0.385
spSpec-51877-0385-007	32473.	86.	7.499	0.000	0.442
spSpec-51877-0385-124	11436.	17.	7.779	0.024	0.482
spSpec-51877-0385-129	32730.	78.	8.043	0.003	0.674
spSpec-51877-0385-253	13211.	8.	8.314	0.033	0.796
spSpec-51877-0385-361	25100.	48.	8.262	0.025	0.788
spSpec-51877-0385-481	11917.	26.	8.113	0.029	0.672
spSpec-51877-0385-535	33650.	67.	7.108	0.011	0.344
spSpec-51877-0430-013	15500.	0.	5.372	0.036	0.250
spSpec-51877-0430-243	7934.	11.	7.758	0.004	0.463
spSpec-51877-0431-069	18451.	18.	8.404	0.018	0.866
spSpec-51877-0431-091	12800.	0.	7.634	0.025	0.432
spSpec-51877-0431-133	18151.	32.	8.239	0.017	0.762
spSpec-51877-0431-230	8921.	18.	7.923	0.045	0.552
spSpec-51877-0431-233	11666.	31.	8.086	0.029	0.655
spSpec-51877-0431-263	9923.	22.	8.902	0.035	1.150
spSpec-51877-0431-278	23516.	26.	8.749	0.000	1.053
spSpec-51877-0431-445	28620.	66.	7.880	0.014	0.579
spSpec-51877-0431-472	8494.	1.	8.767	0.042	1.069
spSpec-51877-0431-492	11978.	18.	8.211	0.031	0.733
spSpec-51877-0431-512	31276.	89.	7.686	0.007	0.498
spSpec-51877-0431-527	32053.	85.	9.107	0.007	1.213
spSpec-51877-0431-544	16500.	0.	7.846	0.030	0.530
spSpec-51877-0431-571	15308.	33.	7.906	0.028	0.559
spSpec-51877-0431-601	19172.	26.	8.505	0.000	0.929
spSpec-51877-0431-629	39900.	6.	8.130	0.046	0.735
spSpec-51877-0431-633	8848.	23.	9.238	0.041	1.352
spSpec-51877-0439-008	11641.	33.	7.979	0.021	0.591
spSpec-51877-0439-032	17098.	29.	8.102	0.026	0.676
spSpec-51877-0439-037	11738.	27.	7.997	0.003	0.602
spSpec-51877-0439-060	8316.	20.	8.133	0.034	0.676
spSpec-51877-0439-081	14200.	0.	7.905	0.023	0.555
spSpec-51877-0439-188	7892.	17.	7.987	0.004	0.586
spSpec-51877-0439-191	38140.	84.	8.215	0.004	0.781
spSpec-51877-0439-206	23352.	33.	8.542	0.005	0.956
spSpec-51877-0439-255	10233.	21.	7.920	0.031	0.554
spSpec-51877-0439-278	9474.	8.	7.614	0.034	0.415
spSpec-51877-0439-295	12173.	18.	8.236	0.022	0.750
spSpec-51877-0439-351	13000.	0.	5.683	0.002	0.239
spSpec-51877-0439-387	24416.	41.	7.729	0.004	0.497
spSpec-51877-0439-398	37500.	153.	6.000	0.000	0.329
spSpec-51877-0439-518	75000.	153.	6.500	0.000	0.452
spSpec-51877-0439-523	33350.	65.	7.709	0.004	0.513
spSpec-51877-0439-583	10670.	27.	7.708	0.002	0.449

Tabela 10.1 (continuação)

ĺ

Nome	$T_{\rm ef}$	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51877-0439-586	10777.	5.	7.820	0.000	0.502
spSpec-51877-0439-608	11657.	40.	7.788	0.030	0.488
spSpec-51877-0439-611	18377.	35.	7.514	0.017	0.415
spSpec-51877-0439-614	21080.	67.	8.255	0.015	0.776
spSpec-51879-0419-098	11351.	41.	8.245	0.014	0.754
spSpec-51879-0419-114	7450.	6.	8.804	0.022	1.023
spSpec-51879-0419-122	7502.	0.	7.020	0.064	0.221
spSpec-51879-0419-152	15172.	26.	7.729	0.031	0.471
spSpec-51879-0419-180	15836.	102.	9.999	0.000	1.369
spSpec-51879-0419-237	15180.	31.	7.933	0.026	0.573
spSpec-51879-0419-280	15974.	12.	7.699	0.021	0.461
spSpec-51879-0419-318	9384.	42.	7.997	0.001	0.596
spSpec-51879-0419-321	13596.	2.	8.309	0.007	0.799
spSpec-51879-0419-339	15250.	0.	5.261	0.024	0.249
spSpec-51879-0419-399	22352.	78.	8.569	0.057	0.971
spSpec-51879-0419-601	15494.	2.	8.044	0.039	0.638
spSpec-51882-0435-017	10600.	0.	8.131	0.033	0.680
spSpec-51882-0435-020	14122.	43.	8.223	0.023	0.745
spSpec-51882-0435-024	21060.	66.	7.867	0.012	0.553
spSpec-51882-0435-129	16298.	13.	7.812	0.022	0.513
spSpec-51882-0435-135	54170.	145.	7.501	0.001	0.510
spSpec-51882-0435-161	17250.	0.	6.255	0.019	0.258
spSpec-51882-0435-215	16889.	40.	7.930	0.025	0.576
spSpec-51882-0435-237	21124.	83.	7.809	0.007	0.523
spSpec-51882-0435-307	7869.	18.	7.969	0.007	0.575
spSpec-51882-0435-357	12222.	18.	8.035	0.031	0.626
spSpec-51882-0435-362	46580.	216.	7.470	0.005	0.477
spSpec-51882-0435-407	11800.	0.	7.380	0.027	0.342
spSpec-51882-0435-411	12651.	25.	7.384	0.026	0.348
spSpec-51882-0435-442	24684.	64.	7.836	0.013	0.548
spSpec-51882-0435-444	15070.	20.	7.811	0.018	0.509
spSpec-51882-0435-450	18740.	3.	8.111	0.017	0.684
spSpec-51882-0435-474	27412.	38.	7.770	0.003	0.523
spSpec-51882-0435-569	14000.	0.	5.625	0.004	0.244
spSpec-51882-0435-602	10000.	0.	7.862	0.033	0.521
spSpec-51882-0442-475	23840.	11.	7.937	0.014	0.597
spSpec-51882-0442-518	19490.	4.	8.938	0.002	1.140
spSpec-51883-0271-121	24212.	19.	7.960	0.022	0.610
spSpec-51883-0271-123	18773.	9.	8.117	0.027	0.687
spSpec-51883-0271-181	13881.	41.	7.890	0.026	0.546
spSpec-51883-0271-381	24824.	55.	8.312	0.006	0.818
spSpec-51883-0428-138	19210.	20.	7.713	0.027	0.474
spSpec-51883-0428-231	16876.	44.	7.895	0.019	0.557
spSpec-51883-0428-246	27484.	31.	8.418	0.015	0.887
spSpec-51883-0428-289	11095.	24.	8.150	0.074	0.693
spSpec-51883-0428-354	11448.	12.	7.837	0.000	0.512
spSpec-51883-0428-355	6764.	2.	6.252	0.091	0.197
spSpec-51883-0428-364	7334.	5.	5.999	0.000	0.202
spSpec-51883-0428-480	11520.	45.	8.462	0.028	0.885
spSpec-51883-0428-492	23972.	2.	8.292	0.014	0.804
spSpec-51883-0428-508	16053.	37.	8.505	0.035	0.925
spSpec-51883-0428-560	14465.	38.	8.033	0.028	0.629
spSpec-51883-0428-606	19832.	44.	8.270	0.020	0.783

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51883-0428-621	18345.	55.	7.659	0.016	0.450
spSpec-51883-0436-045	23276.	35.	9.512	0.001	1.317
spSpec-51883-0436-157	21256.	106.	7.907	0.017	0.575
spSpec-51883-0436-184	45680.	73.	8.112	0.038	1.113
spSpec-51883-0436-236	31318.	92.	7.721	0.003	0.512
spSpec-51883-0436-261	41730.	173.	5.935	0.007	0.344
spSpec-51883-0436-293	13877.	54.	7.943	0.030	0.576
spSpec-51883-0436-358	14364.	9.	7.827	0.028	0.515
spSpec-51883-0436-529	11898.	37.	7.456	0.027	0.368
spSpec-51883-0436-583	12574.	14.	7.912	0.032	0.556
spSpec-51883-0436-614	9736.	5.	7.834	0.043	0.505
spSpec-51883-0436-616	11654.	37.	7.751	0.001	0.469
spSpec-51883-0436-617	15039.	17.	8.289	0.025	0.788
spSpec-51883-0444-435	16750.	0.	7.399	0.019	0.373
spSpec-51883-0444-480	44590.	41.	7.155	0.037	0.391
spSpec-51883-0444-533	11674.	54.	7.935	0.030	0.566
spSpec-51883-0444-582	15000.	0.	5.676	0.021	0.248
spSpec-51883-0444-598	23716.	18.	8.187	0.016	0.740
spSpec-51884-0432-027	11156.	30.	7.919	0.044	0.556
spSpec-51884-0432-036	13351.	33.	9,999	0.000	1.810
spSpec-51884-0432-092	16230	8	7.971	0.031	0.598
spSpec-51884-0432-117	15149.	24.	8.035	0.018	0.632
spSpec-51884-0432-134	18282.	10.	7.543	0.023	0.422
spSpec-51884-0432-378	28016.	1.	7.703	0.028	0.496
spSpec-51884-0432-391	49600	0	8.204	0.028	1.116
spSpec-51884-0432-403	15524.	13.	7.963	0.026	0.592
spSpec-51884-0432-444	17749.	1.	7.957	0.021	0.593
spSpec-51884-0432-493	14031.	22.	7.942	0.025	0.576
spSpec-51884-0432-572	12857.	35.	7.919	0.030	0.560
spSpec-51884-0432-593	16750.	0.	7.852	0.024	0.534
spSpec-51884-0432-611	16750.	0.	7.625	0.016	0.438
spSpec-51884-0438-033	31878.	88.	8.963	0.003	1.156
spSpec-51884-0438-063	44600.	88.	5.284	0.003	0.352
spSpec-51884-0438-119	21176.	106.	7.810	0.014	0.524
spSpec-51884-0438-125	9126.	27.	8.143	0.042	0.684
spSpec-51884-0438-150	21132.	123.	7.527	0.018	0.426
spSpec-51884-0438-391	8344.	23.	8.354	0.031	0.820
spSpec-51884-0438-401	9214.	6.	9.685	0.042	1.621
spSpec-51884-0438-423	19804.	21.	7.801	0.028	0.515
spSpec-51884-0438-471	32396.	95.	9.999	0.000	1.370
spSpec-51884-0438-485	7872.	16.	8.851	0.000	1.119
spSpec-51884-0438-585	14565.	19.	7.934	0.024	0.573
spSpec-51884-0438-634	44730.	25.	8.358	0.059	0.875
spSpec-51885-0434-147	12800.	0.	7.623	0.028	0.428
spSpec-51885-0434-170	33070.	70.	8.003	0.000	0.653
spSpec-51885-0434-176	14713.	24.	7.765	0.021	0.486
spSpec-51885-0434-194	13097.	71.	7.668	0.031	0.442
spSpec-51885-0434-220	56520.	402.	8.244	0.002	0.828
spSpec-51885-0434-306	11206.	3.	8.289	0.029	0.782
spSpec-51885-0434-309	15910.	27.	8.116	0.031	0.682
spSpec-51885-0434-311	19500.	0.	6.249	0.021	0.267
spSpec-51885-0434-323	11354.	13.	7.336	0.027	0.326
spSpec-51885-0434-346	28220.	21.	7.813	0.025	0.545

Tabela 10.1 (continuação)

	Nome	T _{ef}	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Mass
sp	Spec-51885-0434-367	14014.	27.	8.773	0.027	1.065
sp	Spec-51885-0434-370	10218.	7.	7.976	0.000	0.586
sp	Spec-51885-0434-384	13631.	17.	8.055	0.030	0.641
sp	Spec-51885-0434-401	18068.	22.	8.373	0.003	0.846
sp	Spec-51885-0434-421	11104.	20.	8.080	0.000	0.650
sp	Spec-51885-0434-445	19376.	37.	8.011	0.013	0.628
sp	Spec-51885-0434-501	8715.	12.	8.063	0.032	0.634
sp	Spec-51885-0434-511	9964.	12.	8.294	0.023	0.782
sp	Spec-51885-0434-566	8086.	35.	7.479	0.009	0.357
sn	Spec-51885-0434-583	21108	82	7.883	0.013	0.562
sn	Spec-51885-0440-130	15750	0	5.758	0.018	0.252
sp	Spec-51885-0440-210	32920.	72.	8.136	0.008	0.727
sn	Spec-51885-0440-259	37200	119	7 878	0.010	0.598
sn	Spec-51885-0440-275	6915	9	8.000	0.000	0.598
sn	Spec-51885-0440-389	51600	337	7 586	0.025	0.530
sn	Spec-51885-0440-401	34240	38	7.696	0.012	0.530
sp	Spec-51885-0440-422	9574	30	8 077	0.012	0.645
sp sp	Spec-51885-0440-567	10214	5). 6	7 808	0.033	0.542
sp sp	Spec-51803-0424-037	13/0/	0. 2	7.508	0.033	0.394
sp	Spec 51893-0424-037	18774	13	7.508	0.044	0.594
sp	Spec-51895-0424-108	7192	15. o	7.907	0.010	0.012
sp	Spec-51895-0424-152	15401	0. 27	7.057	0.000	0.227
sp	Spec-51895-0424-200	21280	27. 152	7.025	0.022	0.510
sp	Spec-51895-0424-555	11164	155.	7.915	0.019	0.379
sp	Spec-51895-0424-404	27004	15.	7.709	0.020	0.430
sp	Spec-51895-0424-540	27004.	6U.	7.580	0.009	0.445
sp	Spec-51895-0424-506	15/50.	0. 50	7.038	0.022	0.439
sp	Spec-51895-0424-018	9838.		/.033	0.037	0.425
sp	Spec-51898-0425-049	8994.	2. 1	8.272	0.039	0.767
sp	Spec-51898-0425-098	1(70)	1.	1.128	0.000	0.449
sp	Spec-51898-0425-108	16/06.	18.	8.436	0.053	0.884
sp	Spec-51898-0425-149	10921.	36.	8.159	0.035	0.699
sp	Spec-51898-0425-18/	14147.	27.	8.003	0.005	0.611
sp	Spec-51898-0425-211	110/2.	41.	7.673	0.028	0.439
sp	Spec-51898-0425-267	18732.	6.	7.856	0.017	0.542
sp	Spec-51898-0425-293	15508.	4.	8.207	0.025	0.737
sp	Spec-51898-0425-342	13456.	24.	7.548	0.068	0.407
sp	Spec-51898-0425-353	17250.	0.	7.152	0.018	0.312
sp	Spec-51898-0425-485	19331.	27.	8.079	0.018	0.666
sp	Spec-51898-0425-515	41140.	79.	7.642	0.013	0.509
sp	Spec-51898-0425-517	11000.	0.	8.398	0.031	0.847
sp	Spec-51898-0425-518	16368.	32.	8.093	0.029	0.669
sp	Spec-51898-0425-599	9094.	24.	9.148	0.047	1.298
sp	Spec-51899-0446-286	24280.	22.	8.200	0.011	0.749
sp	Spec-51899-0446-289	7137.	5.	5.999	0.000	0.200
sp	Spec-51899-0446-547	24240.	20.	8.010	0.004	0.638
sp	Spec-51900-0278-242	30583.	38.	7.825	0.023	0.557
sp	Spec-51900-0278-330	23736.	18.	7.878	0.018	0.566
sp	Spec-51900-0278-367	14200.	0.	7.828	0.036	0.515
sp	Spec-51900-0278-523	6374.	1.	6.149	0.001	0.195
sp	Spec-51900-0278-593	17033.	10.	8.055	0.025	0.648
sp	Spec-51900-0390-424	8108.	18.	8.882	0.027	1.138
sp	Spec-51900-0390-455	9357.	31.	8.836	0.036	1.110
sp	Spec-51900-0427-039	12280.	54.	8.186	0.030	0.718

Tabela 10.1 (continuação)

Nome		$T_{\rm ef}$	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51900-042	27-042	12508.	59.	7.949	0.033	0.576
spSpec-51900-042	27-133	40470.	29.	9.013	0.004	1.179
spSpec-51900-042	27-147	24404.	42.	7.573	0.017	0.435
spSpec-51900-042	27-153	15591.	49.	7.906	0.024	0.559
spSpec-51900-042	27-222	14364.	13.	8.030	0.019	0.627
spSpec-51900-042	27-297	8130.	19.	8.205	0.000	0.721
spSpec-51900-042	27-306	10786.	7.	8.423	0.034	0.861
spSpec-51900-042	27-320	15000.	0.	5.354	0.029	0.248
spSpec-51900-042	27-384	11729	28	7.975	0.019	0.589
spSpec-51900-042	27-416	11439	18	7.551	0.027	0.400
spSpec-51900-042	27-438	16643.	35.	8.160	0.004	0.710
spSpec-51900-042	27-462	10566.	15.	8.201	0.031	0.724
spSpec-51900-042	27-512	18298	24	8 4 1 3	0.017	0.871
spSpec-51900-042	27-553	10740.	28.	7.970	0.034	0.584
spSpec-51900-042	27-564	13800.	0.	5.640	0.003	0.243
spSpec-51900-042	27-635	8008.	2.	7.814	0.061	0.489
spSpec-51900-04	48-042	9582	33	7.938	0.019	0.562
spSpec-51900-04	48-133	9469	9	8 4 9 0	0.015	0.902
spSpec-51900-04	48-133	15932	24	8 253	0.015	0.767
spSpec-51900-04	48-266	32228	82	7.731	0.001	0.519
spSpec-51900-04	49-143	32340	82	7 749	0.000	0.527
spSpec-51901-04	14-017	16330	48	7 949	0.039	0.527
spSpec-51901-04	14-145	56160	280	8 222	0.013	0.816
spSpec-51901-04	14-205	7893	17	7.681	0.022	0.432
spSpec-51901-04	14-260	19161	31	8 4 9 0	0.020	0.920
spSpec-51901-04	14-320	11810	4	7.872	0.030	0.532
spSpec-51901-04	14-454	16019	10	7.965	0.026	0.594
spSpec-51901-04	14-455	25520.	34.	7.645	0.016	0.464
spSpec-51901-04	14-497	15000.	0.	5.267	0.022	0.248
spSpec-51901-04	14-562	12344.	40.	7.699	0.037	0.449
spSpec-51901-04	14-564	28824.	61.	7.832	0.011	0.556
spSpec-51901-04	14-623	12384.	5.	8.137	0.027	0.688
spSpec-51901-04	57-066	9942.	16.	8.857	0.024	1.123
spSpec-51901-04;	57-097	16977.	9.	7.988	0.019	0.609
spSpec-51901-04	57-153	21080.	85.	7.695	0.014	0.473
spSpec-51901-04	57-220	15250.	0.	7.177	0.019	0.306
spSpec-51901-04	57-235	11629.	16.	7.112	0.024	0.270
spSpec-51901-04	57-325	24456.	46.	7.831	0.017	0.544
spSpec-51901-04	57-446	11182.	7.	8.078	0.031	0.649
spSpec-51901-04	57-456	12390.	8.	8.018	0.031	0.616
spSpec-51901-04	57-478	12684.	70.	9.019	0.020	1.221
spSpec-51901-04:	57-483	11600.	0.	5.274	0.002	0.231
spSpec-51901-04	57-509	12097.	36.	8.126	0.030	0.681
spSpec-51901-04	57-521	12211.	10.	7.696	0.037	0.447
spSpec-51901-04	57-522	13308.	24.	7.533	0.023	0.402
spSpec-51901-04	57-622	32480.	88.	9.618	0.006	1.334
spSpec-51901-040	57-018	10709.	38.	8.182	0.033	0.712
spSpec-51901-040	57-037	7926.	16.	6.706	0.010	0.176
spSpec-51901-040	57-052	19217.	13.	8.759	0.012	1.056
spSpec-51901-040	57-069	19750.	0.	7.398	0.028	0.388
spSpec-51901-040	57-121	14586.	3.	7.814	0.017	0.509
spSpec-51901-040	57-150	14000.	0.	5.337	0.006	0.244
spSpec-51901-040	57-176	10855.	43.	8.188	0.030	0.716
				•		•

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51901-0467-435	40170.	10.	7.615	0.036	0.496
spSpec-51901-0467-485	21140.	74.	8.194	0.009	0.739
spSpec-51907-0484-023	43040.	147.	8.302	0.008	0.840
spSpec-51907-0484-039	37860.	95.	8.522	0.002	0.960
spSpec-51907-0484-076	10073.	36.	8.514	0.009	0.916
spSpec-51907-0484-117	9923.	20.	8.496	0.002	0.906
spSpec-51907-0484-389	9787.	16.	7.890	0.034	0.536
spSpec-51907-0484-400	27992.	1.	7.620	0.028	0.462
spSpec-51907-0484-434	17750.	0.	7.621	0.019	0.440
spSpec-51907-0484-499	19354.	44.	8.434	0.015	0.886
spSpec-51907-0484-536	7230.	3.	7.256	0.000	0.278
spSpec-51907-0484-579	16000.	0.	5.312	0.026	0.253
spSpec-51907-0484-609	45710.	77.	8.271	0.009	1.116
spSpec-51907-0484-638	8848.	32.	7.758	0.004	0.465
spSpec-51908-0277-025	13395.	3.	7.753	0.019	0.474
spSpec-51908-0277-066	14400	0	7.891	0.023	0.548
spSpec-51908-0277-232	18203	12	8.092	0.014	0.672
spSpec-51908-0277-271	13800	0	8 652	0.024	1.007
spSpec-51908-0277-306	14400	0.	5.684	0.005	0.246
spSpec-51908-0277-311	14400	0.	5,738	0.004	0.246
spSpec-51908-0277-372	14000	0.	9 225	0.001	1 248
spSpec-51908-0277-414	12149	15	7.602	0.027	0.420
spSpec-51908-0277-459	17500	0	7.002	0.027	0.420
spSpec-51908-0277-513	10670	31	8 090	0.044	0.655
spSpec-51908-0277-521	19000	0	5 325	0.027	0.055
spSpec-51908-0277-521	11176	13	7 269	0.027	0.205
spSpec-51908-0277-525	12429	24	8.037	0.020	0.500
spSpec-51908-0450-598	8402	24	7 407	0.049	0.333
spSpec-51908-0451-026	44890	12	7.037	0.000	0.362
spSpec-51908-0451-173	27232	42	8 526	0.018	0.950
spSpec-51908-0451-225	16078	42	7 980	0.024	0.602
spSpec-51908-0451-388	18213	20	7.463	0.017	0.399
spSpec-51908-0451-461	17857.	30.	7.840	0.018	0.531
spSpec-51908-0451-516	23820	13	7,770	0.008	0.512
spSpec-51908-0451-605	14233	12	7,783	0.027	0.493
spSpec-51908-0451-630	18563.	24.	7.870	0.026	0.548
spSpec-51908-0454-067	16140.	37.	7.705	0.022	0.464
spSpec-51908-0454-181	10891.	23.	7.812	0.023	0.498
spSpec-51908-0454-185	18054.	30.	8.168	0.022	0.717
spSpec-51908-0454-298	6374.	1.	6.131	0.001	0.195
spSpec-51908-0454-443	21124.	106.	7.522	0.003	0.425
spSpec-51908-0454-477	16750.	0.	9.233	0.028	1.251
spSpec-51908-0454-512	14904.	24.	8.084	0.025	0.661
spSpec-51908-0454-518	25820.	15.	7.567	0.017	0.438
spSpec-51908-0454-534	14800.	0.	7.631	0.020	0.435
spSpec-51908-0454-549	9251	0	9.541	0.048	1.535
spSpec-51908-0454-560	13299.	25.	7.513	0.009	0.395
spSpec-51908-0463-302	8606.	23.	8.226	0.007	0.736
spSpec-51908-0463-392	8441.	15.	7.327	0.028	0.307
spSpec-51908-0463-474	18454	18.	8.234	0.021	0.759
spSpec-51908-0464-164	12400	0.	7.603	0.028	0.421
spSpec-51908-0464-198	6374.	1.	8.500	0.000	0.859
spSpec-51908-0464-278	13199.	0.	5.702	0.004	0.240

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51908-0464-349	24868.	55.	8.200	0.004	0.749
spSpec-51908-0464-588	14857.	15.	7.827	0.016	0.516
spSpec-51908-0481-018	33030.	71.	7.761	0.001	0.534
spSpec-51908-0481-029	31276.	85.	7.598	0.013	0.464
spSpec-51908-0481-038	19292.	30.	7.949	0.013	0.593
spSpec-51908-0481-045	11334.	25.	8.168	0.029	0.705
spSpec-51908-0481-062	10184.	6.	8.024	0.029	0.614
spSpec-51908-0481-065	34060.	51.	7.100	0.014	0.343
spSpec-51908-0481-108	24552.	62.	7.717	0.005	0.492
spSpec-51908-0481-147	10012.	5.	8.668	0.031	1.009
spSpec-51908-0481-218	10395.	2.	8.268	0.030	0.766
spSpec-51908-0481-269	25348.	46.	7.478	0.004	0.414
spSpec-51908-0481-295	23196.	48.	7.692	0.008	0.478
spSpec-51908-0481-353	24852.	63.	7.612	0.012	0.450
spSpec-51908-0481-419	11508.	27.	7.817	0.024	0.502
spSpec-51908-0481-460	18116.	33.	8.086	0.025	0.668
spSpec-51908-0481-506	46460.	187.	7.804	0.011	1.051
spSpec-51908-0481-513	32578.	87.	9.658	0.009	1.339
spSpec-51908-0481-632	9308.	15.	9.063	0.040	1.247
spSpec-51909-0270-008	9667.	25.	7.882	0.050	0.531
spSpec-51909-0270-181	18331.	52.	8.197	0.018	0.736
spSpec-51909-0270-468	10791.	5.	7.934	0.035	0.564
spSpec-51909-0276-073	13798.	1.	7.760	0.025	0.482
spSpec-51909-0276-097	12868.	33.	7.547	0.030	0.404
spSpec-51909-0276-171	13200.	0.	5.665	0.002	0.240
spSpec-51909-0276-298	21088.	97.	7.448	0.008	0.407
spSpec-51909-0276-318	13800.	0.	7.646	0.026	0.437
spSpec-51909-0276-370	46120.	134.	7.856	0.027	1.071
spSpec-51909-0276-389	26292.	28.	7.843	0.020	0.555
spSpec-51909-0276-478	19643.	27.	8.309	0.014	0.808
spSpec-51909-0276-593	10867.	56.	8.493	0.006	0.904
spSpec-51909-0455-212	25084.	59.	7.500	0.000	0.418
spSpec-51909-0455-247	25372.	34.	9.250	0.030	1.257
spSpec-51909-0455-249	11583.	9.	8.421	0.031	0.861
spSpec-51909-0455-349	16750.	0.	7.334	0.016	0.354
spSpec-51909-0455-403	51230.	222.	8.995	0.002	1.175
spSpec-51909-0455-405	15779.	11.	7.760	0.022	0.487
spSpec-51909-0455-461	12400.	0.	6.735	0.042	0.212
spSpec-51909-0455-584	49150.	110.	9.299	0.064	1.256
spSpec-51909-0455-604	24972.	55.	7.878	0.011	0.569
spSpec-51909-0462-026	10594.	3.	8.227	0.031	0.741
spSpec-51909-0462-027	9426.	15.	9.547	0.020	1.538
spSpec-51909-0462-048	8104.	21.	8.369	0.028	0.829
spSpec-51909-0462-084	14540.	15.	7.787	0.017	0.496
spSpec-51909-0462-128	7430.	9.	7.750	0.000	0.458
spSpec-51909-0462-226	26692.	76.	7.369	0.024	0.388
spSpec-51909-0462-263	14312.	36.	7.970	0.025	0.592
spSpec-51909-0462-357	15517.	7.	8.275	0.025	0.780
spSpec-51909-0462-389	12128.	21.	7.625	0.026	0.427
spSpec-51909-0462-507	12870.	45.	7.920	0.031	0.561
spSpec-51909-0462-554	15746.	1.	7.515	0.022	0.406
spSpec-51909-0462-567	10635.	13.	7.797	0.030	0.489
spSpec-51909-0462-569	13746.	13.	7.552	0.025	0.409
1 * *	1		1		1

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51909-0462-593	27592.	27.	8.062	0.012	0.674
spSpec-51909-0485-038	14834.	27.	8.227	0.022	0.749
spSpec-51909-0485-142	30807.	57.	9.999	0.000	1.370
spSpec-51909-0485-185	26252.	24.	7.874	0.020	0.570
spSpec-51909-0485-210	26412.	43.	7.723	0.005	0.500
spSpec-51909-0485-258	18742	3	8.007	0.019	0.624
spSpec-51909-0485-331	11191.	7.	8.243	0.032	0.752
spSpec-51909-0485-335	11603.	2.	7.779	0.032	0.483
spSpec-51909-0485-355	9950.	19.	8.143	0.034	0.686
spSpec-51909-0485-356	11153.	16.	7.911	0.026	0.552
spSpec-51909-0485-416	21068.	88.	7.588	0.009	0.441
spSpec-51909-0485-417	10476.	49.	8.215	0.026	0.733
spSpec-51909-0485-464	19064	36	8.006	0.016	0.624
spSpec-51909-0485-475	30177.	10.	7.903	0.025	0.594
spSpec-51909-0485-484	14810	6	8 4 5 6	0.029	0.893
spSpec-51909-0485-493	33000	68	8.212	0.003	0.772
spSpec-51909-0485-494	24724	66	7.687	0.006	0.479
spSpec-51909-0485-527	7485	2	7.385	0.052	0.320
spSpec-51909-0485-636	15207	14	8.013	0.020	0.619
spSpec-51910-0269-231	27928	6	7.336	0.024	0.384
spSpec-51910-0269-608	7550	10	7 515	0.000	0.368
spSpec-51910-0275-110	7016	2	7 998	0.000	0.588
spSpec-51910-0275-111	7817	15	7.719	0.010	0.446
spSpec-51910-0275-126	11698	41	7.724	0.017	0.457
spSpec-51910-0275-230	16000	0	8 076	0.032	0.658
spSpec-51910-0275-465	14400	0.	5.615	0.003	0.246
spSpec-51910-0456-036	23952	4	7.631	0.023	0.460
spSpec-51910-0456-109	23708	19	7.988	0.004	0.625
spSpec-51910-0456-117	14000.	0.	7.656	0.023	0.441
spSpec-51910-0456-155	10526	36	8.132	0.060	0.681
spSpec-51910-0456-221	11866	21	7.587	0.023	0.414
spSpec-51910-0456-318	6774.	4.	6.231	0.076	0.197
spSpec-51910-0456-323	23292.	40.	7.950	0.007	0.603
spSpec-51910-0456-372	7975.	6.	7.172	0.049	0.260
spSpec-51910-0456-447	26712.	65.	7.984	0.019	0.629
spSpec-51910-0456-530	23052.	42.	9.086	0.007	1.203
spSpec-51910-0456-537	25024.	73.	7.250	0.019	0.352
spSpec-51910-0461-065	13708.	38.	7.710	0.024	0.461
spSpec-51910-0461-092	12201.	1.	7.949	0.031	0.575
spSpec-51910-0461-148	9980.	7.	8.257	0.011	0.759
spSpec-51910-0461-158	54230.	136.	7.662	0.055	0.565
spSpec-51910-0461-304	57770.	429.	7.306	0.018	0.469
spSpec-51910-0461-348	13200.	0.	9.690	0.032	1.624
spSpec-51910-0461-360	8046.	11.	8.031	0.022	0.612
spSpec-51910-0461-592	14958.	15.	8.003	0.004	0.613
spSpec-51910-0465-052	20805.	65.	8.684	0.005	1.027
spSpec-51910-0465-062	12665.	68.	7.688	0.040	0.446
spSpec-51910-0465-069	47510.	257.	8.218	0.006	1.116
spSpec-51910-0465-085	15161.	26.	8.117	0.024	0.681
spSpec-51910-0465-096	15659.	31.	8.191	0.028	0.727
spSpec-51910-0465-123	11233.	39.	7.970	0.036	0.585
spSpec-51910-0465-175	8124.	19.	8.902	0.023	1.150
spSpec-51910-0465-252	28824.	59.	7.968	0.004	0.625

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51910-0465-285	10162.	10.	8.046	0.044	0.627
spSpec-51910-0465-359	13200.	0.	5.709	0.002	0.240
spSpec-51910-0465-362	9981.	7.	8.075	0.032	0.644
spSpec-51910-0465-365	8028.	10.	6.956	0.033	0.213
spSpec-51910-0465-518	31696.	97.	9.271	0.019	1.264
spSpec-51910-0465-519	16250.	0.	7.879	0.005	0.546
spSpec-51910-0465-610	13800.	0.	8.936	0.013	1.135
spSpec-51910-0486-015	16924.	23.	8.578	0.039	0.970
spSpec-51910-0486-101	8514.	4.	7,789	0.051	0.479
spSpec-51910-0486-173	9498.	1.	7.954	0.041	0.571
spSpec-51910-0486-219	7414.	11.	7.758	0.000	0.461
spSpec-51910-0486-291	7824.	25.	6.982	0.006	0.216
spSpec-51910-0486-503	7246.	1.	7.215	0.094	0.266
spSpec-51910-0486-518	7356.	16.	7.749	0.000	0.457
spSpec-51911-0452-023	11176.	8.	7.826	0.027	0.506
spSpec-51911-0452-028	10378.	10.	7.748	0.004	0.465
spSpec-51911-0452-032	21012	62	8.337	0.008	0.827
spSpec-51911-0452-066	14694	24	8.085	0.023	0.661
spSpec-51911-0452-067	11309.	23.	7.839	0.027	0.513
spSpec-51911-0452-166	19500.	0.	8.137	0.014	0.701
spSpec-51911-0452-175	10956	21	7.971	0.031	0.585
spSpec-51911-0452-219	16079	25	7.801	0.022	0.507
spSpec-51911-0452-250	10542	14	7.814	0.023	0.498
spSpec-51911-0452-267	10980	10	8.251	0.002	0.757
spSpec-51911-0452-280	21075	68	7.931	0.007	0.587
spSpec-51911-0452-290	11629	12	7.879	0.030	0.535
spSpec-51911-0452-351	15250	0	5.765	0.016	0.249
spSpec-51911-0452-479	13600.	0.	9.607	0.028	1.331
spSpec-51911-0452-553	15750.	0.	5.816	0.020	0.252
spSpec-51911-0452-588	13708	22	7.805	0.026	0.502
spSpec-51912-0468-031	19567.	27.	7.796	0.030	0.512
spSpec-51912-0468-063	10907.	31.	8.034	0.022	0.622
spSpec-51912-0468-070	32550.	78.	7.994	0.000	0.647
spSpec-51912-0468-097	25556.	26.	9.588	0.019	1.329
spSpec-51912-0468-099	32424.	86.	9.495	0.000	1.314
spSpec-51912-0468-126	10512.	33.	8.730	0.017	1.046
spSpec-51912-0468-132	12628.	33.	7.999	0.004	0.605
spSpec-51912-0468-211	14436.	20.	7.397	0.018	0.361
spSpec-51912-0468-220	12400.	0.	5.687	0.002	0.235
spSpec-51912-0468-241	16794.	13.	7.803	0.032	0.510
spSpec-51912-0468-261	16000.	0.	5.239	0.023	0.253
spSpec-51912-0468-307	11309.	20.	7.881	0.002	0.536
spSpec-51912-0468-355	8287.	10.	8.355	0.046	0.821
spSpec-51912-0468-395	13885.	50.	7.690	0.026	0.453
spSpec-51912-0468-409	20988.	73.	7.689	0.018	0.471
spSpec-51912-0468-451	15144.	33.	7.974	0.018	0.597
spSpec-51912-0468-467	16837.	39.	7.997	0.019	0.614
spSpec-51912-0468-470	24408.	35.	8.300	0.011	0.810
spSpec-51912-0468-515	21056.	77.	7.908	0.018	0.575
spSpec-51913-0274-222	21196.	148.	7.592	0.013	0.443
spSpec-51913-0274-265	6372.	1.	9.796	0.001	1.560
spSpec-51913-0274-303	11564.	17.	7.725	0.026	0.457
spSpec-51913-0394-020	8116.	19.	8.433	0.014	0.867

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51913-0394-110	17594.	35.	7.779	0.017	0.500
spSpec-51913-0394-138	10611.	3.	7.892	0.000	0.539
spSpec-51913-0394-227	17205.	15.	8.528	0.015	0.941
spSpec-51913-0394-451	10242.	14.	8.074	0.036	0.644
spSpec-51913-0469-012	11901	27	7.611	0.027	0.422
spSpec-51913-0469-012	25508	38	7 423	0.017	0.406
spSpec-51913-0469-021	15500	0	7.587	0.022	0.425
spSpec-51913-0469-049	33520	85	9,999	0.000	1.370
spSpec-51913-0469-056	21004	87	7 368	0.025	0.386
spSpec-51913-0469-057	12069	40	7.827	0.034	0.509
spSpec-51913-0469-069	13418	10	7.768	0.029	0.482
spSpec-51913-0469-108	9907	23	8,650	0.036	0.998
spSpec-51913-0469-119	15752	1	7 972	0.022	0.597
spSpec-51913-0469-140	16641	29	7 749	0.022	0.484
spSpec-51913-0469-152	14773	15	8 186	0.028	0.723
spSpec-51913-0469-226	16884	32	7 827	0.023	0.522
spSpec-51913-0469-322	9986	6	7.961	0.043	0.522
spSpec-51913-0469-322	8247	1	7 904	0.045	0.539
spSpec-51913-0469-349	25344	38	8 255	0.021	0.335
spSpec-51913-0469-373	24068	5	8 109	0.019	0.694
spSpec-51913-0469-392	14520	20	7 797	0.027	0.501
spSpec-51913-0469-424	10248	20.	8.016	0.027	0.501
spSpec-51913-0469-493	49070	123	7 563	0.001	0.514
spSpec-51913-0469-511	9078	35	7.862	0.020	0.514
spSpec-51913-0469-540	10801	0	8 471	0.045	0.890
spSpec-51913-0469-540	26760	78	0.471	0.000	1 370
spSpec-51913-0469-622	18107	30	8 575	0.000	0.969
spSpec-51913-0469-630	39910	5	7 667	0.022	0.505
spSpec-51915-0453-009	10537	19	7.962	0.025	0.579
spSpec-51915-0453-072	10374	10	7 733	0.033	0.458
spSpec-51915-0453-072	10108	35	8 836	0.038	1 1 1 0
spSpec-51915-0453-073	15972	8	8 3 3 4	0.038	0.818
spSpec-51915-0453-116	8457	10	7 860	0.000	0.515
spSpec-51915-0453-124	7760	3	6 774	0.062	0.182
spSpec-51915-0453-151	18334	46	7 758	0.011	0.491
spSpec-51915-0453-157	7178	11	6.197	0.025	0.201
spSpec-51915-0453-199	12509	62	8.002	0.003	0.607
spSpec-51915-0453-218	17756	2	7 629	0.016	0.442
spSpec-51915-0453-325	13734	35	7.447	0.024	0.374
spSpec-51915-0453-370	9899	25	8.607	0.030	0.972
spSpec-51915-0453-410	10622	9	7.534	0.030	0.391
spSpec-51915-0453-426	13795	2	6.983	0.017	0.257
spSpec-51915-0453-465	16523	9	8 130	0.022	0.691
spSpec-51915-0453-540	34160	39	9 232	0.022	1 253
spSpec-51915-0453-606	24348	44	7.054	0.017	0.300
spSpec-51915-0453-621	6826	15	6.038	0.010	0.198
spSpec-51915-0453-626	7568	20	7.007	0.003	0.150
spSpec-51915-0494-052	36400	20	5.676	0.003	0.325
spSpec-51915-0494-186	40090	5	7.534	0.042	0.469
spSpec-51915-0494-484	10001	0	8.019	0.044	0.611
spSpec-51915-0494-632	24236	21	7.821	0.020	0.538
spSpec-51924-0459-002	16636	41	8.756	0.004	1.059
spSpec-51924-0459-045	17000.	0.	8.155	0.039	0.707

Tabela 10.1 (continuação)

Nome	$T_{\rm ef}$	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51924-0459-095	27024.	50.	8.367	0.011	0.855
spSpec-51924-0459-200	10432.	18.	8.117	0.043	0.671
spSpec-51924-0459-271	16488.	4.	7.343	0.005	0.355
spSpec-51924-0459-306	21020.	88.	7.527	0.023	0.426
spSpec-51924-0459-345	8020.	4.	8.103	0.046	0.656
spSpec-51924-0459-399	14600.	0.	7.874	0.027	0.539
spSpec-51924-0459-456	14532.	32.	7.947	0.031	0.580
spSpec-51924-0459-459	10392.	3.	8.171	0.029	0.705
spSpec-51924-0459-467	17207.	18.	7.959	0.024	0.593
spSpec-51924-0459-559	17824.	57.	7.463	0.019	0.398
spSpec-51924-0459-569	11463.	24.	7.900	0.023	0.546
spSpec-51924-0459-605	13600.	0.	5.693	0.003	0.242
spSpec-51924-0460-001	20964.	60.	8.126	0.027	0.697
spSpec-51924-0460-023	11861.	21.	7.879	0.025	0.536
spSpec-51924-0460-033	16741.	4.	8.208	0.007	0.740
spSpec-51924-0460-081	11671.	26.	7.888	0.025	0.540
spSpec-51924-0460-096	9435.	20.	7.544	0.019	0.389
spSpec-51924-0460-192	14400.	0.	5.285	0.004	0.246
spSpec-51924-0460-236	100000.	0.	5.285	0.004	0.543
spSpec-51924-0460-257	11426.	25.	8.520	0.028	0.920
spSpec-51924-0460-267	35920.	68.	8.361	0.022	0.865
spSpec-51924-0460-271	11347.	22.	7.755	0.006	0.470
spSpec-51924-0460-316	17250.	0.	6.769	0.017	0.251
spSpec-51924-0460-362	16250.	0.	6.310	0.023	0.254
spSpec-51924-0460-372	16100.	49.	7.903	0.031	0.559
spSpec-51924-0460-379	10704.	26.	7.760	0.004	0.471
spSpec-51924-0460-410	17000.	0.	7.616	0.004	0.437
spSpec-51924-0460-412	11497.	21.	7.587	0.023	0.413
spSpec-51924-0460-414	18996.	2.	7.997	0.018	0.619
spSpec-51924-0460-432	10697.	26.	7.794	0.022	0.488
spSpec-51924-0460-494	19545.	22.	8.146	0.012	0.707
spSpec-51924-0460-525	8116.	19.	8.587	0.021	0.960
spSpec-51924-0460-583	14037.	38.	7.981	0.022	0.598
spSpec-51924-0460-627	10020.	11.	7.567	0.061	0.400
spSpec-51924-0460-629	75740.	417.	6.908	0.068	0.455
spSpec-51924-0471-076	8161.	16.	7.962	0.016	0.572
spSpec-51924-0471-087	6571.	13.	6.330	0.032	0.151
spSpec-51924-0471-149	16512.	5.	7.892	0.017	0.554
spSpec-51924-0471-196	7520.	3.	8.601	0.000	0.913
spSpec-51924-0471-369	12347.	21.	7.891	0.030	0.544
spSpec-51924-0471-401	7357.	8.	5.999	0.000	0.202
spSpec-51924-0471-438	11788.	5.	8.118	0.035	0.675
spSpec-51924-0471-593	26088.	7.	7.966	0.019	0.618
spSpec-51924-0483-035	7944.	13.	7.116	0.036	0.246
spSpec-51924-0483-062	10975.	17.	7.436	0.042	0.357
spSpec-51924-0483-123	10262.	28.	8.111	0.038	0.667
spSpec-51924-0483-126	26460.	44.	8.372	0.018	0.857
spSpec-51924-0483-168	26124.	13.	7.356	0.022	0.383
spSpec-51924-0483-188	12075.	77.	7.164	0.025	0.284
spSpec-51924-0483-203	8500.	0.	8.190	0.052	0.712
spSpec-51924-0483-290	10379.	9.	7.703	0.032	0.446
spSpec-51924-0483-314	14358.	18.	8.003	0.005	0.612
spSpec-51924-0483-317	6751.	0.	6.453	0.125	0.150

Tabela 10.1 (continuação)

_

Tabela 10.1	(continuação)
-------------	---------------

Nome spSpec-51924-0483-317 spSpec-51924-0483-332 spSpec-51924-0483-422 spSpec-51924-0483-472 spSpec-51924-0483-503 spSpec-51924-0483-507	T _{ef} 10800. 17000. 12181	$\sigma_{T_{\rm ef}}$	log <i>g</i> 8.165	$\sigma_{\log g}$ 0.125	Mass
spSpec-51924-0483-317 spSpec-51924-0483-332 spSpec-51924-0483-422 spSpec-51924-0483-472 spSpec-51924-0483-503 spSpec-51924-0483-507	10800. 17000.	0.	8.165	0.125	0.700
spSpec-51924-0483-332 spSpec-51924-0483-422 spSpec-51924-0483-472 spSpec-51924-0483-503 spSpec-51924-0483-507	17000. 12181	0		0.125	0.702
spSpec-51924-0483-422 spSpec-51924-0483-472 spSpec-51924-0483-503 spSpec-51924-0483-507	12181	0.	7.620	0.015	0.438
spSpec-51924-0483-472 spSpec-51924-0483-503 spSpec-51924-0483-507	12101.	5.	7.575	0.023	0.411
spSpec-51924-0483-503 spSpec-51924-0483-507	16108.	44.	8.170	0.005	0.715
spSpec-51924-0483-507	10322.	19.	9.081	0.028	1.258
spopee 2192. 0.02 201	11345.	22.	8.117	0.036	0.673
spSpec-51924-0483-600	45160.	16.	9.306	0.083	1.359
spSpec-51924-0483-607	17824.	43.	8.250	0.021	0.768
spSpec-51924-0483-614	28168.	15.	8.118	0.027	0.707
spSpec-51924-0483-621	7947.	13.	7.141	0.041	0.252
spSpec-51924-0483-630	16488.	5.	7.729	0.018	0.474
spSpec-51924-0483-632	19472.	11.	7.765	0.014	0.497
spSpec-51928-0291-105	47580.	371.	5.632	0.022	0.360
spSpec-51928-0291-307	40520.	32.	8.025	0.008	0.679
spSpec-51928-0291-340	16673.	22.	8.266	0.022	0.776
spSpec-51929-0413-020	13546.	45.	8.797	0.027	1.075
spSpec-51929-0413-074	15118.	36.	7.983	0.019	0.602
spSpec-51929-0413-096	15500.	0.	7.651	0.025	0.442
spSpec-51929-0413-109	28928.	54.	8.190	0.006	0.751
spSpec-51929-0413-167	20000.	0.	8.085	0.016	0.671
spSpec-51929-0413-313	26552.	52.	9.453	0.027	1.306
spSpec-51929-0413-347	10983	5	8.088	0.029	0.655
spSpec-51929-0413-353	16304	29	7.988	0.000	0.607
spSpec-51929-0413-389	22788	74	7.500	0.026	0.425
spSpec-51929-0413-471	18953	25	7 693	0.013	0.466
spSpec-51929-0413-483	59400	1	6 790	0.013	0.100
spSpec 51929-0413-494	15028	12	7 885	0.019	0.546
spSpec 51929-0413-580	11454	22	7.658	0.022	0.435
spSpec-51929-0458-009	21236	81	8 094	0.024	0.455
spSpec-51929-0458-148	11512	34	8 030	0.010	0.676
spSpec-51929-0458-150	12507	1	7 796	0.020	0.020
spSpec-51929-0458-150	10832	17	8 401	0.020	0.475
spSpec-51929-0458-155	0232	5	8 504	0.001	0.040
spSpec-51929-0458-177	25320		7 015	0.000	0.510
spSpec-51929-0458-178	14000	41.	5 360	0.013	0.389
spspec-51929-0458-184	11251	22	9 174	0.003	0.244
spspec-51929-0458-188	14070	23. 5	0.174	0.031	0.709
spspec-51929-0458-280	14979.	5. 21	7.052	0.025	0.319
spspec-31929-0438-413	10302.	21.	7.440 0.100	0.033	0.558
spspec-31929-0438-323	1/10/.	24. 10	0.100	0.025	0.728
spspec-51929-0458-500	0099. 0610	19.	0.000	0.039	0.857
spspec-31929-0438-302	0042. 0575	16.	9.050	0.011	1.251
spSpec-51929-0458-578	95/5.	26.	9.015	0.009	1.218
spSpec-51929-0458-627	33270.	/1.	7.318	0.006	0.397
spSpec-51929-0470-029	//8/.	10.	7.239	0.008	0.277
spspec-51929-04/0-042	31920.	92.	9.212	0.014	1.247
spspec-51929-04/0-081	14248.	27.	8.035	0.028	0.630
spspec-51929-04/0-150	18356.	43.	8.471	0.023	0.907
spspec-51929-04/0-197	14691.	26.	7.779	0.018	0.493
spspec-51929-0470-213	17878.	45.	7.701	0.014	0.465
spSpec-51929-04/0-287	42470.	149.	8.708	0.003	1.048
spSpec-51929-0470-288	27852.	12.	7.551	0.018	0.437
spSpec-51929-0470-356	10252.	19.	7.836	0.036	0.508

Nome	$T_{\rm ef}$	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51929-0470-529	7072.	23.	5.914	0.022	0.200
spSpec-51929-0470-562	17362.	45.	7.710	0.019	0.468
spSpec-51929-0470-608	15426.	23.	8.120	0.032	0.683
spSpec-51929-0470-611	10644.	20.	7.732	0.012	0.459
spSpec-51929-0473-003	42110.	167.	7.185	0.005	0.391
spSpec-51929-0473-023	43210.	137.	8.864	0.020	1.113
spSpec-51929-0473-074	11159.	20.	8.582	0.030	0.957
spSpec-51929-0473-077	11395.	2.	7.914	0.031	0.554
spSpec-51929-0473-191	13863.	48.	8.004	0.006	0.611
spSpec-51929-0473-204	13977.	14.	7.995	0.020	0.606
spSpec-51929-0473-293	24764.	58.	8.116	0.011	0.699
spSpec-51929-0473-357	13273.	77.	8.981	0.026	1.198
spSpec-51929-0473-428	15150.	25.	7.508	0.021	0.402
spSpec-51929-0473-435	13200.	0.	7.845	0.025	0.522
spSpec-51929-0473-460	33070.	66.	8.722	0.002	1.049
spSpec-51929-0473-465	13400.	0.	9.139	0.027	1.293
spSpec-51929-0473-488	20816.	67.	8.292	0.014	0.799
spSpec-51929-0473-513	9382.	33.	7.763	0.005	0.469
spSpec-51929-0473-547	39350.	38.	7.015	0.004	0.339
spSpec-51929-0473-555	18274.	15.	7.720	0.016	0.474
spSpec-51929-0473-639	11530.	16.	6.956	0.020	0.238
spSpec-51929-0490-012	9792.	22.	7.941	0.024	0.565
spSpec-51929-0490-019	23264.	50.	7.403	0.015	0.405
spSpec-51929-0490-060	17750.	0.	5.264	0.022	0.260
spSpec-51929-0490-140	18630.	37.	8.388	0.022	0.855
spSpec-51929-0490-215	19500.	0.	7.136	0.022	0.321
spSpec-51929-0490-226	8839.	31.	7.799	0.025	0.485
spSpec-51929-0490-321	11082.	71.	8.272	0.023	0.770
spSpec-51929-0490-352	19191.	15.	7.820	0.015	0.523
spSpec-51929-0490-393	13200.	0.	7.387	0.022	0.352
spSpec-51929-0490-439	18250.	0.	7.874	0.018	0.550
spSpec-51929-0490-457	21092.	68.	8.204	0.018	0.745
spSpec-51929-0490-639	13649.	19.	7.530	0.021	0.402
spSpec-51930-0489-019	10300.	37.	8.035	0.017	0.621
spSpec-51930-0489-044	25080.	65.	7.285	0.000	0.361
spSpec-51930-0489-079	12117.	50.	8.021	0.021	0.617
spSpec-51930-0489-091	32305.	84.	7.499	0.000	0.441
spSpec-51930-0489-109	17025.	13.	7.908	0.020	0.564
spSpec-51930-0489-110	9958.	9.	8.998	0.002	1.208
spSpec-51930-0489-234	13200.	0.	7.606	0.028	0.424
spSpec-51930-0489-251	20956.	67.	7.627	0.023	0.452
spSpec-51930-0489-273	18024.	7.	8.065	0.015	0.655
spSpec-51930-0489-338	6688.	7.	7.000	0.040	0.211
spSpec-51930-0489-340	26320.	32.	7.659	0.015	0.472
spSpec-51930-0489-353	16172.	28.	8.157	0.033	0.707
spSpec-51930-0489-393	9432.	18.	7.689	0.048	0.439
spSpec-51930-0489-417	11503.	51.	7.979	0.018	0.591
spSpec-51930-0489-449	15250.	0.	5.278	0.026	0.249
spSpec-51930-0489-494	16244.	3.	7.934	0.027	0.577
spSpec-51930-0489-504	25248.	45.	7.835	0.009	0.548
spSpec-51930-0489-520	49980.	3.	8.302	0.098	1.115
spSpec-51930-0489-524	17586.	25.	7.572	0.018	0.428
spSpec-51930-0489-535	9232.	6.	8.580	0.036	0.956

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51930-0489-538	12800.	0.	7.381	0.022	0.348
spSpec-51930-0489-552	17351.	45.	8.176	0.018	0.721
spSpec-51930-0489-555	42120.	155.	7.711	0.003	0.537
spSpec-51930-0489-562	13000.	0.	7.421	0.027	0.362
spSpec-51930-0489-612	24328.	31.	7.808	0.019	0.531
spSpec-51931-0412-340	11271.	39.	7.725	0.014	0.457
spSpec-51931-0412-404	6751.	0.	6.172	0.107	0.197
spSpec-51931-0412-614	7558.	20.	6.625	0.080	0.162
spSpec-51941-0272-170	42490.	146.	8.374	0.007	0.881
spSpec-51941-0272-289	7782.	10.	7.169	0.036	0.258
spSpec-51941-0272-307	11445.	20.	8.068	0.027	0.644
spSpec-51941-0272-368	9224.	6.	8.733	0.030	1.048
spSpec-51941-0272-510	52480.	350.	7.202	0.008	0.425
spSpec-51941-0272-518	8718.	7.	8.431	0.045	0.867
spSpec-51941-0272-568	38870.	69.	7.000	0.000	0.334
spSpec-51941-0290-008	38320.	83.	7.250	0.000	0.396
spSpec-51941-0290-024	7753.	0.	7.833	0.048	0.498
spSpec-51941-0290-150	16434.	16.	8.080	0.018	0.661
spSpec-51941-0290-166	16715.	15.	8.776	0.026	1.067
spSpec-51941-0290-232	9850.	30.	7.899	0.029	0.541
spSpec-51941-0290-342	21064.	69.	8.176	0.015	0.728
spSpec-51941-0290-483	25264.	42.	8.141	0.013	0.715
spSpec-51941-0290-561	14064.	30.	7.634	0.022	0.434
spSpec-51941-0290-571	8890.	25.	8.026	0.009	0.612
spSpec-51942-0301-030	6372.	1.	9.254	0.001	1.267
spSpec-51942-0301-045	7998.	1.	7.572	0.000	0.392
spSpec-51942-0301-151	10718.	32.	8.096	0.037	0.659
spSpec-51942-0301-224	15977.	9.	8.239	0.025	0.758
spSpec-51942-0301-250	14484.	26.	7.785	0.017	0.495
spSpec-51942-0301-254	8706.	9.	9.416	0.049	1.459
spSpec-51942-0301-324	11380.	10.	7.703	0.029	0.448
spSpec-51942-0301-333	14827.	8.	7.548	0.019	0.412
spSpec-51942-0301-387	15750.	0.	5.788	0.019	0.252
spSpec-51942-0301-401	13600.	0.	5.343	0.004	0.242
spSpec-51942-0301-450	1/540.	16.	8.021	0.024	0.629
spSpec-51942-0301-529	18000.	0.	5.749	0.018	0.261
spspec-51942-0301-565	8491.	2.	8.012	0.050	0.975
spspec-51942-0301-625	158/8.	27.	8.301	0.023	0.797
spspec-51942-0301-626	80/90.	1380.	0.898	0.062	0.495
spspec-31942-0491-039	51010	50. 100	0.442	0.021	0.897
spspec-31942-0491-138	16060	21	7.202	0.018	0.421
spSpec-51942-0491-149	10000. 8562	21. 22	0 147	0.020	0.508
spSpec-51942-0491-514	10288	22. 30	0.147	0.000	0.065
spSpec-51942-0491-507	27472	30.	0.020	0.002	1 182
spSpec-51943-0284-233	8571	18	9 646	0.020	1 598
spSpec-51943-0284-440	10538	21	7.633	0.034	0.425
spSpec-51943-0284-469	10479	38	7.652	0.036	0.431
spSpec-51943-0300-042	8440.	10.	9.657	0.053	1.604
spSpec-51943-0300-061	16750	0.	7.899	0.020	0.559
spSpec-51943-0300-086	37350.	198.	5.500	0.000	0.328
spSpec-51943-0300-207	33070.	80.	7.206	0.004	0.367
spSpec-51943-0300-251	20996.	72.	7.718	0.012	0.481

Tabela 10.1 (continuação)

_

Nome	T _{ef}	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51943-0300-282	13400.	0.	7.820	0.028	0.509
spSpec-51943-0487-017	13445.	35.	9.999	0.000	1.810
spSpec-51943-0487-036	9890.	27.	8.398	0.039	0.847
spSpec-51943-0487-037	42050.	166.	7.249	0.000	0.407
spSpec-51943-0487-053	42830.	167.	7.691	0.009	0.531
spSpec-51943-0487-078	60410.	110.	7.517	0.032	0.534
spSpec-51943-0487-126	27560.	28.	9.318	0.031	1.276
spSpec-51943-0487-194	12731.	27.	7.827	0.033	0.511
spSpec-51943-0487-333	15674.	32.	7.914	0.001	0.564
spSpec-51943-0487-350	15754.	2.	8.220	0.029	0.746
spSpec-51943-0487-366	19450.	14.	7.802	0.013	0.515
spSpec-51943-0487-392	14800.	0.	7.852	0.029	0.529
spSpec-51943-0487-408	19244.	2.	7.787	0.013	0.507
spSpec-51943-0487-419	16774.	14.	7.684	0.004	0.457
spSpec-51955-0298-024	11749.	33.	7.960	0.032	0.580
spSpec-51955-0298-034	13000.	0.	9.149	0.034	1.299
spSpec-51955-0298-048	49800.	47.	5.574	0.050	0.366
spSpec-51955-0298-275	23944.	10.	5.351	0.031	0.285
spSpec-51955-0298-319	15000.	0.	7.878	0.016	0.543
spSpec-51955-0298-326	16250.	0.	7.437	0.012	0.383
spSpec-51955-0298-335	11553.	26.	7.725	0.027	0.457
spSpec-51955-0298-368	37310.	116.	7.876	0.010	0.597
spSpec-51955-0298-388	15606.	50.	7.645	0.020	0.441
spSpec-51955-0298-492	78800.	0.	5.290	0.020	0.468
spSpec-51955-0298-576	8250.	0.	8.657	0.000	1.002
spSpec-51955-0298-608	12479.	34.	8.858	0.028	1.123
spSpec-51955-0472-001	40450.	27.	7.838	0.030	0.587
spSpec-51955-0472-010	23492.	37.	7.447	0.018	0.416
spSpec-51955-0472-015	18138.	28.	8.289	0.017	0.793
spSpec-51955-0472-053	26668.	61.	8.390	0.017	0.868
spSpec-51955-0472-094	9324.	29.	8.619	0.031	0.980
spSpec-51955-0472-095	17886.	35.	8.385	0.020	0.853
spSpec-51955-0472-160	15532.	16.	7.895	0.028	0.553
spSpec-51955-0472-198	19218.	18.	7.706	0.015	0.471
spSpec-51955-0472-240	19336.	27.	7.573	0.014	0.433
spSpec-51955-0472-287	10028.	6.	9.154	0.035	1.301
spSpec-51955-0472-288	9233.	5.	7.691	0.044	0.439
spSpec-51955-0472-368	55380.	78.	8.029	0.042	1.092
spSpec-51955-0472-394	11714.	29.	7.839	0.031	0.514
spSpec-51955-0472-404	8091.	22.	8.071	0.025	0.637
spSpec-51955-0472-407	8180.	11.	8.960	0.018	1.185
spSpec-51955-0472-419	9797.	24.	7.654	0.030	0.429
spSpec-51955-0472-467	17820.	35.	8.011	0.016	0.624
spSpec-51955-0472-483	21304.	87.	8.077	0.012	0.669
spSpec-51955-0472-484	18343.	52.	7.940	0.016	0.585
spSpec-51955-0472-492	16548.	25.	8.433	0.025	0.881
spSpec-51955-0472-577	7322.	17.	7.249	0.000	0.276
spSpec-51955-0472-595	31990.	95.	9.665	0.010	1.340
spSpec-51955-0472-628	12008.	3.	8.126	0.028	0.680
spSpec-51955-0472-640	10770.	10.	7.818	0.031	0.501
spSpec-51955-0492-252	12600.	0.	5.708	0.003	0.236
spSpec-51955-0492-523	6482.	2.	6.975	0.027	0.204
spspec-51955-0492-582	9510.	3.	8.035	0.040	0.619

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51955-0492-594	33850.	51.	7.611	0.013	0.477
spSpec-51957-0273-027	9598.	43.	7.992	0.004	0.593
spSpec-51957-0273-150	17781.	14.	8.948	0.012	1.142
spSpec-51957-0273-250	26460.	55.	7.474	0.005	0.415
spSpec-51957-0273-268	19750.	0.	7.662	0.017	0.459
spSpec-51957-0273-300	28800	63	7.632	0.011	0.470
spSpec-51957-0273-337	12590	6	7.687	0.027	0.446
spSpec-51957-0273-338	21048.	65.	7.863	0.015	0.551
spSpec-51957-0273-426	11982	6	7 289	0.023	0.316
spSpec-51957-0273-491	12514	61	7 964	0.030	0.585
spSpec-51957-0273-615	10381	7	7 758	0.014	0.505
spSpec-51957-0275-015	17771	7.	8 357	0.032	0.835
spSpec-51957-0304-192	15470	9	7 751	0.032	0.482
spSpec-51957-0304-239	18450	25	7 698	0.013	0.465
spSpec-51957-0304-313	18088	29	8 614	0.015	0.990
spSpec-51957-0304-338	13011	11	7 082	0.040	0.596
spSpec-51957-0493-027	8230	11.	7.902	0.040	0.502
spSpec-51957-0493-027	15250		7.625	0.049	0.302
spSpec-51957-0493-060	20080	0. 96	6.841	0.020	0.433
spSpec-51957-0493-000	75720	360	0.641	0.022	0.274
spSpec-51957-0493-205	12770	500. 7	7.515	0.074	0.331
spSpec-51957-0493-550	0331	30	7.515	0.022	0.398
spSpec 51957-0493-444	7137	39. 13	7.577	0.032	0.401
spSpec-51957-0493-544	18000	15.	7.152	0.022	0.249
spSpec-51957-0493-007	22680	57	7.500	0.013	0.340
spSpec-51957-0493-020	11519	27.	7.521	0.003	0.445
spSpec-51957-0502-004	10224	20. 12	7.049	0.029	0.433
spSpec-51957-0502-020	10234.	15.	7.001	0.035	0.321
spSpec-51957-0502-059	14000.	0.	7 858	0.020	0.247
spSpec 51957-0502-041	28708	0. 76	7.838	0.020	0.519
spSpec-51957-0502-091	13000	/0. 0	5 684	0.000	0.318
spSpec-51957-0502-095	23740	16	8 3 3 8	0.002	0.239
spSpec-51957-0502-150	16558	35	7 414	0.025	0.852
spSpec 51957-0502-224	13104	35. 4	7.414	0.018	0.377
spSpec-51957-0502-228	21068	4. 60	8 130	0.032	0.405
spSpec-51957-0502-555	13056	62	7 064	0.015	0.705
spSpec-51957-0502-502	10381	02.	7.904	0.028	0.560
spSpec-51957-0502-582	10060	9. 20	9 225	0.037	0.302
spSpec-51957-0502-400	33020	59.	7 465	0.010	0.700
spSpec-51957-0502-448	313320.	92. 90	8 053	0.000	0.438
spSpec 51957-0502-475	32081	90. 102	0.000	0.000	0.070
spSpec-51957-0502-492	26506	71	7.621	0.000	0.450
spSpec-51957-0502-494	20390.	16	2 001	0.015	0.439
spSpec-51957-0502-495	19750	10.	7.642	0.035	0.451
spSpec-51957-0502-500	15/02	0.	7.042	0.028	0.451
spspec-51957-0502-522	22006	2. 6	0.047	0.027	1 1 9 9
spspec-51957-0502-574	10000	0.	9.047	0.052	1.100
spspec-51957-0502-595	1/1/1/0	17	8 004	0.014	0.424
spspec-51959-0265-11/	14140. 26224	17.	8.094	0.029	0.003
spopee-51959-0265-142	11241	50. 45	0.130	0.018	0.722
spapec-31939-0283-143	11341.	43. 61	1.998	0.003	0.002
spapec-51959-0283-353	120/4.	01. 5	8.052	0.032	0.03/
spspec-51959-0283-355	12414.	3. 25	8.129	0.026	0.083
spspec-51959-0283-436	16400.	25.	8.021	0.028	0.626

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51959-0283-502	20000.	0.	5.542	0.028	0.270
spSpec-51959-0283-550	31682.	106.	9.842	0.020	1.358
spSpec-51959-0283-603	9930.	21.	7.979	0.015	0.587
spSpec-51959-0297-004	16252.	1.	8.040	0.052	0.637
spSpec-51959-0297-332	11212.	4.	8.077	0.029	0.649
spSpec-51959-0297-360	7374.	16.	6.955	0.009	0.207
spSpec-51959-0297-399	26460.	52.	7.723	0.005	0.500
spSpec-51959-0550-038	18042.	21.	8.005	0.022	0.621
spSpec-51959-0550-050	39910.	5.	7.882	0.053	0.606
spSpec-51959-0550-052	17847.	35.	7.800	0.017	0.511
spSpec-51959-0550-075	12451.	48.	7.750	0.001	0.470
spSpec-51959-0550-116	34510.	27.	7.541	0.013	0.454
spSpec-51959-0550-120	21010.	61.	8.152	0.011	0.713
spSpec-51959-0550-165	8695.	14.	7.757	0.005	0.464
spSpec-51959-0550-231	8763.	3.	9.050	0.048	1.239
spSpec-51959-0550-341	18750.	0.	6.341	0.018	0.264
spSpec-51959-0550-345	13826.	40.	8.770	0.023	1.064
spSpec-51959-0550-346	11560.	16.	7.743	0.009	0.465
spSpec-51959-0550-385	8985.	4.	8.460	0.040	0.884
spSpec-51959-0550-476	17774.	7.	8.060	0.020	0.652
spSpec-51959-0550-543	8634.	30.	7.492	0.003	0.364
spSpec-51959-0550-629	26552.	53.	9.092	0.020	1.206
spSpec-51965-0475-006	92190.	1241.	7.224	0.020	0.561
spSpec-51965-0475-074	19898.	28.	7.828	0.029	0.530
spSpec-51965-0475-101	17000.	0.	5.243	0.019	0.257
spSpec-51965-0475-300	8126.	17.	8.863	0.026	1.126
spSpec-51965-0475-315	11160.	12.	8.296	0.002	0.786
spSpec-51981-0549-070	14364.	18.	7.999	0.002	0.609
spSpec-51981-0549-166	13224.	8.	8.111	0.027	0.674
spSpec-51981-0549-300	19830.	42.	8.027	0.026	0.638
spSpec-51981-0549-325	10824.	9.	7.749	0.000	0.466
spSpec-51981-0549-338	12200.	0.	6.720	0.009	0.209
spSpec-51981-0549-351	10124.	22.	8.780	0.016	1.077
spSpec-51981-0549-404	36290.	141.	7.051	0.009	0.338
spSpec-51981-0549-417	13591.	3.	8.136	0.028	0.689
spSpec-51981-0549-479	24212.	15.	9.363	0.020	1.287
spSpec-51981-0549-496	27964.	3.	7.386	0.028	0.397
spSpec-51981-0549-534	72930.	661.	7.030	0.018	0.450
spSpec-51981-0549-559	13334.	34.	9.999	0.000	1.810
spSpec-51981-0549-567	17354.	37.	7.752	0.015	0.486
spSpec-51984-0279-228	65860.	456.	5.452	0.038	0.414
spSpec-51984-0279-308	9706.	13.	8.250	0.000	0.754
spSpec-51984-0279-321	8589.	36.	7.553	0.031	0.388
spSpec-51984-0279-483	19776.	13.	8.009	0.027	0.627
spSpec-51984-0296-497	21276.	93.	8.070	0.011	0.665
spSpec-51984-0498-092	27608.	31.	7.452	0.019	0.413
spSpec-51984-0498-163	19109.	36.	9.168	0.004	1.231
spSpec-51984-0498-187	15000.	0.	5.629	0.009	0.248
spSpec-51984-0498-206	14600.	0.	5.647	0.004	0.247
spSpec-51984-0498-234	11211.	5.	7.836	0.045	0.511
spSpec-51984-0498-235	16500.	0.	7.899	0.024	0.558
spSpec-51984-0498-295	25812.	13.	8.131	0.023	0.710
spSpec-51984-0498-503	63350.	413.	5.621	0.038	0.405

Tabela 10.1 (continuação)

_

Nome	T _{ef}	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51984-0498-547	13011.	7.	7.755	0.029	0.474
spSpec-51984-0498-580	15174.	21.	7.758	0.027	0.484
spSpec-51984-0498-581	15680.	29.	7.910	0.023	0.562
spSpec-51984-0498-584	32780.	272.	5.048	0.005	0.313
spSpec-51986-0294-049	18110.	32.	7.834	0.014	0.529
spSpec-51986-0294-089	16063.	36.	7.916	0.024	0.566
spSpec-51986-0294-293	10862.	56.	7.984	0.014	0.592
spSpec-51986-0294-331	7475.	4.	7.639	0.062	0.416
spSpec-51986-0294-377	10131.	28.	8.591	0.039	0.963
spSpec-51986-0294-513	12636.	26.	8.343	0.028	0.813
spSpec-51986-0294-590	17064.	30.	7.763	0.017	0.491
spSpec-51986-0548-024	7535.	7.	8.151	0.045	0.670
spSpec-51986-0548-038	23576.	25.	8.130	0.015	0.705
spSpec-51986-0548-083	18791.	12.	8.096	0.016	0.676
spSpec-51986-0548-090	19684.	31.	7.947	0.014	0.592
spSpec-51986-0548-106	11785.	9.	7.769	0.028	0.478
spSpec-51986-0548-151	56890.	479.	7.413	0.023	0.495
spSpec-51986-0548-218	17297.	16.	8.042	0.022	0.640
spSpec-51986-0548-290	36260.	104.	8.149	0.013	0.740
spSpec-51986-0548-321	13479.	57.	8.202	0.023	0.730
spSpec-51986-0548-443	21056.	77.	7.836	0.013	0.537
spSpec-51986-0548-516	7090.	15.	7.660	0.000	0.423
spSpec-51986-0548-529	9214.	13.	8.134	0.037	0.679
spSpec-51986-0548-545	23084.	56.	7.559	0.015	0.438
spSpec-51986-0548-566	21048.	76.	7.771	0.003	0.504
spSpec-51986-0548-600	21148.	116.	7.594	0.011	0.443
spSpec-51986-0548-618	18226.	8.	8.105	0.017	0.680
spSpec-51988-0495-186	9762.	5.	8.163	0.035	0.698
spSpec-51988-0495-617	17958.	14.	8.630	0.038	0.999
spSpec-51988-0496-148	29897.	6.	7.645	0.027	0.478
spSpec-51988-0496-189	18000.	0.	9.200	0.005	1.241
spSpec-51988-0496-217	10000.	0.	9.321	0.037	1.402
spSpec-51988-0496-583	14000.	0.	5.689	0.004	0.244
spSpec-51988-0499-467	31717.	90.	7.923	0.006	0.608
spSpec-51989-0363-005	28308.	30.	8.066	0.022	0.678
spSpec-51989-0363-312	8065.	14.	9.315	0.053	1.399
spSpec-51989-0363-321	26/56.	11.	7.499	0.000	0.422
spSpec-51989-0363-350	15204.	16.	7.740	0.023	0.476
spSpec-51989-0363-364	9295.	20.	7.941	0.027	0.563
spSpec-51989-0363-590	8830.	29.	8.397	0.027	0.846
spSpec-51989-0480-006	9850.	44.	8.079	0.056	0.047
spSpec-51989-0480-009	18129.	43.	7./10	0.015	0.472
spSpec-51989-0480-054	10562.	12.	7.802	0.030	0.525
spSpec-51989-0480-082	11414	51.	8.304 8.162	0.008	0.910
spspec-51989-0480-085	10404	0. 41	0.105	0.020	0.702
spSpec-51989-0480-108	10494.	41. 20	0.129	0.038	0.079
spSpec-51989-0480-111	12036	59. 61	0.333	0.019	0.940
spSpec-51980-0480-127	15780	15	7 886	0.040	0.430
spSpcc-51080_0480_140	19570	13. 42	7.000	0.020	0.549
spSpcc-51989-0480-100	15758	-⊤∠. 3	8 396	0.014	0.857
snSnec-51989-0480-216	17092	51	7 916	0.020	0.569
spSpec-51989-0480-248	18837.	28.	7.823	0.014	0.524

Tabela 10.1 (continuação)

E

Nome	T _{ef}	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51989-0480-251	9434.	14.	8.056	0.019	0.631
spSpec-51989-0480-306	19366.	36.	8.030	0.015	0.638
spSpec-51989-0480-462	13100.	32.	7.870	0.029	0.535
spSpec-51989-0480-530	10608.	3.	7.617	0.032	0.420
spSpec-51989-0480-555	13200.	0.	5.669	0.003	0.240
spSpec-51989-0480-558	31990.	86.	8.428	0.005	0.899
spSpec-51989-0480-562	16164.	19.	7.533	0.021	0.413
spSpec-51989-0480-566	7315.	14.	7.012	0.000	0.218
spSpec-51989-0480-571	8271.	7.	7.092	0.055	0.243
spSpec-51989-0480-575	7789.	10.	7.138	0.045	0.250
spSpec-51989-0480-595	19500.	0.	7.839	0.026	0.535
spSpec-51989-0497-041	15250.	0.	7.918	0.024	0.565
spSpec-51989-0497-063	21066.	66.	7.884	0.011	0.562
spSpec-51989-0497-109	17591.	45.	7.973	0.020	0.602
spSpec-51989-0497-111	17588.	33.	7.790	0.014	0.506
spSpec-51989-0497-124	23128.	40.	8.769	0.018	1.062
spSpec-51989-0497-173	20976.	58.	9.600	0.000	1.331
spSpec-51989-0497-182	16192.	13.	9.172	0.025	1.232
spSpec-51989-0497-243	25656.	25.	7.628	0.017	0.458
spSpec-51989-0497-285	13800.	0.	7.102	0.025	0.280
spSpec-51989-0497-346	24736.	61.	7.963	0.004	0.613
spSpec-51989-0497-347	13600.	0.	7.553	0.021	0.409
spSpec-51989-0497-354	12238.	20.	7.514	0.028	0.391
spSpec-51989-0497-443	15286.	25.	7.680	0.024	0.452
spSpec-51989-0497-445	14400	0	5 299	0.029	0.246
spSpec-51989-0497-448	12000.	0.	5.623	0.001	0.234
spSpec-51989-0497-496	25616.	28.	7.713	0.011	0.493
spSpec-51989-0497-509	18083.	38.	8.276	0.016	0.785
spSpec-51989-0497-522	16720.	17.	9.034	0.025	1.181
spSpec-51989-0497-553	14800.	0.	5.608	0.026	0.248
spSpec-51989-0497-576	15260.	4.	8.028	0.024	0.628
spSpec-51989-0513-415	10518.	28.	7.882	0.034	0.534
spSpec-51989-0513-640	13800.	0.	5.596	0.002	0.243
spSpec-51990-0289-014	9146.	37.	7.581	0.046	0.401
spSpec-51990-0289-106	19250.	0.	7.880	0.028	0.555
spSpec-51990-0289-109	13000.	0.	7.871	0.028	0.535
spSpec-51990-0289-204	31591.	101.	9.536	0.003	1.321
spSpec-51990-0289-213	6622.	15.	7.999	0.000	0.588
spSpec-51990-0289-241	11686.	67.	7.209	0.054	0.293
spSpec-51990-0289-256	26192.	18.	7.780	0.018	0.525
spSpec-51990-0289-277	15773.	11.	7.485	0.024	0.397
spSpec-51990-0289-322	32990.	72.	7.976	0.002	0.638
spSpec-51990-0289-382	33080.	103.	6.347	0.017	0.314
spSpec-51990-0289-464	28040.	3.	9.019	0.016	1.178
spSpec-51990-0289-471	27160.	45.	8.760	0.028	1.061
spSpec-51990-0289-553	13727.	26.	7.759	0.006	0.481
spSpec-51990-0289-564	41980.	157.	8.250	0.000	0.808
spSpec-51990-0289-579	18500.	0.	7.365	0.014	0.372
spSpec-51990-0310-001	16000.	0.	6.762	0.020	0.243
spSpec-51990-0310-083	50460.	92.	5.687	0.038	0.367
spSpec-51990-0310-133	12592.	4.	8.117	0.035	0.676
spSpec-51990-0310-176	12228.	11.	8.160	0.025	0.702
spSpec-51990-0310-189	15192.	14.	7.779	0.015	0.494

Tabela 10.1 (continuação)

spSpec-51990-0310-221 17177. 28. 7.953 0.020 0.590 spSpec-51990-0310-322 11490. 59. 7.618 0.053 0.423 spSpec-51990-0310-352 15688. 17. 8.296 0.019 0.794 spSpec-51990-0310-377 10562. 12. 7.868 0.030 0.526 spSpec-51990-0340-058 37640. 102. 8.503 0.000 0.950 spSpec-51990-0340-058 37640. 102. 8.503 0.021 0.404 spSpec-51990-0340-575 41240. 88. 7.643 0.013 0.504 spSpec-51990-0340-575 412668. 62. 7.701 0.032 0.450 spSpec-51991-0556-085 11679. 53. 7.759 0.010 0.473 spSpec-51991-0556-172 2918. 5. 7.933 0.030 0.609 spSpec-51991-0556-170 32193. 93. 7.475 0.001 0.473 spSpec-51991-0556-270 32193. 93. 7.475 0.002	Nome	T _{ef}	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51990-0310-321 11490. 59. 7.618 0.053 0.423 spSpec-51990-0310-341 25272. 42. 8.116 0.011 0.704 spSpec-51990-0310-377 10562. 12. 7.868 0.030 0.526 spSpec-51990-0310-517 13600. 0. 5.764 0.004 0.242 spSpec-51990-0340-058 37640. 102. 8.503 0.000 0.950 spSpec-51990-0340-515 41240. 88. 7.643 0.013 0.509 spSpec-51990-0340-575 41240. 88. 7.643 0.013 0.509 spSpec-51991-0356-085 11679. 53. 7.759 0.010 0.473 spSpec-51991-0556-097 21112. 85. 7.741 0.001 0.491 spSpec-51991-0556-167 8070. 17. 8.003 0.001 0.473 spSpec-51991-0556-167 8070. 17. 8.003 0.001 0.491 spSpec-51991-0556-163 9176. 19. 7.366 0.027 0.21	spSpec-51990-0310-221	17177.	28.	7.953	0.020	0.590
spSpec-51990-0310-341 25272. 42. 8.116 0.011 0.700 spSpec-51990-0310-352 15688. 17. 8.296 0.019 0.794 spSpec-51990-0310-317 10562. 12. 7.868 0.030 0.526 spSpec-51990-0310-517 13600. 0. 5.764 0.004 0.242 spSpec-51990-0340-114 13587. 3. 7.843 0.026 0.521 spSpec-51990-0340-555 51310. 256. 7.628 0.032 0.544 spSpec-51990-0340-618 12668. 62. 7.701 0.032 0.450 spSpec-51991-0556-085 11679. 53. 7.759 0.010 0.473 spSpec-51991-0556-067 21112. 85. 7.943 0.030 0.609 spSpec-51991-0556-167 8070. 17. 8.03 0.001 0.494 spSpec-51991-0556-270 32193. 9.4745 0.002 0.435 spSpec-51991-0556-462 32880. 73. 7.826 0.005 0.563	spSpec-51990-0310-229	11490.	59.	7.618	0.053	0.423
spSpec-51990-0310-352 15688. 17. 8.296 0.019 0.794 spSpec-51990-0310-377 10562. 12. 7.868 0.030 0.526 spSpec-51990-0310-517 13600. 0. 5.764 0.004 0.242 spSpec-51990-0340-058 37640. 102. 8.503 0.000 0.950 spSpec-51990-0340-299 14519. 20. 7.523 0.021 0.404 spSpec-51990-0340-575 41240. 88. 7.643 0.013 0.509 spSpec-51991-0356-086 11679. 53. 7.759 0.010 0.473 spSpec-51991-0556-097 21112. 85. 7.741 0.001 0.473 spSpec-51991-0556-112 2918. 5. 7.933 0.030 0.609 spSpec-51991-0556-136 9176. 19. 7.336 0.020 0.334 spSpec-51991-0556-326 8618. 39. 6.936 0.027 0.214 spSpec-51991-0556-503 8996. 1. 7.972 0.041 0.580 </td <td>spSpec-51990-0310-341</td> <td>25272.</td> <td>42.</td> <td>8.116</td> <td>0.011</td> <td>0.700</td>	spSpec-51990-0310-341	25272.	42.	8.116	0.011	0.700
spSpec-51990-0310-377 10562. 12. 7.868 0.030 0.526 spSpec-51990-0310-517 13600. 0. 5.764 0.004 0.242 spSpec-51990-0340-058 37640. 102. 8.503 0.000 0.950 spSpec-51990-0340-325 51310. 256. 7.628 0.032 0.544 spSpec-51990-0340-575 41240. 88. 7.643 0.013 0.509 spSpec-51990-0340-618 12668. 62. 7.701 0.032 0.450 spSpec-51991-0556-085 11679. 53. 7.937 0.010 0.473 spSpec-51991-0556-067 21112. 85. 7.741 0.001 0.491 spSpec-51991-0556-167 8070. 17. 8.03 0.030 0.596 spSpec-51991-0556-467 32193. 9.3 7.475 0.002 0.435 spSpec-51991-0556-467 32880. 73. 7.826 0.005 0.563 spSpec-51991-0556-462 32880. 7.972 0.041 0.580	spSpec-51990-0310-352	15688.	17.	8.296	0.019	0.794
spSpec-51990-0310-416 11172. 13. 8.144 0.035 0.690 spSpec-51990-0340-058 37640. 102. 8.503 0.000 0.950 spSpec-51990-0340-141 13587. 3. 7.843 0.026 0.521 spSpec-51990-0340-575 41240. 88. 7.643 0.013 0.509 spSpec-51990-0340-618 12668. 62. 7.701 0.032 0.450 spSpec-51991-0556-085 11679. 53. 7.759 0.010 0.473 spSpec-51991-0556-096 18166. 34. 7.937 0.014 0.583 spSpec-51991-0556-012 29918. 5. 7.933 0.030 0.609 spSpec-51991-0556-167 8070. 17. 8.003 0.001 0.596 spSpec-51991-0556-627 32193. 93. 7.475 0.002 0.435 spSpec-51991-0556-526 8618. 39. 6.936 0.027 0.214 spSpec-51991-0556-551 1300. 0. 5.634 0.027 0.244<	spSpec-51990-0310-377	10562.	12.	7.868	0.030	0.526
spSpec-51990-0310-517 13600. 0. 5.764 0.004 0.242 spSpec-51990-0340-058 37640. 102. 8.503 0.000 0.950 spSpec-51990-0340-299 14519. 20. 7.523 0.021 0.404 spSpec-51990-0340-575 41240. 88. 7.643 0.013 0.509 spSpec-51991-0556-085 11679. 53. 7.759 0.010 0.473 spSpec-51991-0556-085 11679. 53. 7.741 0.001 0.491 spSpec-51991-0556-167 12012. 85. 7.741 0.001 0.491 spSpec-51991-0556-167 8070. 17. 8.003 0.001 0.596 spSpec-51991-0556-362 15698. 20. 7.964 0.008 0.593 spSpec-51991-0556-362 15698. 20. 7.964 0.008 0.593 spSpec-51991-0556-573 29896. 1. 7.972 0.041 0.580 spSpec-51991-0556-553 20984. 74. 7.597 0.013 0.4	spSpec-51990-0310-416	11172.	13.	8.144	0.035	0.690
spSpec-51990.0340.058 37640. 102. 8.503 0.000 0.950 spSpec-51990.0340-299 14519. 20. 7.523 0.021 0.404 spSpec-51990.0340-352 51310. 256. 7.628 0.032 0.544 spSpec-51990.0340-575 41240. 88. 7.643 0.013 0.509 spSpec-51991.0556-085 11679. 53. 7.759 0.010 0.473 spSpec-51991.0556-097 21112. 85. 7.741 0.001 0.491 spSpec-51991.0556-172 29918. 5. 7.933 0.030 0.609 spSpec-51991.0556-167 8070. 17. 8.003 0.001 0.596 spSpec-51991.0556-167 8070. 17. 8.003 0.001 0.596 spSpec-51991.0556-476 12265. 69. 8.215 0.031 0.736 spSpec-51991.0556-525 15000. 0. 5.634 0.027 0.244 spSpec-51991.0556-538 20984. 74. 7.597 0.013 0.4	spSpec-51990-0310-517	13600.	0.	5.764	0.004	0.242
spSpec-51990-0340-114 13587. 3. 7.843 0.026 0.521 spSpec-51990-0340-299 14519. 20. 7.523 0.021 0.404 spSpec-51990-0340-575 11240. 88. 7.628 0.032 0.544 spSpec-51991-0556-085 11679. 53. 7.759 0.010 0.473 spSpec-51991-0556-096 18166. 34. 7.937 0.014 0.583 spSpec-51991-0556-097 21112. 85. 7.741 0.001 0.473 spSpec-51991-0556-167 8070. 17. 8.003 0.001 0.596 spSpec-51991-0556-270 32193. 93. 7.475 0.002 0.435 spSpec-51991-0556-326 8618. 39. 6.936 0.027 0.214 spSpec-51991-0556-476 12265. 69. 8.215 0.031 0.736 spSpec-51991-0556-538 8996. 1. 7.972 0.041 0.580 spSpec-51991-0556-5425 15000. 0. 5.634 0.027 0.248<	spSpec-51990-0340-058	37640.	102.	8.503	0.000	0.950
spSpec-51990-0340-299 14519. 20. 7.523 0.021 0.404 spSpec-51990-0340-352 51310. 256. 7.628 0.032 0.544 spSpec-51990-0340-618 12668. 62. 7.701 0.032 0.450 spSpec-51991-0556-085 11679. 53. 7.759 0.010 0.473 spSpec-51991-0556-097 21112. 85. 7.741 0.001 0.491 spSpec-51991-0556-167 2976. 19. 7.360 0.046 0.334 spSpec-51991-0556-167 8070. 17. 8.003 0.001 0.596 spSpec-51991-0556-167 8070. 17. 8.003 0.001 0.596 spSpec-51991-0556-626 1658. 20. 7.964 0.008 0.593 spSpec-51991-0556-526 20. 7.964 0.008 0.593 spSpec-51991-0556-525 15000. 5.634 0.027 0.248 spSpec-51991-0556-551 13579. 13. 7.456 0.020 0.377 spSpec-51991-0556-551	spSpec-51990-0340-114	13587.	3.	7.843	0.026	0.521
spSpec-51990-0340-352 51310. 256. 7.628 0.032 0.544 spSpec-51990-0340-575 41240. 88. 7.643 0.013 0.509 spSpec-51991-0356-085 11679. 53. 7.759 0.010 0.473 spSpec-51991-0556-096 18166. 34. 7.937 0.014 0.583 spSpec-51991-0556-136 9176. 19. 7.396 0.046 0.334 spSpec-51991-0556-167 8070. 17. 8.003 0.001 0.595 spSpec-51991-0556-362 15698. 20. 7.964 0.008 0.593 spSpec-51991-0556-452 15698. 20. 7.964 0.008 0.593 spSpec-51991-0556-452 1500. 0. 5.634 0.027 0.214 spSpec-51991-0556-452 1500. 0. 5.634 0.027 0.248 spSpec-51991-0556-551 1500. 0. 5.634 0.027 0.248 spSpec-51991-0556-558 20984. 74. 7.597 0.013 0.443 <td>spSpec-51990-0340-299</td> <td>14519.</td> <td>20.</td> <td>7.523</td> <td>0.021</td> <td>0.404</td>	spSpec-51990-0340-299	14519.	20.	7.523	0.021	0.404
spSpec-51990-0340-575 41240. 88. 7.643 0.013 0.509 spSpec-51990-0340-618 12668. 62. 7.701 0.032 0.450 spSpec-51991-0556-096 18166. 34. 7.937 0.014 0.583 spSpec-51991-0556-077 21112. 85. 7.741 0.001 0.473 spSpec-51991-0556-167 8070. 17. 8.03 0.046 0.334 spSpec-51991-0556-516 8070. 17. 8.03 0.046 0.334 spSpec-51991-0556-526 8618. 39. 6.936 0.027 0.214 spSpec-51991-0556-526 15698. 20. 7.964 0.008 0.593 spSpec-51991-0556-547 12265 69. 8.215 0.031 0.736 spSpec-51991-0556-551 15000. 0. 5.634 0.027 0.248 spSpec-51991-0556-551 1579. 13. 7.456 0.020 0.377 spSpec-51991-0556-551 1579. 726. 5. 7208 0.059	spSpec-51990-0340-352	51310.	256.	7.628	0.032	0.544
spSpec-51990-0340-618 12668. 62. 7.701 0.032 0.450 spSpec-51991-0556-085 11679. 53. 7.759 0.010 0.473 spSpec-51991-0556-097 21112. 85. 7.741 0.001 0.491 spSpec-51991-0556-12 29918. 5. 7.933 0.030 0.609 spSpec-51991-0556-167 8070. 17. 8.003 0.001 0.596 spSpec-51991-0556-326 8618. 39. 7.475 0.002 0.435 spSpec-51991-0556-422 15698. 20. 7.964 0.008 0.593 spSpec-51991-0556-422 1265. 69. 8.215 0.031 0.736 spSpec-51991-0556-525 1500. 0. 5.634 0.027 0.248 spSpec-51991-0556-551 13579. 13. 7.456 0.020 0.377 spSpec-51992-0512-095 7726. 5. 7.208 0.059 0.268 spSpec-51992-052-153 32382. 80. 8.111 0.006 0.711	spSpec-51990-0340-575	41240.	88.	7.643	0.013	0.509
spSpec-51991-0556-085 11679. 53. 7.759 0.010 0.473 spSpec-51991-0556-096 18166. 34. 7.937 0.014 0.583 spSpec-51991-0556-070 21112. 85. 7.741 0.001 0.491 spSpec-51991-0556-112 29918. 5. 7.933 0.030 0.609 spSpec-51991-0556-167 8070. 17. 8.003 0.001 0.596 spSpec-51991-0556-362 15698. 20. 7.964 0.008 0.593 spSpec-51991-0556-462 32880. 73. 7.826 0.000 0.563 spSpec-51991-0556-551 13579. 13. 7.456 0.020 0.377 spSpec-51991-0556-558 13579. 13. 7.456 0.020 0.377 spSpec-51991-0556-558 13000. 0. 5.634 0.027 0.248 spSpec-51992-0552-025 7993. 2. 7.208 0.059 0.268 spSpec-51992-0552-157 8293. 12. 8.297 0.038 0.711 </td <td>spSpec-51990-0340-618</td> <td>12668.</td> <td>62.</td> <td>7,701</td> <td>0.032</td> <td>0.450</td>	spSpec-51990-0340-618	12668.	62.	7,701	0.032	0.450
spSpec-51991-0556-096 18166. 34. 7.937 0.014 0.583 spSpec-51991-0556-097 21112. 85. 7.741 0.001 0.491 spSpec-51991-0556-112 29918. 5. 7.933 0.030 0.609 spSpec-51991-0556-167 8070. 17. 8.003 0.001 0.596 spSpec-51991-0556-270 32193. 93. 7.475 0.002 0.435 spSpec-51991-0556-362 8618. 39. 6.936 0.027 0.214 spSpec-51991-0556-462 32880. 73. 7.826 0.005 0.563 spSpec-51991-0556-562 15000. 0. 5.634 0.027 0.248 spSpec-51991-0556-551 13579. 13. 7.456 0.020 0.377 spSpec-51992-0512-095 7726. 5. 7.208 0.059 0.268 spSpec-51992-0552-155 32186. 99. 9.999 0.000 1.370 spSpec-51992-0552-579 8293. 12. 8.297 0.038 0.782 <td>spSpec-51991-0556-085</td> <td>11679.</td> <td>53.</td> <td>7.759</td> <td>0.010</td> <td>0.473</td>	spSpec-51991-0556-085	11679.	53.	7.759	0.010	0.473
spSpec-51991-0556-097 21112. 85. 7.741 0.001 0.491 spSpec-51991-0556-112 29918. 5. 7.933 0.030 0.609 spSpec-51991-0556-136 9176. 19. 7.396 0.046 0.334 spSpec-51991-0556-167 8070. 17. 8.003 0.001 0.596 spSpec-51991-0556-270 32193. 93. 7.475 0.002 0.435 spSpec-51991-0556-362 15698. 20. 7.964 0.008 0.593 spSpec-51991-0556-462 32880. 73. 7.826 0.007 0.214 spSpec-51991-0556-525 15000. 0. 5.634 0.027 0.248 spSpec-51991-0556-551 13579. 13. 7.456 0.020 0.377 spSpec-51991-0556-552 15000. 0. 5.634 0.027 0.248 spSpec-51992-0512-095 7726. 5. 7.208 0.059 0.268 spSpec-51992-052-215 32186. 99. 9.999 0.000 1.211 <td>spSpec-51991-0556-096</td> <td>18166.</td> <td>34.</td> <td>7.937</td> <td>0.014</td> <td>0.583</td>	spSpec-51991-0556-096	18166.	34.	7.937	0.014	0.583
spSpec-51991-0556-112 29918. 5. 7.933 0.030 0.609 spSpec-51991-0556-136 9176. 19. 7.396 0.046 0.334 spSpec-51991-0556-167 8070. 17. 8.003 0.001 0.596 spSpec-51991-0556-270 32193. 93. 7.475 0.002 0.435 spSpec-51991-0556-362 15698. 20. 7.964 0.008 0.593 spSpec-51991-0556-462 32880. 73. 7.826 0.005 0.563 spSpec-51991-0556-503 8996. 1. 7.972 0.041 0.580 spSpec-51991-0556-551 15000. 0. 5.634 0.027 0.248 spSpec-51991-0556-551 15079. 13. 7.456 0.020 0.377 spSpec-51991-0556-552 15000. 0. 5.634 0.027 0.248 spSpec-51992-0512-095 7726. 5. 7.208 0.059 0.268 spSpec-51992-0552-157 32382. 80. 8.111 0.006 0.711	spSpec-51991-0556-097	21112.	85.	7.741	0.001	0.491
spSpec-51991-0556-136 9176. 19. 7.396 0.046 0.334 spSpec-51991-0556-167 8070. 17. 8.003 0.001 0.596 spSpec-51991-0556-270 32193. 93. 7.475 0.002 0.435 spSpec-51991-0556-362 15698. 20. 7.964 0.008 0.593 spSpec-51991-0556-462 32880. 73. 7.826 0.001 0.563 spSpec-51991-0556-503 8996. 1. 7.972 0.041 0.580 spSpec-51991-0556-511 13579. 13. 7.456 0.020 0.377 spSpec-51991-0556-558 20984. 74. 7.597 0.013 0.443 spSpec-51992-0512-095 7726. 5. 7.208 0.027 0.248 spSpec-51992-0552-025 7993. 2. 7.758 0.000 0.211 spSpec-51992-0552-157 32382. 80. 8.111 0.006 0.711 spSpec-51993-0334-408 15000. 0. 5.278 0.017 0.248	spSpec-51991-0556-112	29918.	5.	7.933	0.030	0.609
spSpec-51991-0556-167 8070. 17. 8.003 0.001 0.596 spSpec-51991-0556-270 32193. 93. 7.475 0.002 0.435 spSpec-51991-0556-326 8618. 39. 6.936 0.027 0.214 spSpec-51991-0556-362 15698. 20. 7.964 0.008 0.593 spSpec-51991-0556-462 32880. 73. 7.826 0.005 0.563 spSpec-51991-0556-503 8996. 1. 7.972 0.041 0.580 spSpec-51991-0556-551 13579. 13. 7.456 0.020 0.377 spSpec-51992-0512-095 7726. 5. 7.208 0.059 0.268 spSpec-51992-0552-015 32186. 99. 9.999 0.000 1.370 spSpec-51992-0552-115 32182. 80. 8.111 0.006 0.711 spSpec-51992-0552-315 32382. 80. 8.111 0.006 0.711 spSpec-51993-0334-408 15000. 0. 5.278 0.017 0.463 <td>spSpec-51991-0556-136</td> <td>9176.</td> <td>19.</td> <td>7.396</td> <td>0.046</td> <td>0.334</td>	spSpec-51991-0556-136	9176.	19.	7.396	0.046	0.334
spSpec-51991-0556-270 32193. 93. 7.475 0.002 0.435 spSpec-51991-0556-326 8618. 39. 6.936 0.027 0.214 spSpec-51991-0556-362 15698. 20. 7.964 0.008 0.593 spSpec-51991-0556-462 32880. 73. 7.826 0.005 0.563 spSpec-51991-0556-503 8996. 1. 7.972 0.041 0.580 spSpec-51991-0556-555 15000. 0. 5.634 0.027 0.248 spSpec-51991-0556-558 20984. 74. 7.597 0.013 0.443 spSpec-51992-0512-095 7726. 5. 7.208 0.027 0.443 spSpec-51992-052-015 7993. 2. 7.758 0.027 0.463 spSpec-51992-052-115 32186. 99. 9.999 0.000 1.370 spSpec-51992-052-579 8293. 12. 8.297 0.038 0.782 spSpec-51993-0334-408 15000. 0. 5.278 0.017 0.248	spSpec-51991-0556-167	8070.	17.	8.003	0.001	0.596
spSpec-51991-0556-326 8618 39. 6.936 0.027 0.214 spSpec-51991-0556-362 15698. 20. 7.964 0.008 0.593 spSpec-51991-0556-462 32880. 73. 7.826 0.005 0.563 spSpec-51991-0556-503 8996. 1. 7.972 0.041 0.580 spSpec-51991-0556-551 13579. 13. 7.456 0.020 0.377 spSpec-51991-0556-551 13579. 13. 7.456 0.020 0.377 spSpec-51991-0556-551 13579. 7.208 0.059 0.268 spSpec-51992-0512-095 7726. 5. 7.208 0.059 0.268 spSpec-51992-0552-025 7993. 2. 7.758 0.027 0.463 spSpec-51992-0552-579 8293. 12. 8.297 0.038 0.782 spSpec-51993-0334-408 15000. 0. 5.278 0.017 0.248 spSpec-51993-0334-569 15300. 17. 8.044 0.025 0.637	spSpec-51991-0556-270	32193.	93.	7.475	0.002	0.435
spSpec-51991-0556-362 15698 20. 7.964 0.008 0.593 spSpec-51991-0556-462 32880. 73. 7.826 0.005 0.563 spSpec-51991-0556-476 12265. 69. 8.215 0.031 0.736 spSpec-51991-0556-503 8996. 1. 7.972 0.041 0.580 spSpec-51991-0556-551 13579. 13. 7.456 0.020 0.377 spSpec-51991-0556-558 20984. 74. 7.597 0.013 0.443 spSpec-51992-0512-095 7726. 5. 7.208 0.059 0.268 spSpec-51992-0552-025 7993. 2. 7.758 0.027 0.463 spSpec-51992-0552-315 32186. 99. 9.999 0.000 0.211 spSpec-51992-0552-315 32382. 80. 8.111 0.006 0.711 spSpec-51993-0334-408 15000. 0. 5.278 0.017 0.248 spSpec-51993-0334-569 15300. 17. 8.044 0.025 0.637 <td>spSpec-51991-0556-326</td> <td>8618</td> <td>39</td> <td>6.936</td> <td>0.027</td> <td>0.214</td>	spSpec-51991-0556-326	8618	39	6.936	0.027	0.214
spSpec-51991-0556-462 32880. 73. 7.826 0.005 0.563 spSpec-51991-0556-476 12265. 69. 8.215 0.031 0.736 spSpec-51991-0556-503 8996. 1. 7.972 0.041 0.580 spSpec-51991-0556-525 15000. 0. 5.634 0.027 0.248 spSpec-51991-0556-551 13579. 13. 7.456 0.020 0.377 spSpec-51992-0512-095 7726. 5. 7.208 0.059 0.268 spSpec-51992-0512-384 6826. 15. 6.999 0.000 0.211 spSpec-51992-0552-025 7993. 2. 7.758 0.027 0.463 spSpec-51992-0552-579 8293. 12. 8.297 0.038 0.782 spSpec-51993-0334-408 15000. 0. 5.278 0.017 0.248 spSpec-51993-0334-624 15038. 16. 7.905 0.016 0.557 spSpec-51993-0334-624 15038. 16. 7.905 0.016 0.557	spSpec-51991-0556-362	15698.	20.	7.964	0.008	0.593
spSpec-51991-0556-476 12265 69. 8.215 0.031 0.736 spSpec-51991-0556-503 8996. 1. 7.972 0.041 0.580 spSpec-51991-0556-525 15000. 0. 5.634 0.027 0.248 spSpec-51991-0556-551 13579. 13. 7.456 0.020 0.377 spSpec-51992-0512-095 7726. 5. 7.208 0.059 0.268 spSpec-51992-0512-025 7993. 2. 7.758 0.027 0.463 spSpec-51992-0552-025 7993. 2. 7.758 0.027 0.463 spSpec-51992-0552-579 8293. 12. 8.297 0.038 0.771 spSpec-51993-0334-408 15000. 0. 5.278 0.017 0.248 spSpec-51993-0334-408 15000. 12. 7.865 0.045 0.521 spSpec-51993-0334-424 15038. 16. 7.905 0.016 0.557 spSpec-51993-0532-255 21140. 134. 7.553 0.015 0.432	spSpec-51991-0556-462	32880.	73.	7.826	0.005	0.563
spSpec-51991-0556-503 8996 1. 7.972 0.041 0.580 spSpec-51991-0556-525 15000. 0. 5.634 0.027 0.248 spSpec-51991-0556-551 13579. 13. 7.456 0.020 0.377 spSpec-51991-0556-558 20984. 74. 7.597 0.013 0.443 spSpec-51992-0512-095 7726. 5. 7.208 0.059 0.268 spSpec-51992-0552-025 7993. 2. 7.758 0.027 0.463 spSpec-51992-0552-115 32186. 99. 9.999 0.000 1.370 spSpec-51992-0552-315 32382. 80. 8.111 0.006 0.711 spSpec-51993-0334-408 15000. 0. 5.278 0.017 0.248 spSpec-51993-0334-408 15000. 17. 8.044 0.025 0.637 spSpec-51993-0334-569 15300. 17. 8.044 0.025 0.637 spSpec-51993-0532-255 21140. 134. 7.553 0.016 0.557 <td>spSpec-51991-0556-476</td> <td>12265.</td> <td>69.</td> <td>8.215</td> <td>0.031</td> <td>0.736</td>	spSpec-51991-0556-476	12265.	69.	8.215	0.031	0.736
spSpec-51991-0556-525 15000. 0. 5.634 0.027 0.248 spSpec-51991-0556-551 13579. 13. 7.456 0.020 0.377 spSpec-51991-0556-558 20984. 74. 7.597 0.013 0.443 spSpec-51992-0512-095 7726. 5. 7.208 0.059 0.268 spSpec-51992-0552-025 7993. 2. 7.758 0.027 0.463 spSpec-51992-0552-015 32186. 99. 9.999 0.000 1.370 spSpec-51992-0552-315 32382. 80. 8.111 0.006 0.711 spSpec-51992-0552-315 32382. 80. 8.111 0.006 0.711 spSpec-51993-0334-408 15000. 0. 5.278 0.017 0.248 spSpec-51993-0334-409 15300. 17. 8.044 0.025 0.637 spSpec-51993-0334-524 15038. 16. 7.905 0.016 0.557 spSpec-51993-0532-255 21140. 134. 7.553 0.015 0.432<	spSpec-51991-0556-503	8996.	1.	7.972	0.041	0.580
spSpec-51991-0556-551 13579 13. 7.456 0.020 0.377 spSpec-51991-0556-558 20984. 74. 7.597 0.013 0.443 spSpec-51992-0512-095 7726. 5. 7.208 0.059 0.268 spSpec-51992-0512-384 6826. 15. 6.999 0.000 0.211 spSpec-51992-0552-025 7993. 2. 7.758 0.027 0.463 spSpec-51992-0552-315 32382. 80. 8.111 0.006 0.711 spSpec-51992-0552-579 8293. 12. 8.297 0.038 0.782 spSpec-51993-0334-408 15000. 0. 5.278 0.017 0.248 spSpec-51993-0334-409 9540. 22. 7.865 0.045 0.521 spSpec-51993-0334-424 15038. 16. 7.905 0.016 0.557 spSpec-51993-0532-055 21140. 134. 7.553 0.015 0.432 spSpec-51993-0532-2421 10637. 15. 7.813 0.036 0.498 <td>spSpec-51991-0556-525</td> <td>15000.</td> <td>0.</td> <td>5.634</td> <td>0.027</td> <td>0.248</td>	spSpec-51991-0556-525	15000.	0.	5.634	0.027	0.248
spSpec-51991-0556-558 20984. 74. 7.597 0.013 0.443 spSpec-51992-0512-095 7726. 5. 7.208 0.059 0.268 spSpec-51992-0512-384 6826. 15. 6.999 0.000 0.211 spSpec-51992-0552-025 7993. 2. 7.758 0.027 0.463 spSpec-51992-0552-115 32186. 99. 9.999 0.000 1.370 spSpec-51992-0552-315 32382. 80. 8.111 0.006 0.711 spSpec-51993-0334-408 15000. 0. 5.278 0.017 0.248 spSpec-51993-0334-401 9540. 22. 7.865 0.045 0.521 spSpec-51993-0334-569 15300. 17. 8.044 0.025 0.637 spSpec-51993-0532-055 21140. 134. 7.553 0.016 0.557 spSpec-51993-0532-282 10534. 12. 7.857 0.000 0.520 spSpec-51993-0532-375 6922. 13. 6.000 0.008 0.792 <td>spSpec-51991-0556-551</td> <td>13579.</td> <td>13.</td> <td>7.456</td> <td>0.020</td> <td>0.377</td>	spSpec-51991-0556-551	13579.	13.	7.456	0.020	0.377
spSpec-51992-0512-095 7726. 5. 7.208 0.059 0.268 spSpec-51992-0512-384 6826. 15. 6.999 0.000 0.211 spSpec-51992-0552-025 7993. 2. 7.758 0.027 0.463 spSpec-51992-0552-115 32186. 99. 9.999 0.000 1.370 spSpec-51992-0552-315 32382. 80. 8.111 0.006 0.711 spSpec-51993-0334-408 15000. 0. 5.278 0.017 0.248 spSpec-51993-0334-408 15000. 0. 5.278 0.017 0.248 spSpec-51993-0334-409 9540. 22. 7.865 0.045 0.521 spSpec-51993-0334-569 15300. 17. 8.044 0.025 0.637 spSpec-51993-0532-282 10534. 12. 7.857 0.010 0.520 spSpec-51993-0532-282 10534. 12. 7.857 0.000 0.520 spSpec-51993-0532-375 6922. 13. 6.000 0.000 0.199	spSpec-51991-0556-558	20984.	74.	7.597	0.013	0.443
spSpec-51992-0512-3846826.15.6.9990.0000.211spSpec-51992-0552-0257993.2.7.7580.0270.463spSpec-51992-0552-11532186.99.9.9990.0001.370spSpec-51992-0552-31532382.80.8.1110.0060.711spSpec-51992-0552-5798293.12.8.2970.0380.782spSpec-51993-0334-40815000.0.5.2780.0170.248spSpec-51993-0334-4099540.22.7.8650.0450.521spSpec-51993-0334-62415008.17.8.0440.0250.637spSpec-51993-0334-62415038.16.7.9050.0160.557spSpec-51993-0532-05521140.134.7.5530.0150.432spSpec-51993-0532-29310637.15.7.8130.0360.498spSpec-51993-0532-3756922.13.6.0000.0000.199spSpec-51993-0532-42412185.8.8.0570.0290.638spSpec-51993-0532-45719578.29.8.0640.0140.658spSpec-51993-0532-46640130.8.7.9270.0390.628spSpec-51993-0542-01434010.44.8.1610.0140.743spSpec-51993-0542-02441060.83.6.4830.0030.342spSpec-51993-0542-02442652.66.7.8770.0100.527spSpec-51993-0542-12232354.89.7.7490.0000.527 <td>spSpec-51992-0512-095</td> <td>7726.</td> <td>5.</td> <td>7.208</td> <td>0.059</td> <td>0.268</td>	spSpec-51992-0512-095	7726.	5.	7.208	0.059	0.268
spSpec-51992-0552-0257993.2.7.7580.0270.463spSpec-51992-0552-11532186.99.9.9990.0001.370spSpec-51992-0552-31532382.80.8.1110.0060.711spSpec-51992-0552-5798293.12.8.2970.0380.782spSpec-51993-0334-40815000.0.5.2780.0170.248spSpec-51993-0334-4919540.22.7.8650.0450.521spSpec-51993-0334-56915300.17.8.0440.0250.637spSpec-51993-0532-05521140.134.7.5530.0160.557spSpec-51993-0532-28210534.12.7.8570.0000.520spSpec-51993-0532-29310637.15.7.8130.0360.498spSpec-51993-0532-3756922.13.6.0000.0000.199spSpec-51993-0532-42412185.8.8.0570.0290.638spSpec-51993-0532-45719578.29.8.0640.0140.658spSpec-51993-0532-46640130.8.7.9270.0390.628spSpec-51993-0542-01434010.44.8.1610.0140.743spSpec-51993-0542-02441060.83.6.4830.0030.342spSpec-51993-0542-01434010.8.7.9270.0120.573spSpec-51993-0542-02441060.83.6.4830.0030.342spSpec-51993-0542-02441060.83.6.4830.0000.527 <td>spSpec-51992-0512-384</td> <td>6826.</td> <td>15.</td> <td>6.999</td> <td>0.000</td> <td>0.211</td>	spSpec-51992-0512-384	6826.	15.	6.999	0.000	0.211
spSpec-51992-0552-11532186.99.9.9990.0001.370spSpec-51992-0552-31532382.80.8.1110.0060.711spSpec-51992-0552-5798293.12.8.2970.0380.782spSpec-51993-0334-40815000.0.5.2780.0170.248spSpec-51993-0334-4919540.22.7.8650.0450.521spSpec-51993-0334-56915300.17.8.0440.0250.637spSpec-51993-0334-62415038.16.7.9050.0160.557spSpec-51993-0532-05521140.134.7.5530.0150.432spSpec-51993-0532-28210637.15.7.8130.0360.498spSpec-51993-0532-29310637.15.7.8130.0360.498spSpec-51993-0532-42412185.8.8.0570.0290.638spSpec-51993-0532-44416527.9.8.2910.0080.792spSpec-51993-0532-45719578.29.8.0640.0140.658spSpec-51993-0532-45719578.29.8.0640.0140.658spSpec-51993-0532-5911335.36.8.2280.0250.743spSpec-51993-0542-01434010.44.8.1610.0140.743spSpec-51993-0542-02441060.83.6.4830.0030.342spSpec-51993-0542-02441060.83.6.4830.0030.342spSpec-51993-0542-0244060.83.6.4830.00460.847<	spSpec-51992-0552-025	7993.	2.	7.758	0.027	0.463
spSpec-51992-0552-31532382.80.8.1110.0060.711spSpec-51992-0552-5798293.12.8.2970.0380.782spSpec-51993-0334-40815000.0.5.2780.0170.248spSpec-51993-0334-4099540.22.7.8650.0450.521spSpec-51993-0334-56915300.17.8.0440.0250.637spSpec-51993-0334-62415038.16.7.9050.0160.557spSpec-51993-0532-05521140.134.7.5530.0150.432spSpec-51993-0532-28210637.15.7.8130.0360.498spSpec-51993-0532-2756922.13.6.0000.0000.199spSpec-51993-0532-42412185.8.8.0570.0290.638spSpec-51993-0532-44416527.9.8.2910.0080.792spSpec-51993-0532-45719578.29.8.0640.0140.658spSpec-51993-0532-5911335.36.8.2280.0250.743spSpec-51993-0542-01434010.44.8.1610.0140.743spSpec-51993-0542-02441060.83.6.4830.0030.342spSpec-51993-0542-02441060.83.6.4830.0030.342spSpec-51993-0542-02442652.66.7.8770.0120.573spSpec-51993-0542-0243254.89.7.7490.0000.527spSpec-51993-0542-12836090.90.7.6770.0110.508 <td>spSpec-51992-0552-115</td> <td>32186.</td> <td>99.</td> <td>9.999</td> <td>0.000</td> <td>1.370</td>	spSpec-51992-0552-115	32186.	99.	9.999	0.000	1.370
spSpec-51992-0552-5798293.12.8.2970.0380.782spSpec-51993-0334-40815000.0.5.2780.0170.248spSpec-51993-0334-4919540.22.7.8650.0450.521spSpec-51993-0334-56915300.17.8.0440.0250.637spSpec-51993-0334-62415038.16.7.9050.0160.557spSpec-51993-0532-05521140.134.7.5530.0150.432spSpec-51993-0532-28210637.15.7.8130.0360.498spSpec-51993-0532-3756922.13.6.0000.0000.199spSpec-51993-0532-42412185.8.8.0570.0290.638spSpec-51993-0532-44416527.9.8.2910.0080.792spSpec-51993-0532-45719578.29.8.0640.0140.658spSpec-51993-0532-5911335.36.8.2280.0250.743spSpec-51993-0542-01241060.83.6.4830.0030.342spSpec-51993-0542-02241060.83.6.4830.0030.342spSpec-51993-0542-0242652.66.7.8770.0120.573spSpec-51993-0542-0243254.89.7.7490.0000.527spSpec-51993-0542-12836090.90.7.6770.0110.508	spSpec-51992-0552-315	32382.	80.	8.111	0.006	0.711
spSpec-51993-0334-40815000.0.5.2780.0170.248spSpec-51993-0334-4919540.22.7.8650.0450.521spSpec-51993-0334-56915300.17.8.0440.0250.637spSpec-51993-0334-62415038.16.7.9050.0160.557spSpec-51993-0532-05521140.134.7.5530.0150.432spSpec-51993-0532-28210534.12.7.8570.0000.520spSpec-51993-0532-29310637.15.7.8130.0360.498spSpec-51993-0532-42412185.8.8.0570.0290.638spSpec-51993-0532-44416527.9.8.2910.0080.792spSpec-51993-0532-45719578.29.8.0640.0140.658spSpec-51993-0532-45640130.8.7.9270.0390.628spSpec-51993-0542-01434010.44.8.1610.0140.743spSpec-51993-0542-02241060.83.6.4830.0030.342spSpec-51993-0542-0242652.66.7.8770.0120.573spSpec-51993-0542-12232354.89.7.7490.0000.527spSpec-51993-0542-17815930.24.8.3800.0460.847spSpec-51993-0542-22636090.90.7.6770.0110.508	spSpec-51992-0552-579	8293.	12.	8.297	0.038	0.782
spSpec-51993-0334-4919540.22.7.8650.0450.521spSpec-51993-0334-56915300.17.8.0440.0250.637spSpec-51993-0334-62415038.16.7.9050.0160.557spSpec-51993-0532-05521140.134.7.5530.0150.432spSpec-51993-0532-28210534.12.7.8570.0000.520spSpec-51993-0532-3756922.13.6.0000.0000.199spSpec-51993-0532-42412185.8.8.0570.0290.638spSpec-51993-0532-44416527.9.8.2910.0080.792spSpec-51993-0532-45719578.29.8.0640.0140.658spSpec-51993-0532-46640130.8.7.9270.0390.628spSpec-51993-0542-01434010.44.8.1610.0140.743spSpec-51993-0542-02441060.83.6.4830.0030.342spSpec-51993-0542-0244060.83.6.4830.0000.527spSpec-51993-0542-12232354.89.7.7490.0000.527spSpec-51993-0542-17815930.24.8.3800.0460.847spSpec-51993-0542-22636090.90.7.6770.0110.508	spSpec-51993-0334-408	15000.	0.	5.278	0.017	0.248
spSpec-51993-0334-56915300.17.8.0440.0250.637spSpec-51993-0334-62415038.16.7.9050.0160.557spSpec-51993-0532-05521140.134.7.5530.0150.432spSpec-51993-0532-28210534.12.7.8570.0000.520spSpec-51993-0532-29310637.15.7.8130.0360.498spSpec-51993-0532-42412185.8.8.0570.0290.638spSpec-51993-0532-44416527.9.8.2910.0080.792spSpec-51993-0532-45719578.29.8.0640.0140.658spSpec-51993-0532-46640130.8.7.9270.0390.628spSpec-51993-0542-01434010.44.8.1610.0140.743spSpec-51993-0542-02441060.83.6.4830.0030.342spSpec-51993-0542-02441060.83.6.4830.0000.527spSpec-51993-0542-12232354.89.7.7490.0000.527spSpec-51993-0542-17815930.24.8.3800.0460.847spSpec-51993-0542-22636090.90.7.6770.0110.508	spSpec-51993-0334-491	9540.	22.	7.865	0.045	0.521
spSpec-51993-0334-62415038.16.7.9050.0160.557spSpec-51993-0532-05521140.134.7.5530.0150.432spSpec-51993-0532-28210534.12.7.8570.0000.520spSpec-51993-0532-29310637.15.7.8130.0360.498spSpec-51993-0532-3756922.13.6.0000.0000.199spSpec-51993-0532-42412185.8.8.0570.0290.638spSpec-51993-0532-45719578.29.8.0640.0140.658spSpec-51993-0532-46640130.8.7.9270.0390.628spSpec-51993-0542-04134010.44.8.1610.0140.743spSpec-51993-0542-02241060.83.6.4830.0030.342spSpec-51993-0542-02426552.66.7.8770.0120.573spSpec-51993-0542-12232354.89.7.7490.0000.527spSpec-51993-0542-17815930.24.8.3800.0460.847spSpec-51993-0542-22636090.90.7.6770.0110.508	spSpec-51993-0334-569	15300.	17.	8.044	0.025	0.637
spSpec-51993-0532-05521140.134.7.5530.0150.432spSpec-51993-0532-28210534.12.7.8570.0000.520spSpec-51993-0532-29310637.15.7.8130.0360.498spSpec-51993-0532-3756922.13.6.0000.0000.199spSpec-51993-0532-42412185.8.8.0570.0290.638spSpec-51993-0532-45719578.29.8.0640.0140.658spSpec-51993-0532-46640130.8.7.9270.0390.628spSpec-51993-0532-46640130.8.7.9270.0390.628spSpec-51993-0542-01434010.44.8.1610.0140.743spSpec-51993-0542-02241060.83.6.4830.0030.342spSpec-51993-0542-02426652.66.7.8770.0120.573spSpec-51993-0542-12232354.89.7.7490.0000.527spSpec-51993-0542-17815930.24.8.3800.0460.847spSpec-51993-0542-22636090.90.7.6770.0110.508	spSpec-51993-0334-624	15038.	16.	7.905	0.016	0.557
spSpec-51993-0532-282 10534. 12. 7.857 0.000 0.520 spSpec-51993-0532-293 10637. 15. 7.813 0.036 0.498 spSpec-51993-0532-375 6922. 13. 6.000 0.000 0.199 spSpec-51993-0532-424 12185. 8. 8.057 0.029 0.638 spSpec-51993-0532-444 16527. 9. 8.291 0.008 0.792 spSpec-51993-0532-457 19578. 29. 8.064 0.014 0.658 spSpec-51993-0532-466 40130. 8. 7.927 0.039 0.628 spSpec-51993-0542-014 34010. 44. 8.161 0.014 0.743 spSpec-51993-0542-022 41060. 83. 6.483 0.003 0.342 spSpec-51993-0542-024 26652. 66. 7.877 0.012 0.573 spSpec-51993-0542-122 32354. 89. 7.749 0.000 0.527 spSpec-51993-0542-122 32354. 89. 7.677 0.011 0.508	spSpec-51993-0532-055	21140.	134.	7.553	0.015	0.432
spSpec-51993-0532-293 10637. 15. 7.813 0.036 0.498 spSpec-51993-0532-375 6922. 13. 6.000 0.000 0.199 spSpec-51993-0532-424 12185. 8. 8.057 0.029 0.638 spSpec-51993-0532-444 16527. 9. 8.291 0.008 0.792 spSpec-51993-0532-457 19578. 29. 8.064 0.014 0.658 spSpec-51993-0532-466 40130. 8. 7.927 0.039 0.628 spSpec-51993-0532-466 40130. 8. 7.927 0.039 0.628 spSpec-51993-0542-014 34010. 44. 8.161 0.014 0.743 spSpec-51993-0542-022 41060. 83. 6.483 0.003 0.342 spSpec-51993-0542-024 26652. 66. 7.877 0.012 0.573 spSpec-51993-0542-122 32354. 89. 7.749 0.000 0.527 spSpec-51993-0542-124 36090. 90. 7.677 0.011 0.508<	spSpec-51993-0532-282	10534.	12.	7.857	0.000	0.520
spSpec-51993-0532-375 6922. 13. 6.000 0.000 0.199 spSpec-51993-0532-424 12185. 8. 8.057 0.029 0.638 spSpec-51993-0532-444 16527. 9. 8.291 0.008 0.792 spSpec-51993-0532-457 19578. 29. 8.064 0.014 0.658 spSpec-51993-0532-466 40130. 8. 7.927 0.039 0.628 spSpec-51993-0532-466 40130. 8. 7.927 0.039 0.628 spSpec-51993-0532-466 40100. 44. 8.161 0.014 0.743 spSpec-51993-0542-014 34010. 44. 8.161 0.014 0.743 spSpec-51993-0542-022 41060. 83. 6.483 0.003 0.342 spSpec-51993-0542-024 26652. 66. 7.877 0.012 0.573 spSpec-51993-0542-122 32354. 89. 7.749 0.000 0.527 spSpec-51993-0542-128 36090. 90. 7.677 0.011 0.508<	spSpec-51993-0532-293	10637.	15.	7.813	0.036	0.498
spSpec-51993-0532-424 12185. 8. 8.057 0.029 0.638 spSpec-51993-0532-444 16527. 9. 8.291 0.008 0.792 spSpec-51993-0532-457 19578. 29. 8.064 0.014 0.658 spSpec-51993-0532-466 40130. 8. 7.927 0.039 0.628 spSpec-51993-0532-559 11335. 36. 8.228 0.025 0.743 spSpec-51993-0542-014 34010. 44. 8.161 0.014 0.743 spSpec-51993-0542-022 41060. 83. 6.483 0.003 0.342 spSpec-51993-0542-024 26652. 66. 7.877 0.012 0.573 spSpec-51993-0542-122 32354. 89. 7.749 0.000 0.527 spSpec-51993-0542-178 15930. 24. 8.380 0.046 0.847 spSpec-51993-0542-226 36090. 90. 7.677 0.011 0.508	spSpec-51993-0532-375	6922.	13.	6.000	0.000	0.199
spSpec-51993-0532-44416527.9.8.2910.0080.792spSpec-51993-0532-45719578.29.8.0640.0140.658spSpec-51993-0532-46640130.8.7.9270.0390.628spSpec-51993-0532-55911335.36.8.2280.0250.743spSpec-51993-0542-01434010.44.8.1610.0140.743spSpec-51993-0542-02241060.83.6.4830.0030.342spSpec-51993-0542-02426652.66.7.8770.0120.573spSpec-51993-0542-12232354.89.7.7490.0000.527spSpec-51993-0542-17815930.24.8.3800.0460.847spSpec-51993-0542-22636090.90.7.6770.0110.508	spSpec-51993-0532-424	12185.	8.	8.057	0.029	0.638
spSpec-51993-0532-457 19578. 29. 8.064 0.014 0.658 spSpec-51993-0532-466 40130. 8. 7.927 0.039 0.628 spSpec-51993-0532-559 11335. 36. 8.228 0.025 0.743 spSpec-51993-0542-014 34010. 44. 8.161 0.014 0.743 spSpec-51993-0542-022 41060. 83. 6.483 0.003 0.342 spSpec-51993-0542-024 26652. 66. 7.877 0.012 0.573 spSpec-51993-0542-122 32354. 89. 7.749 0.000 0.527 spSpec-51993-0542-178 15930. 24. 8.380 0.046 0.847 spSpec-51993-0542-226 36090. 90. 7.677 0.011 0.508	spSpec-51993-0532-444	16527.	9.	8.291	0.008	0.792
spSpec-51993-0532-466 40130. 8. 7.927 0.039 0.628 spSpec-51993-0532-559 11335. 36. 8.228 0.025 0.743 spSpec-51993-0542-014 34010. 44. 8.161 0.014 0.743 spSpec-51993-0542-022 41060. 83. 6.483 0.003 0.342 spSpec-51993-0542-024 26652. 66. 7.877 0.012 0.573 spSpec-51993-0542-122 32354. 89. 7.749 0.000 0.527 spSpec-51993-0542-178 15930. 24. 8.380 0.046 0.847 spSpec-51993-0542-226 36090. 90. 7.677 0.011 0.508	spSpec-51993-0532-457	19578.	29.	8.064	0.014	0.658
spSpec-51993-0532-559 11335. 36. 8.228 0.025 0.743 spSpec-51993-0542-014 34010. 44. 8.161 0.014 0.743 spSpec-51993-0542-022 41060. 83. 6.483 0.003 0.342 spSpec-51993-0542-024 26652. 66. 7.877 0.012 0.573 spSpec-51993-0542-122 32354. 89. 7.749 0.000 0.527 spSpec-51993-0542-178 15930. 24. 8.380 0.046 0.847 spSpec-51993-0542-226 36090. 90. 7.677 0.011 0.508	spSpec-51993-0532-466	40130.	8.	7.927	0.039	0.628
spSpec-51993-0542-014 34010. 44. 8.161 0.014 0.743 spSpec-51993-0542-022 41060. 83. 6.483 0.003 0.342 spSpec-51993-0542-024 26652. 66. 7.877 0.012 0.573 spSpec-51993-0542-122 32354. 89. 7.749 0.000 0.527 spSpec-51993-0542-178 15930. 24. 8.380 0.046 0.847 spSpec-51993-0542-226 36090. 90. 7.677 0.011 0.508	spSpec-51993-0532-559	11335.	36.	8.228	0.025	0.743
spSpec-51993-0542-022 41060. 83. 6.483 0.003 0.342 spSpec-51993-0542-064 26652. 66. 7.877 0.012 0.573 spSpec-51993-0542-122 32354. 89. 7.749 0.000 0.527 spSpec-51993-0542-178 15930. 24. 8.380 0.046 0.847 spSpec-51993-0542-226 36090. 90. 7.677 0.011 0.508	spSpec-51993-0542-014	34010.	44.	8.161	0.014	0.743
spSpec-51993-0542-064 26652. 66. 7.877 0.012 0.573 spSpec-51993-0542-122 32354. 89. 7.749 0.000 0.527 spSpec-51993-0542-178 15930. 24. 8.380 0.046 0.847 spSpec-51993-0542-226 36090. 90. 7.677 0.011 0.508	spSpec-51993-0542-022	41060.	83.	6.483	0.003	0.342
spSpec-51993-0542-122 32354. 89. 7.749 0.000 0.527 spSpec-51993-0542-178 15930. 24. 8.380 0.046 0.847 spSpec-51993-0542-226 36090. 90. 7.677 0.011 0.508	spSpec-51993-0542-064	26652.	66.	7.877	0.012	0.573
spSpec-51993-0542-178 15930. 24. 8.380 0.046 0.847 spSpec-51993-0542-226 36090. 90. 7.677 0.011 0.508	spSpec-51993-0542-122	32354.	89.	7.749	0.000	0.527
spSpec-51993-0542-226 36090. 90. 7.677 0.011 0.508	spSpec-51993-0542-178	15930.	24.	8.380	0.046	0.847
	spSpec-51993-0542-226	36090.	90.	7.677	0.011	0.508

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51993-0542-329	15250.	0.	5.361	0.032	0.249
spSpec-51993-0542-449	10165.	13.	7.939	0.045	0.565
spSpec-51993-0542-463	35310.	20.	7.776	0.016	0.546
spSpec-51993-0542-476	18355.	33.	7.799	0.014	0.512
spSpec-51993-0542-496	21068.	79.	7.839	0.015	0.539
spSpec-51993-0542-521	7022.	3.	7.757	0.000	0.460
spSpec-51993-0542-595	13940.	30.	7.955	0.028	0.583
spSpec-51993-0542-639	44640.	34.	9.379	0.045	1.293
spSpec-51993-0551-122	50600.	103.	7.354	0.047	0.460
spSpec-51993-0551-509	21024.	62.	8.040	0.006	0.648
spSpec-51993-0551-612	14600.	0.	5.733	0.012	0.247
spSpec-51994-0309-012	19250.	0.	5.745	0.020	0.266
spSpec-51994-0309-085	6890.	7.	5.999	0.000	0.198
spSpec-51994-0309-233	16920.	25.	7.989	0.023	0.609
spSpec-51994-0309-242	10872.	45.	8.152	0.037	0.694
spSpec-51994-0309-391	17250.	0.	7.395	0.015	0.374
spSpec-51994-0309-401	11886.	56.	7.783	0.028	0.485
spSpec-51994-0309-457	10415.	7.	7.939	0.027	0.565
spSpec-51994-0309-471	34580.	21.	8.116	0.029	0.718
spSpec-51994-0500-161	13626.	15.	8.066	0.034	0.647
spSpec-51994-0500-163	14142.	32.	7.935	0.035	0.572
spSpec-51994-0500-209	11733.	23.	7.629	0.031	0.427
spSpec-51994-0500-410	11113.	29.	7.384	0.026	0.340
spSpec-51994-0500-464	16781.	10.	8.297	0.037	0.796
spSpec-51994-0500-478	11329.	27.	8.278	0.018	0.775
spSpec-51994-0500-545	18081.	24.	8.093	0.023	0.673
spSpec-51994-0500-558	17636.	43.	7.699	0.016	0.464
spSpec-51994-0500-564	7378.	16.	7.250	0.011	0.277
spSpec-51994-0500-580	11995.	2.	7.878	0.032	0.536
spSpec-51994-0500-595	24284.	23.	8.237	0.018	0.771
spSpec-51994-0500-619	8569.	21.	8.527	0.013	0.924
spSpec-51994-0514-132	12838.	41.	7.744	0.011	0.468
spSpec-51994-0514-247	7822.	24.	6.991	0.003	0.218
spSpec-51994-0514-361	9156.	24.	8.324	0.022	0.802
spSpec-51994-0514-584	9799.	23.	8.080	0.048	0.647
spSpec-51994-0533-136	9064.	24.	7.727	0.012	0.452
spSpec-51994-0533-466	8198.	10.	8.096	0.000	0.652
spSpec-51994-0533-500	8908.	25.	8.445	0.036	0.875
spSpec-51996-0540-154	12959.	19.	8.083	0.032	0.656
spSpec-51996-0540-225	10320.	23.	8.363	0.032	0.825
spSpec-51996-0540-236	138/0.	50.	8.296	0.026	0.791
spSpec-51996-0540-345	25648.	21.	9.098	0.022	1.208
spSpec-51996-0540-453	12286.	57.	1.783	0.036	0.486
spSpec-51996-0540-523	23330.	28.	8.093	0.012	0.084
spspec-31990-0340-331	11200.	3. 20	7.129	0.025	0.438
spSpec-51997-0337-051	12080.	38. 14	7.851	0.033	0.521
spspec-51997-0557-155 spSpec 51007 0327 175	37520	14. 191	5 500	0.000	0.338
spSpec-51997-0557-175	18026	101. 31	7 009	0.000	0.529
spSpec-51007 0337 264	13200	0	0 114	0.025	1 278
spSpec-51997-0557-204	16000	0.	5 620	0.026	0.253
spSpcc-51997-0557-421 spSpcc-51007_0367_119	13581	6	7 529	0.020	0.233
spSpcc-51007-0367-110	55160	0. 36	7 150	0.021	0.400
spspec 51))/ 050/-12)	55100.	50.	1.157	0.070	5.777

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-51997-0367-288	10586.	7.	8.263	0.028	0.764
spSpec-51997-0367-304	23724.	17.	8.192	0.026	0.742
spSpec-51997-0367-318	42300.	159.	7.403	0.006	0.447
spSpec-51997-0367-327	13716.	48.	7.923	0.037	0.564
spSpec-51997-0367-350	18370.	49.	7.925	0.017	0.577
spSpec-51997-0367-356	31591.	92.	8.606	0.010	1.001
spSpec-51997-0367-402	18649.	25.	8.577	0.002	0.972
spSpec-51997-0367-416	14690.	43.	7.943	0.031	0.578
spSpec-51997-0367-448	15685.	15.	7.779	0.024	0.495
spSpec-51997-0367-464	10525.	12.	7.873	0.000	0.529
spSpec-51997-0367-491	19450.	15.	8.094	0.015	0.675
spSpec-51997-0367-501	8306.	20.	7.950	0.025	0.566
spSpec-51997-0367-512	12815.	16.	7.971	0.033	0.589
spSpec-51997-0367-525	23380.	46.	7.500	0.028	0.426
spSpec-51997-0367-548	10304.	32.	8.113	0.034	0.668
spSpec-51997-0367-564	40190.	11.	7.851	0.041	0.592
spSpec-51997-0534-022	6938.	12.	5.500	0.000	0.199
spSpec-51997-0534-254	28248.	25.	7.605	0.022	0.458
spSpec-51997-0534-314	15008.	3.	7.625	0.028	0.434
spSpec-51999-0286-143	12048.	25.	8.584	0.027	0.959
spSpec-51999-0286-161	8476.	6.	7.865	0.045	0.518
spSpec-51999-0286-169	16442.	16.	8.298	0.034	0.796
spSpec-51999-0286-254	33360.	66.	7.770	0.002	0.539
spSpec-51999-0286-293	13168.	8.	7.578	0.027	0.415
spSpec-51999-0286-390	11441.	13.	7.572	0.021	0.407
spSpec-51999-0336-010	9643.	25.	7.932	0.036	0.559
spSpec-51999-0336-100	38240.	83.	7.782	0.003	0.557
spSpec-51999-0336-197	15844.	38.	7.992	0.032	0.608
spSpec-51999-0336-213	14800.	0.	7.386	0.023	0.360
spSpec-51999-0336-538	18564.	26.	8.620	0.003	0.996
spSpec-51999-0503-003	14468.	44.	7.972	0.016	0.594
spSpec-51999-0503-067	14253.	33.	7.915	0.026	0.561
spSpec-51999-0503-076	19444.	22.	8.150	0.016	0.709
spSpec-51999-0503-108	13989.	7.	8.000	0.003	0.609
spSpec-51999-0503-216	19250.	0.	6.198	0.024	0.266
spSpec-51999-0503-238	16301.	14.	7.556	0.019	0.420
spSpec-51999-0503-244	12800.	0.	5.699	0.002	0.237
spSpec-51999-0503-329	13234.	26.	7.927	0.035	0.566
spSpec-51999-0503-434	14639.	30.	7.970	0.017	0.594
spSpec-51999-0503-524	17750.	0.	7.850	0.016	0.536
spSpec-51999-0503-541	26624.	67.	7.813	0.011	0.541
spSpec-51999-0535-008	15042.	17.	7.766	0.017	0.487
spSpec-51999-0535-348	13800.	0.	7.808	0.023	0.504
spSpec-51999-0535-377	16244.	2.	7.746	0.023	0.481
spSpec-51999-0535-428	42190.	213.	5.999	0.000	0.345
spSpec-51999-0535-442	20876.	113.	5.249	0.024	0.274
spSpec-51999-0535-620	10311.	23.	8.077	0.026	0.646
spSpec-51999-0553-363	18750.	0.	6.259	0.018	0.264
spSpec-51999-0553-380	6428.	9.	6.500	0.000	0.151
spSpec-51999-0553-397	18506.	3.	8.129	0.016	0.695
spSpec-51999-0553-571	23860.	10.	7.915	0.023	0.585
spspec-52000-0288-015	12058.	37.	7.548	0.037	0.402
spspec-52000-0288-102	17250.	0.	1.974	0.020	0.001

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-52000-0288-189	23644.	23.	8.034	0.007	0.650
spSpec-52000-0288-306	16250.	0.	7.879	0.034	0.546
spSpec-52000-0288-412	11321.	34.	7.784	0.021	0.485
spSpec-52000-0288-423	10291.	26.	7.636	0.001	0.425
spSpec-52000-0288-446	9522.	8.	7.752	0.005	0.464
spSpec-52000-0335-062	14282.	27.	8.090	0.025	0.663
spSpec-52000-0335-264	18750.	0.	6.775	0.021	0.264
spSpec-52000-0335-361	27916.	7.	7.799	0.022	0.538
spSpec-52000-0335-398	11628.	14.	7.641	0.035	0.431
spSpec-52000-0335-463	24760.	58.	8.131	0.010	0.708
spSpec-52000-0335-478	31000.	58.	5.762	0.010	0.307
spSpec-52000-0335-489	15279.	10.	8.044	0.029	0.637
spSpec-52000-0364-002	9070.	19.	9.664	0.063	1.609
spSpec-52000-0364-003	15000.	0.	5.263	0.018	0.248
spSpec-52000-0364-105	41770.	141.	7.749	0.000	0.552
spSpec-52000-0364-143	24252.	20.	8.275	0.009	0.794
spSpec-52000-0364-225	17913.	23.	7.801	0.020	0.512
spSpec-52000-0364-258	16488.	6.	7.927	0.032	0.573
spSpec-52000-0364-269	25852.	10.	8.763	0.030	1.062
spSpec-52000-0364-300	16408.	21.	7.784	0.026	0.499
spSpec-52000-0364-312	18790.	30.	7.168	0.018	0.324
spSpec-52000-0364-393	14220.	6.	7.820	0.027	0.511
spSpec-52000-0364-467	15106.	35.	8.015	0.025	0.620
spSpec-52000-0364-611	10075.	35.	8.768	0.011	1.069
spSpec-52000-0474-037	21092.	121.	7.264	0.002	0.359
spSpec-52000-0474-042	7615.	17.	7.593	0.020	0.386
spSpec-52000-0474-046	28828.	56.	8.299	0.006	0.816
spSpec-52000-0474-084	11014.	8.	7.925	0.029	0.559
spSpec-52000-0474-175	7196.	11.	6.536	0.016	0.154
spSpec-52000-0474-176	9782.	15.	7.801	0.048	0.489
spSpec-52000-0474-288	11376.	7.	7.897	0.022	0.544
spSpec-52000-0474-316	9408.	25.	8.237	0.008	0.745
spSpec-52000-0474-367	9875.	31.	7.875	0.042	0.528
spSpec-52000-0474-389	11904.	30.	7.880	0.028	0.536
spSpec-52000-0474-428	25372.	48.	7.325	0.009	0.372
spSpec-52000-0474-442	23612.	22.	8.413	0.020	0.878
spSpec-52000-0474-448	18179.	21.	8.024	0.018	0.632
spSpec-52000-0474-481	26932.	54.	8.061	0.006	0.672
spSpec-52000-0474-533	19670.	32.	7.492	0.010	0.413
spSpec-52000-0474-559	13772.	11.	7.498	0.026	0.392
spSpec-52000-0554-098	9509.	3.	8.272	0.047	0.767
spSpec-52000-0554-344	37120.	126.	7.499	0.000	0.456
spSpec-52000-0554-346	8208.	8.	8.447	0.043	0.876
spSpec-52017-0366-031	13304.	61.	7.916	0.037	0.560
spSpec-52017-0366-053	11329.	22.	7.741	0.005	0.464
spSpec-52017-0366-065	10373.	14.	8.193	0.039	0.719
spSpec-52017-0366-066	9253.	1.	8.974	0.037	1.194
spSpec-52017-0366-090	32424.	85.	7.749	0.000	0.527
spSpec-52017-0366-134	18602.	46.	8.410	0.031	0.870
spSpec-52017-0366-139	19500.	0.	7.391	0.020	0.385
spSpec-52017-0366-151	54470.	94.	9.058	0.059	1.136
spSpec-52017-0366-196	40890.	58.	9.013	0.002	1.179
spSpec-52017-0366-264	11177.	11.	7.743	0.018	0.465

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-52017-0366-266	15270.	5.	8.075	0.028	0.656
spSpec-52017-0366-341	19500.	0.	6.268	0.018	0.267
spSpec-52017-0366-342	11334.	17.	7.845	0.026	0.516
spSpec-52017-0366-353	6791.	7.	6.600	0.060	0.157
spSpec-52017-0366-511	33960.	48.	7.817	0.010	0.561
spSpec-52017-0366-547	8548.	13.	8.504	0.002	0.910
spSpec-52017-0366-590	15611.	35.	7.483	0.021	0.396
spSpec-52017-0366-591	10964.	20.	8.023	0.028	0.616
spSpec-52017-0366-595	16200.	18.	7.977	0.025	0.601
spSpec-52017-0366-629	11558.	33.	7.420	0.043	0.354
spSpec-52017-0516-050	16967.	10.	8.105	0.015	0.677
spSpec-52017-0516-624	49970.	4.	7.663	0.068	0.553
spSpec-52017-0539-010	17500.	0.	7.890	0.014	0.556
spSpec-52017-0539-042	18000.	0.	6.349	0.022	0.261
spSpec-52017-0539-095	15084.	48.	7.688	0.018	0.455
spSpec-52017-0539-123	17030.	12.	7.756	0.017	0.488
spSpec-52017-0539-146	10851.	26.	7.694	0.019	0.444
spSpec-52017-0539-219	14732.	31.	7.941	0.030	0.577
spSpec-52017-0539-247	17753.	1.	8.048	0.023	0.645
spSpec-52017-0539-249	11498.	37.	7.841	0.034	0.515
spSpec-52017-0539-334	7355.	6.	5.999	0.000	0.202
spSpec-52017-0539-409	8315.	21.	7.869	0.037	0.519
spSpec-52017-0539-462	13616.	8.	8.840	0.028	1.092
spSpec-52017-0539-477	18080.	41.	8.525	0.024	0.940
spSpec-52017-0539-523	11591.	5.	7.722	0.028	0.456
spSpec-52017-0539-599	17127.	32.	8.009	0.021	0.621
spSpec-52017-0539-606	14527.	20.	8.065	0.026	0.648
spSpec-52017-0543-025	16506.	3.	7.951	0.027	0.587
spSpec-52017-0543-084	13605.	4.	8.562	0.031	0.958
spSpec-52017-0543-207	21112.	104.	7.583	0.014	0.440
spSpec-52017-0543-216	41290.	90.	8.011	0.001	0.673
spSpec-52017-0543-272	12099.	41.	8.094	0.031	0.661
spSpec-52017-0543-523	21016.	85.	7.444	0.007	0.406
spSpec-52017-0543-550	18250.	0.	7.646	0.021	0.446
spSpec-52022-0506-248	9620.	33.	7.663	0.040	0.432
spSpec-52022-0506-453	18227.	10.	7.982	0.017	0.608
spSpec-52022-0506-558	8014.	3.	8.513	0.026	0.916
spSpec-52022-0528-074	13359.	35.	8.482	0.037	0.897
spSpec-52022-0528-278	7653.	14.	7.500	0.000	0.377
spSpec-52022-0591-463	27964.	3.	8.088	0.042	0.690
spSpec-52022-0591-629	7118.	18.	6.499	0.000	0.152
spSpec-52023-0287-195	23808.	15.	7.509	0.004	0.429
spSpec-52023-0287-253	27088.	45.	8.763	0.001	1.062
spSpec-52023-0287-260	6680.	33.	6.500	0.000	0.152
spSpec-52023-0287-269	15954.	11.	7.809	0.020	0.510
spSpec-52023-0287-319	18227.	9.	7.511	0.013	0.414
spSpec-52023-0287-582	8577.	26.	8.260	0.005	0.758
spSpec-52023-0586-629	16250.	0.	6.201	0.020	0.254
spSpec-52023-0595-051	21088.	64.	8.363	0.016	0.843
spSpec-52023-0595-136	10834.	23.	7.929	0.029	0.561
spSpec-52023-0595-228	12344.	21.	7.874	0.034	0.534
spSpec-52023-0595-229	10460.	35.	7.927	0.026	0.559
spSpec-52023-0595-267	17890.	37.	7.967	0.019	0.599

Tabela 10.1 (continuação)

spSpec-52023-0595-530 11426. 14. 7.759 0.018 0.472 spSpec-52023-0595-530 11426. 14. 7.759 0.018 0.472 spSpec-52023-0595-531 11176. 12. 7.709 0.030 0.450 spSpec-52024-0517-154 25032. 56. 7.783 0.000 0.523 spSpec-52024-0517-610 27724. 20. 7.856 0.026 0.528 spSpec-52024-0522-403 42020. 211. 5.999 0.000 0.345 spSpec-52024-0522-541 15060. 23. 7.630 0.022 0.622 spSpec-52024-0532-511 11292. 37. 8.113 0.0345 0.560 spSpec-52024-0536-017 14503. 34. 8.020 0.023 0.622 spSpec-52024-0536-112 14508. 35. 7.913 0.026 0.560 spSpec-52024-0536-212 1850. 37. 7.45 0.016 0.488 spSpec-52024-0536-212 1850. 37. 7.745 0.016 0.	Nome	T _{ef}	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-52023-0595-530 11426. 14. 7.759 0.018 0.472 spSpec-52023-0595-531 11176 12. 7.709 0.030 0.450 spSpec-52024-0517-154 25032. 56. 7.783 0.000 0.523 spSpec-52024-0517-610 27724 20. 7.985 0.005 0.632 spSpec-52024-0522-431 13600. 0. 7.856 0.026 0.528 spSpec-52024-0522-403 42020. 211. 5.999 0.000 0.345 spSpec-52024-0522-591 11292. 37. 8.113 0.034 0.671 spSpec-52024-0536-059 3000. 79. 7.361 0.008 4.062 spSpec-52024-0536-172 11850. 34. 7.913 0.026 0.560 spSpec-52024-0536-121 18560. 37. 7.745 0.016 0.485 spSpec-52024-0536-212 18560. 31. 7.161 0.025 0.480 spSpec-52024-0536-431 1129. 0.1 0.318 0.527 <tr< td=""><td>spSpec-52023-0595-484</td><td>6374.</td><td>1.</td><td>6.500</td><td>0.000</td><td>0.151</td></tr<>	spSpec-52023-0595-484	6374.	1.	6.500	0.000	0.151
spSpec-52023-0595-533 23840. 11. 7.914 0.023 0.450 spSpec-52023-0595-571 11176. 12. 7.709 0.030 0.450 spSpec-52024-0517-154 25032. 56. 7.783 0.000 0.523 spSpec-52024-0522-403 4020. 211. 5.999 0.000 0.345 spSpec-52024-0522-403 4202. 211. 5.999 0.000 0.345 spSpec-52024-0522-591 11292. 37. 8.113 0.034 0.671 spSpec-52024-0536-017 14503. 34. 8.020 0.023 0.622 spSpec-52024-0536-019 14508. 35. 7.913 0.026 0.585 spSpec-52024-0536-192 7093. 2.0 6.499 0.000 0.152 spSpec-52024-0536-212 18560. 37. 7.45 0.016 0.485 spSpec-52024-0536-231 17250. 0. 7.132 0.027 0.257 spSpec-52024-0536-431 11189. 5. 7.766 0.025 0.480	spSpec-52023-0595-530	11426.	14.	7.759	0.018	0.472
spSpec-52024-0517-15 11176. 12. 7.709 0.030 0.450 spSpec-52024-0517-610 27724. 20. 7.985 0.000 0.523 spSpec-52024-0522-234 13600. 0. 7.856 0.026 0.6682 spSpec-52024-0522-403 42020. 211. 5.999 0.000 0.345 spSpec-52024-0522-542 15060. 23. 7.630 0.020 0.436 spSpec-52024-0532-6101 14503. 34. 8.020 0.023 0.622 spSpec-52024-0536-159 33000. 79. 7.361 0.008 0.408 spSpec-52024-0536-212 18560. 37. 7.745 0.016 0.485 spSpec-52024-0536-231 19500. 0. 7.132 0.020 0.308 spSpec-52024-0536-318 11189. 5. 7.776 0.025 0.480 spSpec-52024-0536-453 10229. 13. 7.937 0.026 0.467 spSpec-52024-0536-544 10529. 7.776 0.025 0.480	spSpec-52023-0595-533	23840.	11.	7.914	0.023	0.585
spSpec-52024-0517-154 25032. 56. 7.783 0.000 0.523 spSpec-52024-0517-610 27724. 20. 7.985 0.005 0.632 spSpec-52024-0522-234 13600. 0. 7.885 0.002 0.328 spSpec-52024-0522-540 42020. 211. 5.999 0.000 0.345 spSpec-52024-0522-591 11292. 37. 8.113 0.034 0.671 spSpec-52024-0536-17 14503. 34. 8.020 0.023 0.622 spSpec-52024-0536-192 7093. 20. 6.499 0.000 0.152 spSpec-52024-0536-212 18560. 37. 7.745 0.016 0.485 spSpec-52024-0536-231 19500. 0. 5.364 0.027 0.267 spSpec-52024-0536-437 6804. 9. 6.913 0.025 0.480 spSpec-52024-0536-541 12850. 31. 7.516 0.020 0.407 spSpec-52024-0536-603 3226. 89. 7.749 0.000 0.527 </td <td>spSpec-52023-0595-571</td> <td>11176.</td> <td>12.</td> <td>7.709</td> <td>0.030</td> <td>0.450</td>	spSpec-52023-0595-571	11176.	12.	7.709	0.030	0.450
spSpec-52024-0517-332 11788. 9. 8.007 0.026 0.608 spSpec-52024-0522-234 13600. 0. 7.856 0.026 0.528 spSpec-52024-0522-403 42020. 211. 5.99 0.000 0.345 spSpec-52024-0522-542 15060. 23. 7.630 0.020 0.436 spSpec-52024-0536-017 14503. 34. 8.020 0.023 0.622 spSpec-52024-0536-199 3000. 79. 7.361 0.008 0.408 spSpec-52024-0536-120 24380. 34. 7.912 0.013 0.585 spSpec-52024-0536-212 18560. 37. 7.745 0.016 0.485 spSpec-52024-0536-231 17250. 0. 7.364 0.027 0.267 spSpec-52024-0536-513 1179. 5. 7.716 0.020 0.407 spSpec-52024-0536-541 1229. 13. 7.937 0.026 0.407 spSpec-52024-0536-554 10229. 13. 7.937 0.026 0.564 <td>spSpec-52024-0517-154</td> <td>25032.</td> <td>56.</td> <td>7.783</td> <td>0.000</td> <td>0.523</td>	spSpec-52024-0517-154	25032.	56.	7.783	0.000	0.523
spSpec-52024-0517-610 27724. 20. 7.985 0.005 0.632 spSpec-52024-0522-403 42020. 2111. 5.999 0.000 0.345 spSpec-52024-0522-542 15060. 23. 7.630 0.020 0.436 spSpec-52024-0532-542 15060. 23. 7.631 0.008 0.446 spSpec-52024-0536-059 30000. 79. 7.361 0.008 0.408 spSpec-52024-0536-121 24380. 34. 7.912 0.013 0.585 spSpec-52024-0536-221 18560. 37. 7.745 0.016 0.485 spSpec-52024-0536-232 19500. 0. 5.364 0.027 0.267 spSpec-52024-0536-33 17250. 0. 7.132 0.020 0.308 spSpec-52024-0536-433 17189. 5. 7.764 0.000 0.527 spSpec-52024-0536-654 10229. 13. 7.937 0.026 0.4407 spSpec-52024-0536-625 1842. 29. 8.047 0.032 0.5	spSpec-52024-0517-332	11788.	9.	8.007	0.026	0.608
spSpec-52024-0522-234 13600. 0. 7.856 0.026 0.528 spSpec-52024-0522-542 15060. 23. 7.630 0.020 0.436 spSpec-52024-0522-591 11292. 37. 8.113 0.034 0.671 spSpec-52024-0536-017 14503. 34. 8.020 0.023 0.622 spSpec-52024-0536-138 14058. 35. 7.913 0.026 0.560 spSpec-52024-0536-212 7093. 20. 6.499 0.000 0.152 spSpec-52024-0536-212 18560. 37. 7.745 0.016 0.485 spSpec-52024-0536-232 19500. 0. 5.364 0.027 0.267 spSpec-52024-0536-437 6804. 9. 6.913 0.025 0.480 spSpec-52024-0536-505 32256. 89. 7.749 0.000 0.527 spSpec-52024-0536-605 8302. 20. 7.886 0.031 0.326 spSpec-52024-0536-607 14200. 0. 7.815 0.051 0.508 <td>spSpec-52024-0517-610</td> <td>27724.</td> <td>20.</td> <td>7.985</td> <td>0.005</td> <td>0.632</td>	spSpec-52024-0517-610	27724.	20.	7.985	0.005	0.632
spSpec-52024-0522-403 42020. 211. 5.999 0.000 0.345 spSpec-52024-0522-542 15060. 23. 7.630 0.020 0.436 spSpec-52024-0536-017 14503. 34. 8.020 0.023 0.622 spSpec-52024-0536-019 33000. 79. 7.361 0.008 0.408 spSpec-52024-0536-192 7093. 20. 6.499 0.000 0.152 spSpec-52024-0536-212 18560. 37. 7.745 0.016 0.485 spSpec-52024-0536-212 18560. 37. 7.745 0.016 0.485 spSpec-52024-0536-212 18560. 37. 7.745 0.016 0.485 spSpec-52024-0536-233 17250. 0. 7.132 0.020 0.308 spSpec-52024-0536-437 6804. 9. 6.913 0.025 0.195 spSpec-52024-0536-605 32256. 89. 7.749 0.000 0.527 spSpec-52024-0536-605 32226. 89. 7.749 0.020 0.54	spSpec-52024-0522-234	13600	0	7.856	0.026	0.528
spSpec-52024-0522-542 15060. 23. 7.630 0.030 0.436 spSpec-52024-0522-591 11292. 37. 8.113 0.034 0.671 spSpec-52024-0536-017 14503. 34. 8.020 0.023 0.622 spSpec-52024-0536-138 14058. 35. 7.913 0.026 0.560 spSpec-52024-0536-212 18560. 37. 7.45 0.011 0.488 spSpec-52024-0536-212 18560. 37. 7.745 0.016 0.488 spSpec-52024-0536-318 11189. 5. 7.776 0.025 0.195 spSpec-52024-0536-431 1189. 5. 7.745 0.016 0.480 spSpec-52024-0536-431 1189. 5. 7.776 0.025 0.195 spSpec-52024-0536-505 32256. 89. 7.749 0.000 0.527 spSpec-52024-0536-607 14200. 0. 7.815 0.031 0.526 spSpec-52024-0536-620 11842. 29. 8.047 0.032 0.543 <td>spSpec-52024-0522-403</td> <td>42020</td> <td>211</td> <td>5 999</td> <td>0.000</td> <td>0.345</td>	spSpec-52024-0522-403	42020	211	5 999	0.000	0.345
spSpec-52024-0522-591 11292. 37. 8.113 0.032 0.671 spSpec-52024-0536-017 14503. 34. 8.020 0.023 0.622 spSpec-52024-0536-019 3000. 79. 7.361 0.008 0.408 spSpec-52024-0536-192 7093. 20. 6.499 0.000 0.152 spSpec-52024-0536-212 18560. 37. 7.745 0.016 0.485 spSpec-52024-0536-232 19500. 0. 5.364 0.027 0.267 spSpec-52024-0536-233 17250. 0. 7.132 0.020 0.308 spSpec-52024-0536-431 11189. 5. 7.776 0.025 0.480 spSpec-52024-0536-605 32256. 89. 7.749 0.000 0.527 spSpec-52024-0536-605 14200. 0. 7.815 0.051 0.508 spSpec-52024-0536-605 14200. 0. 7.815 0.031 0.526 spSpec-52024-0536-625 11949. 18. 7.861 0.031 0.534 <td>spSpec-52024-0522-103</td> <td>15060</td> <td>23</td> <td>7 630</td> <td>0.020</td> <td>0.315</td>	spSpec-52024-0522-103	15060	23	7 630	0.020	0.315
spSpec-52024-0536-017 14503. 34. 8.020 0.023 0.621 spSpec-52024-0536-059 33000. 79. 7.361 0.008 0.408 spSpec-52024-0536-192 7093. 20. 6.499 0.000 0.152 spSpec-52024-0536-212 18560. 37. 7.745 0.016 0.485 spSpec-52024-0536-212 18560. 37. 7.745 0.016 0.485 spSpec-52024-0536-318 11189. 5. 7.776 0.025 0.485 spSpec-52024-0536-318 11189. 5. 7.776 0.025 0.480 spSpec-52024-0536-437 6804. 9. 6.913 0.025 0.497 spSpec-52024-0536-635 3022. 20. 7.389 0.037 0.326 spSpec-52024-0536-605 8302. 20. 7.389 0.037 0.326 spSpec-52024-0536-620 11842. 29. 8.047 0.032 0.632 spSpec-52024-0536-625 11949. 18. 7.864 0.021 0.534 <td>spSpec-52024-0522-542</td> <td>11292</td> <td>37</td> <td>8 113</td> <td>0.020</td> <td>0.671</td>	spSpec-52024-0522-542	11292	37	8 113	0.020	0.671
spSpec-52024-0536-059 33000 79. 7.361 0.008 0.408 spSpec-52024-0536-138 14058. 35. 7.913 0.026 0.560 spSpec-52024-0536-201 24380. 34. 7.912 0.013 0.558 spSpec-52024-0536-211 18560. 37. 7.745 0.016 0.485 spSpec-52024-0536-232 19500. 0. 5.364 0.027 0.267 spSpec-52024-0536-318 11189. 5. 7.776 0.025 0.195 spSpec-52024-0536-431 6804. 9. 6.913 0.020 0.407 spSpec-52024-0536-655 32256. 89. 7.749 0.000 0.527 spSpec-52024-0536-654 10229. 13. 7.937 0.026 0.564 spSpec-52024-0536-657 14200. 0. 7.815 0.051 0.508 spSpec-52024-0536-620 11842. 29. 8.047 0.032 0.632 spSpec-52024-0536-625 11949. 18. 7.861 0.014 0.526 </td <td>spSpec-52024-0536-017</td> <td>14503</td> <td>34</td> <td>8.020</td> <td>0.023</td> <td>0.622</td>	spSpec-52024-0536-017	14503	34	8.020	0.023	0.622
spspec-52024-0536-139 14058 35. 7.913 0.026 0.560 spSpec-52024-0536-192 7093. 20. 6.499 0.000 0.152 spSpec-52024-0536-201 24380. 34. 7.912 0.013 0.585 spSpec-52024-0536-212 18560. 37. 7.745 0.016 0.485 spSpec-52024-0536-233 17250. 0. 7.132 0.020 0.308 spSpec-52024-0536-431 11189. 5. 7.776 0.025 0.480 spSpec-52024-0536-431 6804. 9. 6.913 0.025 0.195 spSpec-52024-0536-541 10229. 13. 7.937 0.026 0.564 spSpec-52024-0536-605 8302. 20. 7.389 0.037 0.326 spSpec-52024-0536-605 8302. 20. 7.389 0.031 0.526 spSpec-52024-0536-605 1842. 29. 8.047 0.032 0.632 spSpec-52024-0536-620 11842. 29. 8.047 0.039 0.549	spSpec-52024-0536-059	33000	79	7 361	0.008	0.408
spspec spspec<	spSpec-52024-0536-138	14058	35	7 913	0.000	0.400
spspec spspec<	spSpec-52024-0536-190	7093	20	6 4 9 9	0.020	0.152
spSpec-52024-0536-212 18560 37. 7.745 0.016 0.485 spSpec-52024-0536-232 19500 0. 5.364 0.027 0.267 spSpec-52024-0536-318 11189 5. 7.776 0.025 0.480 spSpec-52024-0536-437 6804. 9. 6.913 0.025 0.480 spSpec-52024-0536-437 6804. 9. 6.913 0.025 0.480 spSpec-52024-0536-505 32256. 89. 7.749 0.000 0.527 spSpec-52024-0536-605 3302. 20. 7.389 0.037 0.326 spSpec-52024-0536-607 14200. 0. 7.815 0.051 0.564 spSpec-52024-0536-620 11842. 29. 8.047 0.032 0.632 spSpec-52024-0536-620 11842. 29. 8.047 0.039 0.492 spSpec-52025-0529-4572 26252. 24. 7.800 0.022 0.534 spSpec-52026-0477-032 19528. 14. 8.006 0.014 0.6625	spSpec-52024-0536-201	24380	20. 34	7 912	0.013	0.152
spspec-52024-0536-232 19500. 0.7.13 0.027 0.267 spSpec-52024-0536-233 17250. 0. 7.132 0.020 0.308 spSpec-52024-0536-318 11189. 5. 7.776 0.025 0.480 spSpec-52024-0536-437 6804. 9. 6.913 0.025 0.480 spSpec-52024-0536-431 15850. 31. 7.516 0.020 0.407 spSpec-52024-0536-554 10229. 13. 7.937 0.026 0.564 spSpec-52024-0536-605 8302. 20. 7.389 0.037 0.326 spSpec-52024-0536-602 11842. 29. 8.047 0.032 0.632 spSpec-52024-0536-625 11949. 18. 7.861 0.031 0.526 spSpec-52025-0529-417 23252. 45. 7.846 0.022 0.534 spSpec-52025-0529-505 24028. 2. 7.754 0.014 0.6625 spSpec-52026-0477-029 7660. 12. 8.690 0.019 1.030 <t< td=""><td>spSpec_52024_0536_201</td><td>18560</td><td>37</td><td>7 745</td><td>0.015</td><td>0.303</td></t<>	spSpec_52024_0536_201	18560	37	7 745	0.015	0.303
spSpec-52024-0536-232 17250 0. 7.132 0.020 0.308 spSpec-52024-0536-318 11189 5. 7.776 0.025 0.480 spSpec-52024-0536-437 6804. 9. 6.913 0.025 0.195 spSpec-52024-0536-491 15850. 31. 7.516 0.020 0.407 spSpec-52024-0536-505 32256. 89. 7.749 0.000 0.527 spSpec-52024-0536-607 14200. 0. 7.815 0.051 0.508 spSpec-52024-0536-620 11842. 29. 8.047 0.032 0.632 spSpec-52024-0536-625 11949. 18. 7.861 0.031 0.526 spSpec-52025-0529-417 23252. 45. 7.846 0.022 0.534 spSpec-52025-0529-505 24028. 2. 7.754 0.014 0.505 spSpec-52025-0529-505 24028. 2. 7.754 0.014 0.625 spSpec-52026-0477-032 19528. 14. 8.006 0.014 0.625	spSpec-52024-0536-212 spSpec-52024-0536-232	10500.	0	5 364	0.010	0.465
spSpec-52024-0536-318 11189 5. 7.776 0.025 0.480 spSpec-52024-0536-437 6804. 9. 6.913 0.025 0.480 spSpec-52024-0536-491 15850. 31. 7.516 0.020 0.407 spSpec-52024-0536-505 32256. 89. 7.749 0.000 0.527 spSpec-52024-0536-6554 10229. 13. 7.937 0.026 0.564 spSpec-52024-0536-607 14200. 0. 7.815 0.051 0.508 spSpec-52024-0536-620 11842. 29. 8.047 0.032 0.632 spSpec-52024-0536-625 11949. 18. 7.861 0.031 0.526 spSpec-52025-0529-417 23252. 45. 7.846 0.022 0.534 spSpec-52025-0529-572 26252. 24. 7.800 0.022 0.534 spSpec-52025-0529-609 12028. 23. 7.794 0.039 0.492 spSpec-52026-0477-029 7660. 12. 8.690 0.014 0.625<	spSpec-52024-0536-232	17250	0.	7 132	0.027	0.207
spSpec-52024-0530-316 6804. 9. 6.913 0.025 0.195 spSpec-52024-0536-437 6804. 9. 6.913 0.025 0.195 spSpec-52024-0536-505 32256. 89. 7.749 0.000 0.527 spSpec-52024-0536-605 8302. 20. 7.389 0.037 0.326 spSpec-52024-0536-607 14200. 0. 7.815 0.051 0.508 spSpec-52024-0536-625 11842. 29. 8.047 0.032 0.632 spSpec-52024-0536-625 11949. 18. 7.861 0.031 0.526 spSpec-52025-0529-5172 26252. 24. 7.800 0.022 0.534 spSpec-52025-0529-505 24028. 2. 7.754 0.014 0.505 spSpec-52026-0477-029 7660. 12. 8.690 0.019 1.030 spSpec-52026-0477-103 19528. 14. 8.006 0.679 spSpec-52026-0477-130 10527. 28. 8.374 0.031 0.832 spSpec-5	spSpec-52024-0536-255	11180	5	7.152	0.020	0.300
spSpec-52024-0530-491 15800. 31. 7.516 0.020 0.407 spSpec-52024-0536-505 32256. 89. 7.749 0.000 0.527 spSpec-52024-0536-505 32256. 89. 7.749 0.000 0.527 spSpec-52024-0536-605 8302. 20. 7.389 0.037 0.326 spSpec-52024-0536-607 14200. 0. 7.815 0.051 0.508 spSpec-52024-0536-620 11842. 29. 8.047 0.032 0.632 spSpec-52024-0536-625 11949. 18. 7.861 0.021 0.534 spSpec-52025-0529-417 23252. 45. 7.846 0.022 0.534 spSpec-52025-0529-572 26252. 24. 7.800 0.022 0.534 spSpec-52025-0529-505 24028. 2. 7.754 0.014 0.505 spSpec-52026-0477-032 19528. 14. 8.006 0.014 0.625 spSpec-52026-0477-132 1960. 12. 8.690 0.019 1.030	spSpec 52024-0536-518	6804	0	6.013	0.025	0.105
spSpec-52024-0536-505 32256 89. 7.749 0.000 0.527 spSpec-52024-0536-505 32256 89. 7.749 0.000 0.527 spSpec-52024-0536-605 8302. 20. 7.389 0.037 0.326 spSpec-52024-0536-607 14200. 0. 7.815 0.051 0.508 spSpec-52024-0536-607 14200. 0. 7.815 0.031 0.526 spSpec-52024-0536-625 11949. 18. 7.861 0.031 0.526 spSpec-52025-0529-417 23252. 45. 7.846 0.022 0.534 spSpec-52025-0529-505 24028. 2. 7.754 0.014 0.505 spSpec-52026-0477-029 7660. 12. 8.690 0.019 1.030 spSpec-52026-0477-029 7660. 12. 8.690 0.014 0.625 spSpec-52026-0477-107 11152. 16. 8.127 0.030 0.679 spSpec-52026-0477-130 10527. 28. 8.374 0.031 0.832 spSpec-52026-0477-146 14000. 0. 8.859 0.025	spSpec 52024-0536-457	15850	9. 31	7 516	0.025	0.195
spSpec-52024-0536-554 10229 13. 7.937 0.006 0.521 spSpec-52024-0536-6554 10229 13. 7.937 0.026 0.564 spSpec-52024-0536-605 8302. 20. 7.389 0.037 0.326 spSpec-52024-0536-607 14200. 0. 7.815 0.051 0.508 spSpec-52024-0536-625 11949. 18. 7.861 0.031 0.526 spSpec-52025-0529-572 26252. 24. 7.800 0.022 0.534 spSpec-52025-0529-572 26252. 24. 7.800 0.022 0.534 spSpec-52025-0529-505 24028. 2. 7.754 0.014 0.505 spSpec-52026-0477-029 7660. 12. 8.690 0.019 1.030 spSpec-52026-0477-035 19149. 27. 8.352 0.027 0.834 spSpec-52026-0477-107 11152. 16. 8.127 0.030 0.679 spSpec-52026-0477-132 7606. 28. 6.000 0.000 0.204 spSpec-52026-0477-128 18844. 35. 8.047 0.	spSpec 52024-0530-491	32256	91. 80	7.510	0.020	0.407
spSpec-52024-0536-605 8302. 20. 7.389 0.037 0.326 spSpec-52024-0536-607 14200. 0. 7.815 0.031 0.508 spSpec-52024-0536-620 11842. 29. 8.047 0.032 0.632 spSpec-52024-0536-625 11949. 18. 7.861 0.031 0.526 spSpec-52025-0529-417 23252. 45. 7.846 0.022 0.534 spSpec-52025-0529-572 26252. 24. 7.800 0.022 0.534 spSpec-52025-0529-572 26252. 24. 7.800 0.022 0.534 spSpec-52025-0529-505 24028. 2. 7.754 0.014 0.505 spSpec-52026-0477-029 7660. 12. 8.690 0.019 1.030 spSpec-52026-0477-032 19528. 14. 8.006 0.014 0.625 spSpec-52026-0477-107 11152. 16. 8.127 0.030 0.679 spSpec-52026-0477-130 10527. 28. 6.000 0.000 0.204 spSpec-52026-0477-132 7606. 28. 6.000 0	spSpec 52024-0530-505	10220	13	7.037	0.000	0.527
spSpec-52024-0536-607 14200. 0. 7.815 0.037 0.508 spSpec-52024-0536-620 11842. 29. 8.047 0.032 0.632 spSpec-52024-0536-625 11949. 18. 7.861 0.031 0.526 spSpec-52025-0529-417 23252. 45. 7.846 0.022 0.534 spSpec-52025-0529-572 26252. 24. 7.800 0.022 0.534 spSpec-52025-0529-505 24028. 2. 7.754 0.014 0.505 spSpec-52026-0477-029 7660. 12. 8.690 0.019 1.030 spSpec-52026-0477-032 19528. 14. 8.006 0.014 0.625 spSpec-52026-0477-085 19149. 27. 8.352 0.027 0.834 spSpec-52026-0477-107 11152. 16. 8.127 0.030 0.679 spSpec-52026-0477-132 7606. 28. 6.000 0.000 0.204 spSpec-52026-0477-146 14000. 0. 8.859 0.025 1.100 spSpec-52026-0477-28 18844. 35. 8.047 0.	spspec-52024-0530-554	8202	20	7 290	0.020	0.304
spSpec-52024-0536-607 14200. 0. 7.813 0.031 0.5031 spSpec-52024-0536-625 11842. 29. 8.047 0.032 0.632 spSpec-52025-0529-417 23252. 45. 7.846 0.023 0.549 spSpec-52025-0529-572 26252. 24. 7.800 0.022 0.534 spSpec-52025-0529-609 12028. 23. 7.794 0.039 0.492 spSpec-52026-0477-029 7660. 12. 8.690 0.019 1.030 spSpec-52026-0477-032 19528. 14. 8.006 0.014 0.625 spSpec-52026-0477-085 19149. 27. 8.352 0.027 0.834 spSpec-52026-0477-107 11152. 16. 8.127 0.030 0.679 spSpec-52026-0477-130 10527. 28. 8.374 0.031 0.832 spSpec-52026-0477-166 14000. 0. 8.859 0.025 1.100 spSpec-52026-0477-281 18844. 35. 8.047 0.014 0.647 spSpec-52026-0477-281 18444. 35. 8.047 <t< td=""><td>spSpec-52024-0530-005</td><td>14200</td><td>20.</td><td>7.309</td><td>0.057</td><td>0.520</td></t<>	spSpec-52024-0530-005	14200	20.	7.309	0.057	0.520
spSpec-52024-0536-625 11949. 18. 7.861 0.032 0.526 spSpec-52025-0529-417 23252. 45. 7.846 0.023 0.549 spSpec-52025-0529-572 26252. 24. 7.800 0.022 0.534 spSpec-52025-0529-609 12028. 23. 7.794 0.039 0.492 spSpec-52025-0592-505 24028. 2. 7.754 0.014 0.505 spSpec-52026-0477-029 7660. 12. 8.690 0.019 1.030 spSpec-52026-0477-032 19528. 14. 8.006 0.014 0.625 spSpec-52026-0477-085 19149. 27. 8.352 0.027 0.834 spSpec-52026-0477-107 11152. 16. 8.127 0.030 0.679 spSpec-52026-0477-130 10527. 28. 8.374 0.031 0.832 spSpec-52026-0477-146 14000. 0. 8.859 0.025 1.100 spSpec-52026-0477-28 18844. 35. 8.047 0.014 0.647 spSpec-52026-0477-281 18444. 35. 8.391	spSpec 52024-0530-007	14200.	20	8.047	0.031	0.508
spSpec-52024-030-02.5 11949. 16. 1.8.01 0.031 0.520 spSpec-52025-0529-417 23252. 45. 7.846 0.023 0.549 spSpec-52025-0529-572 26252. 24. 7.800 0.022 0.534 spSpec-52025-0529-609 12028. 23. 7.794 0.039 0.492 spSpec-52026-0477-029 7660. 12. 8.690 0.014 0.625 spSpec-52026-0477-032 19528. 14. 8.006 0.014 0.625 spSpec-52026-0477-085 19149. 27. 8.352 0.027 0.834 spSpec-52026-0477-107 11152. 16. 8.127 0.030 0.679 spSpec-52026-0477-130 10527. 28. 8.374 0.031 0.832 spSpec-52026-0477-166 14000. 0. 8.859 0.025 1.100 spSpec-52026-0477-28 18844. 35. 8.047 0.014 0.647 spSpec-52026-0477-281 18844. 35. 8.047 0.014 0.933 spSpec-52026-0477-281 19454. 14. 7.600 <t< td=""><td>spspec-52024-0530-020</td><td>11042.</td><td>29. 19</td><td>0.047</td><td>0.032</td><td>0.032</td></t<>	spspec-52024-0530-020	11042.	29. 19	0.047	0.032	0.032
spSpec-52025-0529-572 26252. 24. 7.840 0.022 0.534 spSpec-52025-0529-609 12028. 23. 7.794 0.039 0.492 spSpec-52025-0529-609 12028. 23. 7.754 0.0114 0.505 spSpec-52026-0477-029 7660. 12. 8.690 0.019 1.030 spSpec-52026-0477-032 19528. 14. 8.006 0.014 0.625 spSpec-52026-0477-085 19149. 27. 8.352 0.027 0.834 spSpec-52026-0477-107 11152. 16. 8.127 0.030 0.679 spSpec-52026-0477-130 10527. 28. 8.374 0.031 0.832 spSpec-52026-0477-166 14000. 0. 8.859 0.025 1.100 spSpec-52026-0477-218 18844. 35. 8.047 0.014 0.647 spSpec-52026-0477-281 18444. 35. 8.047 0.014 0.933 spSpec-52026-0477-281 19454. 14. 7.600 0.029 0.441 spSpec-52026-0477-243 19454. 14. 7.600 <	spSpec 52024-0550-025	23252	10.	7.801	0.031	0.520
spSpec-52025-0529-609 12028. 23. 7.794 0.032 0.492 spSpec-52025-0529-609 12028. 23. 7.794 0.014 0.505 spSpec-52025-0592-505 24028. 2. 7.754 0.014 0.505 spSpec-52026-0477-029 7660. 12. 8.690 0.019 1.030 spSpec-52026-0477-032 19528. 14. 8.006 0.014 0.625 spSpec-52026-0477-085 19149. 27. 8.352 0.027 0.834 spSpec-52026-0477-107 11152. 16. 8.127 0.030 0.679 spSpec-52026-0477-130 10527. 28. 8.374 0.031 0.832 spSpec-52026-0477-166 14000. 0. 8.859 0.025 1.100 spSpec-52026-0477-174 7659. 15. 7.422 0.028 0.325 spSpec-52026-0477-281 18844. 35. 8.047 0.014 0.647 spSpec-52026-0477-291 16499. 0. 7.523 0.013 0.441 spSpec-52026-0477-343 18843. 45. 8.391 0	spspec-52025-0529-417	25252.	4J. 24	7.840	0.023	0.549
spSpec-52025-0529-505 24028. 2. 7.754 0.014 0.505 spSpec-52026-0477-029 7660. 12. 8.690 0.019 1.030 spSpec-52026-0477-032 19528. 14. 8.006 0.014 0.625 spSpec-52026-0477-035 19149. 27. 8.352 0.027 0.834 spSpec-52026-0477-107 11152. 16. 8.127 0.030 0.679 spSpec-52026-0477-130 10527. 28. 8.374 0.031 0.832 spSpec-52026-0477-166 14000. 0. 8.859 0.025 1.100 spSpec-52026-0477-174 7659. 15. 7.422 0.028 0.325 spSpec-52026-0477-218 18844. 35. 8.047 0.011 0.647 spSpec-52026-0477-221 27512. 33. 8.496 0.001 0.933 spSpec-52026-0477-243 19454. 14. 7.600 0.029 0.441 spSpec-52026-0477-243 1843. 45. 8.391 0.021 0.858 spSpec-52026-0477-343 1843. 45. 8.391 0.	spspec-52025-0529-572	120252.	24.	7.800	0.022	0.334
spSpec-52026-0477-029 7660. 12. 8.690 0.019 1.030 spSpec-52026-0477-032 19528. 14. 8.006 0.014 0.625 spSpec-52026-0477-035 19149. 27. 8.352 0.027 0.834 spSpec-52026-0477-107 11152. 16. 8.127 0.030 0.679 spSpec-52026-0477-130 10527. 28. 8.374 0.031 0.832 spSpec-52026-0477-166 14000. 0. 8.859 0.025 1.100 spSpec-52026-0477-174 7659. 15. 7.422 0.028 0.325 spSpec-52026-0477-208 18844. 35. 8.047 0.014 0.647 spSpec-52026-0477-211 27512. 33. 8.496 0.001 0.933 spSpec-52026-0477-291 16499. 0. 7.523 0.013 0.411 spSpec-52026-0477-493 13000. 0. 5.708 0.003 0.239 spSpec-52026-0477-524 19500. 0. 7.648 0.015 0.4455 spSpec-52026-0477-539 13110. 36. 6.937 0	spspec-52025-0529-009	24028	23.	7.794	0.039	0.492
spspec-52026-0477-022 10500. 12. 8.090 0.019 1.0507 spspec-52026-0477-032 19528. 14. 8.006 0.014 0.625 spspec-52026-0477-085 19149. 27. 8.352 0.027 0.834 spSpec-52026-0477-107 11152. 16. 8.127 0.030 0.679 spSpec-52026-0477-130 10527. 28. 8.374 0.031 0.832 spSpec-52026-0477-166 14000. 0. 8.859 0.025 1.100 spSpec-52026-0477-174 7659. 15. 7.422 0.028 0.325 spSpec-52026-0477-208 18844. 35. 8.047 0.014 0.647 spSpec-52026-0477-212 27512. 33. 8.496 0.001 0.933 spSpec-52026-0477-291 16499 0. 7.523 0.013 0.411 spSpec-52026-0477-291 16499 0. 7.523 0.003 0.239 spSpec-52026-0477-343 18843. 45. 8.391 0.021 0.858 spSpec-52026-0477-524 19500. 0. 7.648 0.	spspec-52025-0592-505	7660	2. 12	7.734 8.600	0.014	1.020
spSpec-52026-0477-032 19328. 14. 8.006 0.014 0.023 spSpec-52026-0477-085 19149. 27. 8.352 0.027 0.834 spSpec-52026-0477-107 11152. 16. 8.127 0.030 0.679 spSpec-52026-0477-130 10527. 28. 8.374 0.031 0.832 spSpec-52026-0477-166 14000. 0. 8.859 0.025 1.100 spSpec-52026-0477-174 7659. 15. 7.422 0.028 0.325 spSpec-52026-0477-208 18844. 35. 8.047 0.014 0.647 spSpec-52026-0477-211 27512. 33. 8.496 0.001 0.933 spSpec-52026-0477-291 16499. 0. 7.523 0.013 0.411 spSpec-52026-0477-291 16499. 0. 7.523 0.003 0.239 spSpec-52026-0477-343 18843. 45. 8.391 0.021 0.858 spSpec-52026-0477-539 13110. 36. 6.937 0.019 0.245 spSpec-52026-0477-539 13110. 36. 6.937	spspec-52020-0477-029	10529	12.	0.090 0.006	0.019	0.625
spSpec-52026-0477-083 19149. 27. 8.332 0.027 0.834 spSpec-52026-0477-107 11152. 16. 8.127 0.030 0.679 spSpec-52026-0477-130 10527. 28. 8.374 0.031 0.832 spSpec-52026-0477-132 7606. 28. 6.000 0.000 0.204 spSpec-52026-0477-166 14000. 0. 8.859 0.025 1.100 spSpec-52026-0477-174 7659. 15. 7.422 0.028 0.325 spSpec-52026-0477-208 18844. 35. 8.047 0.014 0.647 spSpec-52026-0477-212 27512. 33. 8.496 0.001 0.933 spSpec-52026-0477-291 16499. 0. 7.523 0.013 0.411 spSpec-52026-0477-343 18843. 45. 8.391 0.021 0.858 spSpec-52026-0477-524 19500. 0. 7.648 0.015 0.455 spSpec-52026-0477-539 13110. 36. 6.937 0.019 0.245 spSpec-52026-0523-004 37770. 122. 9.999	spSpec-52020-0477-052	19526.	14. 27	8.000	0.014	0.023
spSpec-52026-0477-107 11132. 10. 8.127 0.030 0.879 spSpec-52026-0477-130 10527. 28. 8.374 0.031 0.832 spSpec-52026-0477-132 7606. 28. 6.000 0.000 0.204 spSpec-52026-0477-166 14000. 0. 8.859 0.025 1.100 spSpec-52026-0477-174 7659. 15. 7.422 0.028 0.325 spSpec-52026-0477-208 18844. 35. 8.047 0.014 0.647 spSpec-52026-0477-212 27512. 33. 8.496 0.001 0.933 spSpec-52026-0477-291 16499. 0. 7.523 0.013 0.411 spSpec-52026-0477-343 18843. 45. 8.391 0.021 0.858 spSpec-52026-0477-524 19500. 0. 7.648 0.015 0.455 spSpec-52026-0477-539 13110. 36. 6.937 0.019 0.245 spSpec-52026-0523-004 37770. 122. 9.999 0.000 1.370 spSpec-52026-0523-015 53910. 183. 9.287 <td< td=""><td>spspec-52020-0477-085</td><td>19149.</td><td>27. 16</td><td>0.552</td><td>0.027</td><td>0.634</td></td<>	spspec-52020-0477-085	19149.	27. 16	0.552	0.027	0.634
spSpec-52026-0477-130 10527. 28. 6.374 0.031 0.322 spSpec-52026-0477-132 7606. 28. 6.000 0.000 0.204 spSpec-52026-0477-166 14000. 0. 8.859 0.025 1.100 spSpec-52026-0477-174 7659. 15. 7.422 0.028 0.325 spSpec-52026-0477-208 18844. 35. 8.047 0.014 0.647 spSpec-52026-0477-21 27512. 33. 8.496 0.001 0.933 spSpec-52026-0477-291 16499. 0. 7.523 0.013 0.411 spSpec-52026-0477-343 18843. 45. 8.391 0.021 0.858 spSpec-52026-0477-493 13000. 0. 5.708 0.003 0.239 spSpec-52026-0477-524 19500. 0. 7.648 0.015 0.455 spSpec-52026-0477-539 13110. 36. 6.937 0.019 0.245 spSpec-52026-0523-004 37770. 122. 9.999 0.000 1.370 spSpec-52026-0523-015 53910. 183. 9.287 0	spSpec-52020-0477-107	10527	10.	0.127	0.030	0.079
spspec-52026-0477-132 7600. 28. 6.000 0.000 0.204 spspec-52026-0477-166 14000. 0. 8.859 0.025 1.100 spspec-52026-0477-174 7659. 15. 7.422 0.028 0.325 spspec-52026-0477-208 18844. 35. 8.047 0.014 0.647 spspec-52026-0477-221 27512. 33. 8.496 0.001 0.933 spspec-52026-0477-291 16499. 0. 7.523 0.013 0.411 spspec-52026-0477-291 16499. 0. 7.523 0.013 0.411 spspec-52026-0477-343 18843. 45. 8.391 0.021 0.858 spspec-52026-0477-524 19500. 0. 7.648 0.015 0.455 spspec-52026-0477-539 13110. 36. 6.937 0.019 0.245 spspec-52026-0523-004 37770. 122. 9.999 0.000 1.370 spspec-52026-0523-015 53910. 183. 9.287 0.072 1.230 spspec-52026-0523-056 26864. 63. 7.508	spspec-52020-0477-130	7606	20.	6.000	0.031	0.032
spspec-52026-0477-106 14000. 0. 8.839 0.023 1.100 spspec-52026-0477-174 7659. 15. 7.422 0.028 0.325 spspec-52026-0477-208 18844. 35. 8.047 0.014 0.647 spspec-52026-0477-221 27512. 33. 8.496 0.001 0.933 spspec-52026-0477-281 19454. 14. 7.600 0.029 0.441 spspec-52026-0477-291 16499. 0. 7.523 0.013 0.411 spspec-52026-0477-291 16499. 0. 7.523 0.013 0.411 spspec-52026-0477-343 18843. 45. 8.391 0.021 0.858 spspec-52026-0477-524 19500. 0. 7.648 0.015 0.455 spspec-52026-0477-539 13110. 36. 6.937 0.019 0.245 spspec-52026-0523-004 37770. 122. 9.999 0.000 1.370 spSpec-52026-0523-015 53910. 183. 9.287 0.072 1.230 spSpec-52026-0523-056 26864. 63. 7.508 <td< td=""><td>spspec-52020-0477-152</td><td>14000</td><td>28.</td><td>0.000</td><td>0.000</td><td>0.204</td></td<>	spspec-52020-0477-152	14000	28.	0.000	0.000	0.204
spspec-52026-0477-174 7639. 13. 7.422 0.028 0.323 spspec-52026-0477-208 18844. 35. 8.047 0.014 0.647 spspec-52026-0477-221 27512. 33. 8.496 0.001 0.933 spspec-52026-0477-283 19454. 14. 7.600 0.029 0.441 spspec-52026-0477-291 16499. 0. 7.523 0.013 0.411 spspec-52026-0477-343 18843. 45. 8.391 0.021 0.858 spspec-52026-0477-524 19500. 0. 7.648 0.015 0.455 spspec-52026-0477-539 13110. 36. 6.937 0.019 0.245 spspec-52026-0477-539 13110. 36. 6.937 0.019 0.245 spspec-52026-0523-004 37770. 122. 9.999 0.000 1.370 spspec-52026-0523-015 53910. 183. 9.287 0.072 1.230 spSpec-52026-0523-056 26864. 63. 7.508 0.001 0.419 spSpec-52026-0523-128 13062. 92. 8.266 <	spSpec-52026-0477-100	7650	0.	8.839	0.025	1.100
spSpec-52026-0477-208 18844. 55. 8.047 0.014 0.647 spSpec-52026-0477-221 27512. 33. 8.496 0.001 0.933 spSpec-52026-0477-283 19454. 14. 7.600 0.029 0.441 spSpec-52026-0477-291 16499. 0. 7.523 0.013 0.411 spSpec-52026-0477-343 18843. 45. 8.391 0.021 0.858 spSpec-52026-0477-493 13000. 0. 5.708 0.003 0.239 spSpec-52026-0477-524 19500. 0. 7.648 0.015 0.455 spSpec-52026-0477-539 13110. 36. 6.937 0.019 0.245 spSpec-52026-0523-004 37770. 122. 9.999 0.000 1.370 spSpec-52026-0523-015 53910. 183. 9.287 0.072 1.230 spSpec-52026-0523-056 26864. 63. 7.508 0.001 0.419 spSpec-52026-0523-128 13062. 92. 8.266 0.023 0.770	spSpec-52026-0477-174	10044	15.	1.422	0.028	0.325
spspec-52026-0477-221 27512. 33. 8.496 0.001 0.933 spSpec-52026-0477-283 19454. 14. 7.600 0.029 0.441 spSpec-52026-0477-291 16499. 0. 7.523 0.013 0.411 spSpec-52026-0477-343 18843. 45. 8.391 0.021 0.858 spSpec-52026-0477-493 13000. 0. 5.708 0.003 0.239 spSpec-52026-0477-524 19500. 0. 7.648 0.015 0.4455 spSpec-52026-0477-539 13110. 36. 6.937 0.019 0.245 spSpec-52026-0523-004 37770. 122. 9.999 0.000 1.370 spSpec-52026-0523-015 53910. 183. 9.287 0.072 1.230 spSpec-52026-0523-056 26864. 63. 7.508 0.001 0.419 spSpec-52026-0523-086 19000. 0. 7.624 0.014 0.446 spSpec-52026-0523-128 13062. 92. 8.266 0.023 0.770	spspec-52026-0477-208	18844.	35. 22	8.047	0.014	0.047
spspec-52026-0477-283 19454. 14. 7.600 0.029 0.441 spspec-52026-0477-291 16499 0. 7.523 0.013 0.411 spspec-52026-0477-291 16499 0. 7.523 0.013 0.411 spspec-52026-0477-293 18843. 45. 8.391 0.021 0.858 spspec-52026-0477-543 18800. 0. 5.708 0.003 0.239 spspec-52026-0477-524 19500. 0. 7.648 0.015 0.4455 spspec-52026-0477-539 13110. 36. 6.937 0.019 0.245 spspec-52026-0523-004 37770. 122. 9.999 0.000 1.370 spspec-52026-0523-015 53910. 183. 9.287 0.072 1.230 spspec-52026-0523-056 26864. 63. 7.508 0.001 0.419 spSpec-52026-0523-086 19000. 0. 7.624 0.014 0.446 spSpec-52026-0523-128 13062. 92. 8.266 0.023 0.770	spSpec-52026-0477-221	2/512.	33.	8.496	0.001	0.933
spSpec-52026-047/-291 16499. 0. 7.523 0.013 0.411 spSpec-52026-0477-343 18843. 45. 8.391 0.021 0.858 spSpec-52026-0477-493 13000. 0. 5.708 0.003 0.239 spSpec-52026-0477-524 19500. 0. 7.648 0.015 0.455 spSpec-52026-0477-539 13110. 36. 6.937 0.019 0.245 spSpec-52026-0523-004 37770. 122. 9.999 0.000 1.370 spSpec-52026-0523-015 53910. 183. 9.287 0.072 1.230 spSpec-52026-0523-056 26864. 63. 7.508 0.001 0.419 spSpec-52026-0523-128 13062. 92. 8.266 0.023 0.770	spSpec-52026-0477-283	19454.	14.	7.600	0.029	0.441
spSpec-52026-047/-343 18843. 45. 8.391 0.021 0.858 spSpec-52026-0477-493 13000. 0. 5.708 0.003 0.239 spSpec-52026-0477-524 19500. 0. 7.648 0.015 0.455 spSpec-52026-0477-539 13110. 36. 6.937 0.019 0.245 spSpec-52026-0523-004 37770. 122. 9.999 0.000 1.370 spSpec-52026-0523-015 53910. 183. 9.287 0.072 1.230 spSpec-52026-0523-056 26864. 63. 7.508 0.001 0.419 spSpec-52026-0523-128 13062. 92. 8.266 0.023 0.770	spSpec-52026-0477-291	16499.	0.	7.523	0.013	0.411
spSpec-52026-047/7-493 13000. 0. 5.708 0.003 0.239 spSpec-52026-0477-524 19500. 0. 7.648 0.015 0.455 spSpec-52026-0477-539 13110. 36. 6.937 0.019 0.245 spSpec-52026-0523-004 37770. 122. 9.999 0.000 1.370 spSpec-52026-0523-015 53910. 183. 9.287 0.072 1.230 spSpec-52026-0523-056 26864. 63. 7.508 0.001 0.419 spSpec-52026-0523-128 19000. 0. 7.624 0.014 0.446 spSpec-52026-0523-128 13062. 92. 8.266 0.023 0.770	spspec-52026-0477-343	18843.	45.	8.391	0.021	0.858
spSpec-52026-047/-524 19500. 0. 7.648 0.015 0.455 spSpec-52026-0477-539 13110. 36. 6.937 0.019 0.245 spSpec-52026-0523-004 37770. 122. 9.999 0.000 1.370 spSpec-52026-0523-015 53910. 183. 9.287 0.072 1.230 spSpec-52026-0523-056 26864. 63. 7.508 0.001 0.419 spSpec-52026-0523-086 19000. 0. 7.624 0.014 0.446 spSpec-52026-0523-128 13062. 92. 8.266 0.023 0.770	spSpec-52026-0477-493	13000.	0.	5.708	0.003	0.239
spSpec-52026-0477-539 13110. 36. 6.937 0.019 0.245 spSpec-52026-0523-004 37770. 122. 9.999 0.000 1.370 spSpec-52026-0523-015 53910. 183. 9.287 0.072 1.230 spSpec-52026-0523-056 26864. 63. 7.508 0.001 0.419 spSpec-52026-0523-086 19000. 0. 7.624 0.014 0.446 spSpec-52026-0523-128 13062. 92. 8.266 0.023 0.770	spSpec-52026-0477-524	19500.	0.	7.648	0.015	0.455
spSpec-52026-0523-004 37770. 122. 9.999 0.000 1.370 spSpec-52026-0523-015 53910. 183. 9.287 0.072 1.230 spSpec-52026-0523-056 26864. 63. 7.508 0.001 0.419 spSpec-52026-0523-086 19000. 0. 7.624 0.014 0.446 spSpec-52026-0523-128 13062. 92. 8.266 0.023 0.770	spSpec-52026-0477-539	13110.	36.	6.937	0.019	0.245
spSpec-52026-0523-015 53910. 183. 9.287 0.072 1.230 spSpec-52026-0523-056 26864. 63. 7.508 0.001 0.419 spSpec-52026-0523-086 19000. 0. 7.624 0.014 0.446 spSpec-52026-0523-128 13062. 92. 8.266 0.023 0.770	spSpec-52026-0523-004	37770.	122.	9.999	0.000	1.370
spSpec-52026-0523-056 26864. 63. 7.508 0.001 0.419 spSpec-52026-0523-086 19000. 0. 7.624 0.014 0.446 spSpec-52026-0523-128 13062. 92. 8.266 0.023 0.770	spSpec-52026-0523-015	53910.	183.	9.287	0.072	1.230
spSpec-52026-0523-086 19000. 0. 7.624 0.014 0.446 spSpec-52026-0523-128 13062. 92. 8.266 0.023 0.770	spSpec-52026-0523-056	26864.	63.	7.508	0.001	0.419
spSpec-52026-0523-128 13062. 92. 8.266 0.023 0.770	spSpec-52026-0523-086	19000.	0.	7.624	0.014	0.446
	spSpec-52026-0523-128	13062.	92.	8.266	0.023	0.770

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-52026-0523-169	11684.	52.	7.978	0.016	0.591
spSpec-52026-0523-186	11324.	39.	8.204	0.030	0.728
spSpec-52026-0523-252	15250.	0.	5.688	0.022	0.249
spSpec-52026-0523-289	19221.	12.	9.029	0.004	1.179
spSpec-52026-0523-474	10490.	34.	7.886	0.032	0.536
spSpec-52026-0523-494	13595.	3.	8.304	0.027	0.796
spSpec-52026-0523-601	9442.	24.	7.712	0.044	0.447
spSpec-52026-0530-294	19500.	0.	5.832	0.023	0.267
spSpec-52026-0530-513	33310.	122.	6.424	0.011	0.314
spSpec-52026-0587-016	11931.	40.	8.014	0.016	0.612
spSpec-52026-0587-064	30352.	21.	8.251	0.000	0.790
spSpec-52026-0587-118	11856.	54.	7.763	0.021	0.475
spSpec-52026-0587-157	14094.	43.	7.883	0.025	0.543
spSpec-52026-0587-360	12085.	36.	7.894	0.027	0.545
spSpec-52026-0587-368	10000.	0.	8.119	0.039	0.671
spSpec-52026-0587-386	16850.	48.	7.931	0.025	0.576
spSpec-52026-0587-418	32990.	76.	8.550	0.004	0.971
spSpec-52026-0587-420	20888.	105.	6.276	0.017	0.274
spSpec-52026-0587-437	12357.	33.	7.686	0.038	0.445
spSpec-52026-0587-464	17360.	37.	8.125	0.022	0.690
spSpec-52026-0587-570	15500.	0.	7.630	0.021	0.437
spSpec-52026-0587-604	28100.	8.	8.236	0.019	0.777
spSpec-52026-0593-129	8720.	8.	8.027	0.023	0.612
spSpec-52026-0593-141	28572.	65.	8.050	0.009	0.670
spSpec-52026-0593-161	8926.	23.	7.571	0.024	0.396
spSpec-52026-0593-265	41800.	143.	9.131	0.011	1.223
spSpec-52026-0593-267	7860.	19.	7.803	0.013	0.483
spSpec-52026-0593-488	11212.	5.	8.150	0.028	0.693
spSpec-52027-0524-019	8850.	26.	8.728	0.007	1.045
spSpec-52027-0524-120	50620.	140.	5.636	0.051	0.368
spSpec-52027-0524-142	21012.	54.	8.783	0.003	1.067
spSpec-52027-0524-177	8080.	21.	8.722	0.009	1.042
spSpec-52027-0524-208	8190.	11.	8.521	0.010	0.920
spSpec-52027-0524-226	14516.	37.	7.892	0.025	0.549
spSpec-52027-0524-355	29050.	67.	9.999	0.000	1.370
spSpec-52027-0537-036	11015.	8.	8.193	0.025	0.720
spSpec-52027-0537-057	11354.	20.	8.020	0.018	0.615
spSpec-52027-0537-077	10069.	28.	8.538	0.039	0.931
spSpec-52027-0537-084	15532.	25.	7.412	0.026	0.371
spSpec-52027-0537-126	16901.	38.	7.897	0.023	0.558
spSpec-52027-0537-147	13272.	21.	7.316	0.022	0.331
spSpec-52027-0537-265	19000.	0.	6.753	0.014	0.265
spSpec-52027-0537-279	1021.	11.	8.201	0.022	0.725
spSpec-52027-0537-284	12206.	3. 14	7.051	0.028	0.435
spspec-52027-0537-295	19954.	14.	7.845	0.015	0.539
spopec-52027-0537-330	14/00.	11.	/.388	0.021	0.423
spopec-52027-0537-387	9490.	1.	8./15	0.039	1.037
spopec-52027-0557-409 spopec 52027 0527 411	24472.	50. 7	7 900	0.010	0.472
spopee-52027-0557-411 spSpec 52027-0527-404	0127	7. 10	0.166	0.020	1 300
spopec-52027-0537-490	9137. 7604	19. o	9.100	0.039	1.509
spopee-52027-0557-520	15111	0. 31	0.331	0.021	0.939
spSpec-52027-0537-556	8070	10	8 877	0.025	1 1 2 2
spopee-32027-0557-300	0070.	19.	0.012	0.039	1.132

Tabela 10.1 (continuação)

Nome	$T_{\rm ef}$	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-52027-0537-570	10200.	0.	8.376	0.036	0.833
spSpec-52027-0537-586	15012.	5.	7.907	0.026	0.558
spSpec-52027-0537-596	21024.	74.	7.756	0.001	0.497
spSpec-52027-0537-614	8313.	20.	8.381	0.036	0.836
spSpec-52027-0537-623	16332.	45.	8.544	0.036	0.950
spSpec-52027-0537-635	18085.	57.	7.674	0.021	0.455
spSpec-52027-0585-140	11141.	30.	8.218	0.029	0.736
spSpec-52027-0585-143	24568.	50.	8.950	0.007	1.148
spSpec-52027-0585-184	26296.	26.	8.233	0.005	0.772
spSpec-52027-0585-188	35900.	72.	7.662	0.015	0.501
spSpec-52027-0585-234	12222.	18.	7.763	0.032	0.476
spSpec-52027-0585-281	40810.	65.	6.275	0.027	0.341
spSpec-52027-0585-467	17604.	102.	9.532	0.029	1.320
spSpec-52027-0585-484	8470.	6.	8.476	0.030	0.893
spSpec-52027-0585-495	21104.	86.	7.786	0.015	0.511
spSpec-52027-0585-513	17218.	11.	8.014	0.021	0.624
spSpec-52027-0585-624	14918.	22.	8.043	0.024	0.636
spSpec-52028-0531-036	15869.	33.	7.831	0.024	0.521
spSpec-52028-0531-222	15876.	29.	7.803	0.024	0.507
spSpec-52028-0531-248	13014.	17.	7.720	0.027	0.458
spSpec-52028-0531-346	17465.	9.	8.050	0.023	0.645
spSpec-52028-0531-348	12000.	0.	5.687	0.002	0.234
spSpec-52028-0531-470	18028.	11.	7.876	0.016	0.550
spSpec-52028-0531-536	16813.	30.	7.755	0.019	0.487
spSpec-52028-0531-545	9088.	25.	9.072	0.033	1.252
spSpec-52028-0531-564	69540.	146.	9.378	0.096	1.296
spSpec-52029-0538-064	88800.	580.	8.350	0.108	0.927
spSpec-52029-0538-098	9600.	36.	7.817	0.037	0.496
spSpec-52029-0538-101	15190.	15.	8.082	0.024	0.660
spSpec-52029-0538-108	17646.	30.	8.120	0.008	0.687
spSpec-52029-0538-254	10534.	28.	7.494	0.007	0.376
spSpec-52029-0538-309	9816.	27.	7.778	0.024	0.477
spSpec-52029-0538-337	16584.	34.	8.029	0.036	0.631
spSpec-52029-0538-432	19250.	0.	6.245	0.019	0.266
spSpec-52029-0538-437	19342.	30.	7.852	0.016	0.542
spSpec-52029-0538-451	14800.	0.	7.905	0.027	0.557
spSpec-52029-0538-501	39400.	32.	7.712	0.012	0.530
spSpec-52029-0538-538	37080.	124.	7.713	0.003	0.525
spSpec-52029-0538-632	14000.	0.	7.394	0.023	0.358
spSpec-52045-0582-099	51560.	312.	9.164	0.038	1.233
spSpec-52045-0582-200	11388.	5.	7.929	0.026	0.562
spSpec-52045-0582-344	7628.	16.	7.750	0.019	0.458
spSpec-52045-0582-364	42250.	295.	6.000	0.000	0.346
spSpec-52045-0582-410	10926.	30.	7.878	0.037	0.533
spSpec-52045-0582-551	15544.	23.	7.986	0.030	0.604
spSpec-52045-0582-593	14948.	14.	8.054	0.025	0.643
spSpec-52045-0582-599	17250.	0.	7.865	0.018	0.542
spSpec-52045-0588-177	24652.	60.	8.124	0.012	0.704
spSpec-52045-0594-065	18114.	37.	8.656	0.003	1.012
spSpec-52045-0594-167	15354.	39.	7.969	0.020	0.595
spSpec-52045-0594-272	13000.	0.	5.604	0.001	0.239
spSpec-52045-0594-289	11069.	57.	7.434	0.035	0.357
spSpec-52045-0594-315	15250.	0.	7.613	0.031	0.432

Tabela 10.1 (continuação)
Nome	T _{ef}	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-52045-0594-367	15152.	35.	7.956	0.025	0.587
spSpec-52045-0594-373	12659.	43.	7.649	0.045	0.436
spSpec-52045-0594-374	11766.	13.	7.825	0.028	0.507
spSpec-52045-0594-390	10264.	43.	7.656	0.040	0.432
spSpec-52045-0594-400	11226.	9.	8.654	0.000	1.001
spSpec-52045-0594-410	15250.	0.	7.409	0.019	0.369
spSpec-52045-0594-418	10606.	2.	7.744	0.000	0.464
spSpec-52045-0594-467	10996	2	8.185	0.033	0.715
spSpec-52045-0594-478	14370	15	8 172	0.032	0.713
spSpec-52045-0594-620	34660	19	9 3 5 9	0.035	1 287
spSpec-52049-0584-091	16750	0	7 925	0.014	0.573
spSpec-52049-0584-095	7760	2	8 820	0.077	1 100
spSpec-52049-0584-106	15500	0	7 120	0.019	0.294
spSpec-52049-0584-175	13000	0.	8 549	0.037	0.938
spSpec-52049-0584-285	11181	8	7.642	0.033	0.730
spSpec 52049 0504 205 spSpec 52049 0584-310	8268	0. 1	8 776	0.000	1.074
spSpec 52049-0584-510	11104	ч. 3	7.642	0.000	0.430
spSpec 52049-0584-370	16036	3. 0	7.042	0.035	0.430
spSpec 52049-0584-392	14027	9. 13	7.307	0.025	0.310
spSpec-52049-0584-595	14027.	13.	1.139	0.021	0.462
spspec-52049-0584-472	10151.	14.	0.016	0.014	0.470
spSpec-52049-0584-015	15170.	18.	8.040	0.019	0.038
spSpec-52049-0618-096	0810.	12.	0./30	0.048	0.172
spSpec-52049-0618-390	8380.	31. 16	7.022	0.038	0.414
spSpec-52050-0630-083	26208.	16.	8.740	0.004	1.053
spSpec-52050-0630-137	14200.	0.	5.312	0.027	0.245
spSpec-52050-0630-399	23140.	41.	8.500	0.025	0.931
spSpec-52051-0515-226	18670.	26.	8.498	0.015	0.924
spSpec-52051-0515-303	17421.	19.	8.068	0.031	0.656
spSpec-52051-0515-391	7692.	12.	6.745	0.060	0.178
spSpec-52051-0623-113	9414.	23.	8.272	0.009	0.767
spSpec-52051-0623-201	13440.	36.	9.999	0.000	1.810
spSpec-52051-0623-519	8059.	16.	7.940	0.025	0.559
spSpec-52051-0629-030	30485.	30.	8.014	0.005	0.654
spSpec-52051-0629-067	32207.	92.	9.606	0.006	1.332
spSpec-52051-0629-191	24228.	18.	8.265	0.028	0.788
spSpec-52051-0629-305	8604.	28.	8.115	0.039	0.666
spSpec-52051-0629-419	15112.	54.	8.295	0.014	0.792
spSpec-52051-0629-535	40490.	35.	6.473	0.012	0.340
spSpec-52051-0629-549	45100.	698.	5.473	0.012	0.353
spSpec-52054-0622-012	16750.	0.	5.279	0.024	0.256
spSpec-52054-0622-263	12000.	0.	5.673	0.002	0.234
spSpec-52054-0622-321	25544.	40.	7.142	0.015	0.326
spSpec-52054-0622-466	21060.	74.	7.962	0.018	0.604
spSpec-52055-0583-186	10809.	6.	8.436	0.030	0.869
spSpec-52055-0583-264	24284.	26.	7.782	0.012	0.519
spSpec-52055-0589-255	21056.	99.	7.528	0.017	0.426
spSpec-52055-0589-388	25060.	51.	8.052	0.005	0.663
spSpec-52055-0589-416	14600.	0.	5.325	0.031	0.247
spSpec-52055-0589-424	27924.	6.	7.800	0.023	0.538
spSpec-52055-0589-569	8771.	8.	7.518	0.044	0.375
spSpec-52055-0589-574	14958.	20.	7.967	0.041	0.592
spSpec-52055-0611-142	11808.	3.	7.870	0.030	0.531
spSpec-52055-0611-160	17274.	10.	7.507	0.016	0.409
1 1 1	1		1		I

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-52055-0611-187	10847.	20.	8.633	0.035	0.988
spSpec-52055-0611-192	18397.	33.	8.236	0.011	0.760
spSpec-52055-0611-359	14800.	0.	7.921	0.021	0.566
spSpec-52055-0611-395	18995.	2.	7.845	0.017	0.536
spSpec-52055-0611-430	17000.	0.	7.138	0.016	0.307
spSpec-52055-0611-452	10814.	6.	7.770	0.031	0.476
spSpec-52055-0611-478	24916.	56.	7.955	0.004	0.609
spSpec-52055-0611-538	67160.	693.	7.144	0.037	0.456
spSpec-52055-0611-544	24356.	34.	7.701	0.009	0.492
spSpec-52055-0621-253	6770.	3.	7.370	0.069	0.310
spSpec-52056-0329-346	14472.	25.	8.068	0.023	0.650
spSpec-52056-0329-366	19000.	0.	6.297	0.023	0.265
spSpec-52056-0329-370	7954.	7.	8.785	0.019	1.079
spSpec-52056-0329-542	10534.	17.	7.829	0.028	0.505
spSpec-52056-0329-578	45740.	80.	8.659	0.033	1.079
spSpec-52056-0603-035	14676.	47.	8.170	0.030	0.713
spSpec-52056-0603-041	7462.	8.	6.408	0.000	0.150
spSpec-52056-0603-077	15178.	33.	7.899	0.030	0.554
spSpec-52056-0603-113	14200.	0.	5.697	0.004	0.245
spSpec-52056-0603-189	11600.	0.	8.140	0.046	0.688
spSpec-52056-0603-229	53810.	194.	8.138	0.053	1.103
spSpec-52056-0603-257	8284.	10.	8.354	0.046	0.820
spSpec-52056-0603-418	18402.	38.	7.935	0.027	0.583
spSpec-52056-0603-428	16455.	12.	7.772	0.018	0.494
spSpec-52056-0603-429	25972.	2.	8.032	0.025	0.654
spSpec-52056-0603-443	24228.	18.	8.099	0.021	0.689
spSpec-52056-0603-452	26060.	4.	8.599	0.030	0.992
spSpec-52056-0603-456	13623.	13.	7.381	0.021	0.352
spSpec-52056-0603-477	32081.	88.	7.491	0.001	0.439
spSpec-52056-0603-508	11068.	77.	8.489	0.012	0.901
spSpec-52056-0610-023	13484.	31.	7.838	0.027	0.166
spSpec-52056-0610-035	12200.	0.	6.661	0.000	0.203
spSpec-52056-0610-067	17107.	37.	8.499	0.021	0.923
spSpec-52056-0610-092	26656.	67.	7.934	0.008	0.602
spSpec-52056-0610-156	19696.	20.	7.021	0.022	0.301
spSpec-52056-0610-180	12263.	23.	8.379	0.029	0.835
spSpec-52056-0610-189	6756.	1.	6.312	0.107	0.151
spSpec-52056-0610-223	11672.	29.	7.885	0.028	0.539
spSpec-52056-0610-285	15842.	35.	7.857	0.035	0.534
spSpec-52056-0610-288	39300.	38.	7.396	0.023	0.436
spSpec-52056-0610-433	6809.	13.	5.843	0.035	0.198
spSpec-52056-0610-533	13626.	9.	7.822	0.027	0.510
spSpec-52056-0610-536	11880.	69.	8.028	0.025	0.621
spSpec-52056-0619-070	/304.	14.	7.899	0.031	0.534
spspec-52056-0619-149	22000	23. 14	0./31	0.000	1.04/
spspec-52056-0619-4/5	02510	14.	8./11 7.251	0.015	1.039
spspec-52050-0019-598	37200	000. 175	6.000	0.002	0.371
spspec-52057-0590-437	7760	1/5. 1	7 802	0.000	0.528
spspec-52057-0590-524	11060	4. 20	8.072	0.008	0.463
spspec-52059-0597-008	14400	29. 0	0.073 5.642	0.055	0.040
spSpec-52059-0597-029	7844	28	6 580	0.002	0.240
spSpec-52059-0597-095	17250	20. 0	7 868	0.027	0.105
spspcc-52059-0597-090	1/250.	0.	1.000	0.021	0.545

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-52059-0597-103	15021.	13.	8.534	0.026	0.942
spSpec-52059-0597-139	39940.	4.	9.422	0.053	1.301
spSpec-52059-0597-179	8398.	20.	7.943	0.025	0.562
spSpec-52059-0597-198	17496.	1.	8.350	0.024	0.831
spSpec-52059-0597-206	12062.	37.	7.923	0.030	0.561
spSpec-52059-0597-260	10478.	46.	7.625	0.046	0.422
spSpec-52059-0597-308	6374.	1.	6.500	0.000	0.151
spSpec-52059-0597-320	11398.	0.	7.648	0.023	0.432
spSpec-52059-0597-336	24704.	56.	8.450	0.005	0.902
spSpec-52059-0597-354	14086.	34.	8.027	0.025	0.625
spSpec-52059-0597-356	10421.	6.	7.888	0.014	0.537
spSpec-52059-0597-360	19480.	11.	7.956	0.014	0.597
spSpec-52059-0597-469	9848.	39.	8.034	0.019	0.619
spSpec-52059-0597-531	9513.	3.	9.048	0.034	1.238
spSpec-52071-0632-092	12800.	0.	5.720	0.003	0.237
spSpec-52071-0632-347	18750.	0.	5.810	0.025	0.264
spSpec-52071-0632-617	42560.	394.	5.500	0.000	0.346
spSpec-52072-0602-007	10514.	16.	7.837	0.024	0.509
spSpec-52072-0602-027	21116.	60.	8.827	0.013	1.088
spSpec-52072-0602-048	19800.	31.	7.750	0.020	0.491
spSpec-52072-0602-065	24480.	53.	7.581	0.017	0.438
spSpec-52072-0602-078	31661.	102.	9.678	0.013	1.342
spSpec-52072-0602-132	13400.	0.	7.847	0.025	0.523
spSpec-52072-0602-265	13048.	18.	7.833	0.028	0.515
spSpec-52072-0602-270	24144.	12.	7.897	0.020	0.577
spSpec-52072-0602-285	19640.	51.	7.676	0.030	0.463
spSpec-52072-0602-287	10644.	22.	7.753	0.003	0.468
spSpec-52072-0602-346	18450.	15.	7.844	0.014	0.535
spSpec-52072-0602-355	15270.	6.	7.788	0.024	0.498
spSpec-52072-0602-403	18354.	41.	8.132	0.028	0.696
spSpec-52072-0602-427	13200.	0.	7.394	0.020	0.354
spSpec-52072-0602-495	72070.	861.	6.953	0.022	0.439
spSpec-52072-0602-554	55320.	75.	6.638	0.065	0.380
spSpec-52072-0617-169	9326.	29.	7.993	0.003	0.593
spSpec-52072-0617-206	41580.	116.	8.220	0.003	0.790
spSpec-52072-0617-530	10727.	46.	7.619	0.064	0.421
spSpec-52072-0617-551	13480.	59.	9.999	0.000	1.810
spSpec-52072-0617-563	10246.	19.	7.581	0.044	0.406
spSpec-52079-0604-139	13104.	34.	7.765	0.016	0.479
spSpec-52079-0604-177	12748.	34.	7.949	0.031	0.577
spSpec-52079-0604-245	23244.	51.	9.999	0.018	1.370
spSpec-52079-0604-256	15000.	0.	5.364	0.041	0.248
spSpec-52079-0604-312	42010.	154.	8.082	0.006	0.712
spSpec-52079-0604-459	17488.	5.	7.975	0.021	0.603
spSpec-52079-0604-565	9456.	13.	7.678	0.046	0.436
spSpec-52079-0604-614	8720.	9.	8.086	0.037	0.648
spSpec-52079-0604-638	15926.	20.	7.756	0.021	0.485
spSpec-52079-0612-039	12563.	11.	7.559	0.027	0.407
spSpec-52079-0612-076	12806.	3.	8.368	0.033	0.828
spSpec-52079-0612-079	11259.	36.	8.038	0.028	0.625
spSpec-52079-0612-102	60130.	33.	9.088	0.132	1.258
spSpec-52079-0612-203	11868.	31.	7.905	0.027	0.550
spSpec-52079-0612-205	9074.	37.	7.674	0.024	0.434

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-52079-0612-218	36230.	111.	7.621	0.016	0.487
spSpec-52079-0612-419	41370.	97.	8.716	0.004	1.050
spSpec-52079-0612-427	26232.	18.	9.525	0.027	1.319
spSpec-52079-0612-449	10984.	10.	7.717	0.036	0.453
spSpec-52079-0612-463	10194.	2.	8.249	0.012	0.754
spSpec-52079-0612-522	19780.	18.	7.744	0.010	0.488
spSpec-52079-0612-554	19262.	4.	7.788	0.012	0.507
spSpec-52079-0612-592	14553.	13.	7.593	0.021	0.424
spSpec-52079-0631-037	28112.	11.	7.960	0.023	0.619
spSpec-52079-0631-124	24360.	34.	7.827	0.018	0.542
spSpec-52079-0631-284	19750.	0.	6.243	0.026	0.269
spSpec-52079-0631-389	9920.	23.	8.500	0.000	0.908
spSpec-52079-0633-062	31017.	66.	7.945	0.008	0.617
spSpec-52079-0633-065	20891.	63.	8.275	0.015	0.788
spSpec-52079-0633-296	8864.	21.	9.506	0.002	1.514
spSpec-52079-0633-323	6374.	1.	6.000	0.000	0.195
spSpec-52081-0608-085	16892.	30.	8.814	0.032	1.083
spSpec-52081-0608-087	10168.	10.	7.998	0.002	0.599
spSpec-52081-0608-140	11690.	33.	8.506	0.000	0.912
spSpec-52081-0608-231	15228.	10.	7.966	0.025	0.593
spSpec-52081-0608-362	15462.	15.	8.227	0.028	0.749
spSpec-52081-0608-402	28008.	1.	7.629	0.030	0.466
spSpec-52081-0608-419	21024.	78.	7.662	0.011	0.463
spSpec-52081-0608-425	25664.	24.	7.832	0.015	0.548
spSpec-52081-0608-434	17250.	0.	8.125	0.022	0.690
spSpec-52081-0608-523	11279.	34.	7.383	0.030	0.341
spSpec-52081-0608-534	15844.	26.	7.856	0.019	0.534
spSpec-52081-0608-542	30695.	51.	9.999	0.000	1.370
spSpec-52081-0608-544	8310.	26.	7.728	0.014	0.451
spSpec-52081-0608-552	43420.	129.	9.310	0.030	1.276
spSpec-52081-0608-595	14354.	15.	8.067	0.028	0.649
spSpec-52081-0638-001	11600.	15.	8.568	0.028	0.949
spSpec-52081-0638-150	10322.	11.	7.875	0.000	0.529
spSpec-52081-0638-419	35000.	0.	8.587	0.051	0.994
spSpec-52081-0638-481	25452.	37.	7.788	0.006	0.526
spSpec-52081-0638-489	10309.	37.	8.355	0.039	0.820
spSpec-52081-0638-558	26660.	76.	7.388	0.011	0.393
spSpec-52083-0628-137	7261.	3.	6.698	0.074	0.168
spSpec-52083-0628-254	7672.	11.	8.127	0.034	0.670
spSpec-52083-0628-305	7312.	13.	7.476	0.000	0.351
spSpec-52083-0628-405	9560.	24.	7.744	0.004	0.461
spSpec-52083-0628-506	24040.	3.	8.607	0.022	0.995
spSpec-52083-0628-596	11856.	25.	7.607	0.039	0.421
spSpec-52083-0628-629	16136.	25.	8.048	0.032	0.642
spSpec-52138-0652-269	9195.	13.	8.117	0.031	0.668
spSpec-52138-0652-311	26660.	62.	8.319	0.010	0.825
spSpec-52138-0652-341	10938.	22.	7./13	0.025	0.451
sp5pec-52138-0652-348	12195.	4.	7.093	0.033	0.447
spspec-52138-0652-392	24052	U.	7.920	0.014	0.5/3
spopec-52138-0652-519	40200	02.	1.598	0.011	0.445
spspec-52158-0052-538	40390.	24. 17	9.178	0.030	1.238
spspec-52141-0051-025	10242.	17.	7.907	0.024	0.347
spopee-52141-0051-199	14000.	0.	5.129	0.018	0.248

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-52141-0651-230	24044.	4.	7.548	0.022	0.437
spSpec-52141-0651-250	15810.	42.	7.675	0.021	0.451
spSpec-52141-0651-382	26096.	13.	6.763	0.022	0.292
spSpec-52141-0651-389	9613.	35.	7.462	0.015	0.359
spSpec-52141-0651-416	17500.	0.	7.910	0.022	0.567
spSpec-52141-0651-472	40400.	24.	8.968	0.014	1.161
spSpec-52141-0651-486	37230.	122.	7.499	0.000	0.456
spSpec-52141-0651-579	11831.	14.	7.646	0.031	0.433
spSpec-52141-0651-623	9896.	25.	8.639	0.035	0.991
spSpec-52143-0650-037	96500.	1397.	9.046	0.048	1.248
spSpec-52143-0650-130	6374.	1.	7.250	0.000	0.270
spSpec-52143-0650-217	8664.	20.	8.046	0.016	0.623
spSpec-52143-0650-233	23432.	34.	7.933	0.012	0.594
spSpec-52143-0650-497	32263.	82.	7.749	0.000	0.527
spSpec-52143-0650-550	9390.	25.	8.769	0.007	1.070
spSpec-52145-0635-156	50160.	38.	5.404	0.042	0.366
spSpec-52145-0635-227	7928.	17.	7.552	0.022	0.384
spSpec-52145-0635-228	13165.	1.	5.580	0.001	0.240
spSpec-52145-0635-231	9496.	2.	7.591	0.036	0.407
spSpec-52145-0635-439	21236.	109.	7.869	0.015	0.555
spSpec-52145-0635-442	7704.	9.	7.210	0.030	0.268
spSpec-52145-0635-446	32039.	92.	7.749	0.000	0.526
spSpec-52145-0635-539	19514.	7.	8.161	0.016	0.716
spSpec-52145-0635-620	21248.	94.	7.965	0.014	0.606
spSpec-52145-0653-086	17250.	0.	5.311	0.025	0.258
spSpec-52145-0653-115	21032.	64.	7.909	0.014	0.575
spSpec-52145-0653-135	14237.	17.	7.886	0.025	0.545
spSpec-52145-0653-141	15044.	22.	7.904	0.034	0.557
spSpec-52145-0653-144	41170.	85.	7.309	0.009	0.419
spSpec-52145-0653-146	15978.	6.	7.577	0.021	0.424
spSpec-52145-0653-156	11830.	23.	7.961	0.028	0.581
spSpec-52145-0653-195	18678.	27.	7.982	0.018	0.609
spSpec-52145-0653-225	18500.	0.	6.941	0.021	0.281
spSpec-52145-0653-348	18750.	0.	5.283	0.025	0.264
spSpec-52145-0653-437	18000.	0.	7.688	0.023	0.460
spSpec-52145-0653-452	18000.	0.	7.850	0.015	0.537
spSpec-52145-0653-504	8775.	7.	8.920	0.000	1.161
spSpec-52145-0653-506	14400.	0.	7.848	0.026	0.525
spSpec-52145-0653-520	15778.	10.	8.025	0.026	0.628
spSpec-52145-0653-579	18250.	0.	7.909	0.015	0.568
spSpec-52145-0663-341	7128.	12.	8.000	0.000	0.588
spSpec-52146-0639-217	19878.	36.	8.780	0.017	1.066
spSpec-52146-0639-319	7644.	17.	7.331	0.019	0.299
spSpec-52146-0639-442	50280.	42.	8.446	0.050	1.107
spSpec-52146-0639-605	23140.	41.	8.614	0.009	0.997
spSpec-52146-0654-109	10113.	29.	8.010	0.005	0.606
spSpec-52146-0654-251	7569.	28.	6.604	0.079	0.160
spSpec-52146-0654-428	24312.	32.	7.468	0.007	0.422
spSpec-52146-0658-342	23760.	16.	7.872	0.018	0.563
spSpec-52146-0658-571	19692.	32.	7.690	0.028	0.467
spSpec-52146-0658-610	7359.	5.	5.999	0.000	0.202
spSpec-52147-0662-487	46990.	253.	9.306	0.030	1.257
spopec-52149-0666-141	8/31.	4.	8.970	0.049	1.191

Tabela 10.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-52149-0666-322	10657.	27.	7.716	0.097	0.452
spSpec-52149-0666-464	8100.	18.	9.730	0.051	1.648
spSpec-52162-0655-091	7605.	15.	9.114	0.024	1.258
spSpec-52162-0655-105	26472.	48.	8.123	0.016	0.707
spSpec-52162-0655-145	11411.	5.	7.915	0.029	0.555
spSpec-52162-0655-298	33030.	76.	7.750	0.000	0.529
spSpec-52162-0655-300	6374.	1.	9.999	0.000	1.669
spSpec-52162-0655-418	9773.	13.	7.699	0.025	0.443
spSpec-52162-0655-586	25476.	38.	7.544	0.007	0.430
spSpec-52162-0668-027	9074.	19.	9.765	0.043	1.669
spSpec-52162-0668-074	21075.	69.	7.930	0.028	0.586
spSpec-52162-0668-138	13159.	1.	5.552	0.001	0.240
spSpec-52162-0668-205	16782.	20.	7.925	0.024	0.573
spSpec-52162-0668-210	11925.	37.	7.391	0.036	0.347
spSpec-52162-0668-222	68700.	37.	5.283	0.036	0.425
spSpec-52162-0668-290	37110.	155.	6.500	0.014	0.327
spSpec-52162-0668-292	18400.	26.	8.295	0.020	0.797
spSpec-52162-0668-302	15136.	44.	8.171	0.035	0.714
spSpec-52162-0668-352	10258.	22.	7.854	0.035	0.517
spSpec-52162-0668-354	11440.	24.	7.690	0.027	0.444
spSpec-52162-0668-362	7628.	17.	7.500	0.000	0.347
spSpec-52162-0668-515	10542.	24.	7.919	0.036	0.554
spSpec-52162-0668-595	15000.	0.	5.307	0.032	0.248
spSpec-52163-0661-393	22948.	60.	9.999	0.018	1.369
spSpec-52163-0661-406	39210.	40.	8.460	0.009	0.927
spSpec-52163-0661-442	11595.	3.	7.701	0.029	0.448
spSpec-52163-0661-446	12000.	0.	7.912	0.028	0.554
spSpec-52163-0661-563	7120.	17.	6.499	0.000	0.152
spSpec-52163-0667-131	16500.	0.	7.647	0.019	0.443
spSpec-52163-0667-136	12846.	38.	7.681	0.035	0.445
spSpec-52163-0667-140	9472.	11.	7.670	0.037	0.433
spSpec-52163-0667-393	17365.	38.	7.735	0.020	0.479
spSpec-52163-0667-501	17598.	30.	7.857	0.018	0.539
spSpec-52163-0667-509	18250.	0.	7.877	0.027	0.551
spSpec-52164-0634-294	24620.	56.	9.361	0.032	1.286
spSpec-52164-0634-399	33540.	63.	7.721	0.003	0.519
spSpec-52164-0634-421	42480.	155.	7.499	0.000	0.471
spSpec-52164-0634-517	10539.	23.	8.019	0.014	0.612
spSpec-52168-0665-131	32860.	87.	6.887	0.009	0.313
spSpec-52168-0665-236	21129.	30.	6.354	0.016	0.275
spSpec-52168-0665-261	31983.	97.	7.499	0.000	0.440
spSpec-52168-0665-322	11460.	36.	7.806	0.030	0.496
spSpec-52168-0665-476	23176.	43.	8.173	0.009	0.730
spSpec-52168-0665-494	26316.	30.	7.921	0.015	0.595
spSpec-52173-0644-218	18421.	94.	9.999	0.025	1.369
spSpec-52173-0644-500	7962.	8.	7.827	0.038	0.496
spSpec-52173-0644-633	11688.	46.	7.805	0.032	0.497
spspec-521/4-0637-123	23/92.	14.	8.128	0.021	0.704
spspec-521/4-063/-333	18050.	35. 22	8.403	0.005	0.865
spspec-52174-0637-432	29421.	<i>33</i> .	/.949	0.021	0.616
spspec-521/4-063/-530	15500.	0.	5.662	0.028	0.250
spspec-521/4-063/-54/	24000	22. 50	7 807	0.002	0.46/
spspec-321/4-003/-330	24900.	Jð.	1.607	0.000	0.534

Tabela 10.1 (continuação)

 \equiv

spSpec-52174-0664-372 10184. 6. 8.333 0.032 0.808 spSpec-52174-0636-064 21032. 54. 9.315 0.003 1.274 spSpec-52176-0636-064 21032. 54. 9.315 0.003 1.274 spSpec-52176-0636-071 36400. 17. 5.611 0.051 0.632 spSpec-52176-0636-617 82040. 1083. 7.411 0.050 0.573 spSpec-52177-0657-518 7866. 19. 7.866 0.028 0.516 spSpec-52177-0657-569 70300. 0. 5.280 0.100 0.431 spSpec-52177-0657-569 70300. 0. 5.280 0.100 0.431 spSpec-52177-0660-339 18179. 22. 8.127 0.016 0.693 spSpec-52177-0660-388 1691. 26. 7.815 0.022 0.597 spSpec-52177-0660-438 17482. 8. 7.965 0.022 0.597 spSpec-52177-0660-438 17480. 0. 7.197 0.018 0.308<	Nome	T _{ef}	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Mass
spSpec-52174-0664-402 7128. 6. 5.999 0.000 0.200 spSpec-52176-0636-044 21032. 54. 9.315 0.003 1.274 spSpec-52176-0636-267 36400. 17. 5.611 0.051 0.325 spSpec-52176-0636-617 82040. 1083. 7.411 0.050 0.570 spSpec-52177-0657-105 29600. 1083. 7.117 0.050 0.333 spSpec-52177-0657-518 7666. 19. 7.866 0.022 1.040 spSpec-52177-0657-569 70300. 0. 5.280 0.100 0.431 spSpec-52177-0660-273 11817. 22. 8.127 0.016 0.693 spSpec-52177-0660-381 11817. 22. 8.127 0.016 0.693 spSpec-52177-0660-433 17482. 8. 7.943 0.024 0.566 spSpec-52177-0660-433 17482. 8. 7.943 0.024 0.566 spSpec-52178-0640-310 12600. 0. 5.382 0.002 0.23	spSpec-52174-0664-372	10184.	6.	8.333	0.032	0.808
spSpec-52176-0636-064 21032. 54. 9.315 0.003 1.274 spSpec-52176-0636-267 6400. 17. 5.611 0.051 0.325 spSpec-52176-0636-444 21003. 63. 8.009 0.016 0.630 spSpec-52176-0636-617 82040. 1083. 7.411 0.050 0.333 spSpec-52177-0657-158 7866. 19. 7.866 0.028 0.516 spSpec-52177-0657-519 70300. 0. 5.280 0.100 0.431 spSpec-52177-0660-270 23884. 7. 8.760 0.007 1.058 spSpec-52177-0660-280 11281. 24. 8.373 0.000 0.831 spSpec-52177-0660-438 13691. 26. 7.815 0.027 0.507 spSpec-52177-0660-438 1041. 28. 7.943 0.024 0.566 spSpec-52178-0640-306 11800. 0. 5.343 0.002 0.332 spSpec-52178-0640-310 12600. 0. 5.343 0.002 0.232<	spSpec-52174-0664-402	7128.	6.	5.999	0.000	0.200
spSpec-52176-0636-113 10036. 17. 8.055 0.051 0.632 spSpec-52176-0636-267 36400. 17. 5.611 0.051 0.325 spSpec-52176-0636-592 19091. 29. 7.575 0.015 0.630 spSpec-52176-0637-057 82040. 1083. 7.411 0.050 0.570 spSpec-52177-0657-358 7866. 19. 7.866 0.028 0.516 spSpec-52177-0657-569 70300. 0. 5.280 0.007 1.058 spSpec-52177-0660-280 11281. 24. 8.373 0.000 0.831 spSpec-52177-0660-381 18691. 26. 7.815 0.022 0.597 spSpec-52177-0660-433 17482. 8. 7.965 0.022 0.597 spSpec-52178-0640-310 12600. 0. 5.343 0.002 0.236 spSpec-52178-0640-310 12600. 0. 5.343 0.002 0.236 spSpec-52178-0640-376 42480. 154. 7.488 0.039 0.5	spSpec-52176-0636-064	21032.	54.	9.315	0.003	1.274
spSpec-52176-0636-267 36400. 17. 5.611 0.051 0.325 spSpec-52176-0636-617 82040. 1083. 7.411 0.050 0.433 spSpec-52177-0657-105 29600. 1083. 7.411 0.050 0.333 spSpec-52177-0657-358 7666. 19. 7.866 0.028 0.516 spSpec-52177-0657-511 9522. 7. 8.720 0.028 0.100 spSpec-52177-0660-270 23884. 7. 8.760 0.007 1.058 spSpec-52177-0660-339 18179. 22. 8.127 0.016 0.693 spSpec-52177-0660-438 10041. 28. 7.943 0.024 0.566 spSpec-52177-0660-438 10041. 28. 7.943 0.022 0.597 spSpec-52178-0640-310 12600. 0. 5.343 0.002 0.333 spSpec-52178-0640-310 12600. 0. 5.343 0.002 0.232 spSpec-52178-0640-576 42480. 154. 7.484 0.033 0.	spSpec-52176-0636-113	10036.	17.	8.055	0.051	0.632
spSpec-52176-0636-644 21003. 63. 8.009 0.016 0.630 spSpec-52176-0636-617 82040. 1083. 7.411 0.050 0.570 spSpec-52177-0657-155 29600. 1083. 7.117 0.050 0.570 spSpec-52177-0657-558 7866. 19. 7.866 0.028 0.516 spSpec-52177-0657-569 70300. 0. 5.280 0.100 0.431 spSpec-52177-0660-277 23884. 7. 8.760 0.007 1.058 spSpec-52177-0660-339 1179. 22. 8.127 0.016 0.693 spSpec-52177-0660-438 1041. 28. 7.965 0.022 0.597 spSpec-52177-0660-438 10404. 28. 7.965 0.022 0.597 spSpec-52178-0640-318 14800. 0. 7.197 0.018 0.543 spSpec-52178-0640-310 12600. 0. 5.382 0.002 0.232 spSpec-52178-0640-576 42480. 154. 7.488 0.001 0.4	spSpec-52176-0636-267	36400.	17.	5.611	0.051	0.325
spSpec-52176-0636-592 19091. 29. 7.575 0.015 0.433 spSpec-52176-0636-617 82040. 1083. 7.411 0.050 0.570 spSpec-52177-0657-358 7866. 19. 7.866 0.028 0.516 spSpec-52177-0657-358 7866. 19. 7.867 0.025 1.040 spSpec-52177-0667-359 7030. 0. 5.280 0.100 0.431 spSpec-52177-0660-277 23884. 7. 8.760 0.007 1.058 spSpec-52177-0660-388 13691. 26. 7.815 0.027 0.507 spSpec-52177-0660-438 10041. 28. 7.943 0.024 0.566 spSpec-52178-0640-373 100000. 5.395 0.018 0.308 spSpec-52178-0640-373 100000. 5.382 0.002 0.232 spSpec-52178-0640-376 42480. 154. 7.488 0.001 0.468 spSpec-52178-0640-376 12400. 154. 7.488 0.001 0.567 spSpec-52178-0640-3	spSpec-52176-0636-444	21003.	63.	8.009	0.016	0.630
spspec-52176-0636-617 82040. 1083. 7.411 0.050 0.570 spSpec-52177-0657-158 7866. 19. 7.866 0.028 0.516 spSpec-52177-0657-559 70300. 0. 5.280 0.100 0.431 spSpec-52177-0660-277 23884. 7. 8.760 0.007 1.058 spSpec-52177-0660-280 11281. 24. 8.373 0.000 0.831 spSpec-52177-0660-339 18179. 22. 8.127 0.016 0.693 spSpec-52177-0660-438 13691. 26. 7.815 0.027 0.597 spSpec-52177-0660-438 10041. 28. 7.943 0.024 0.566 spSpec-52178-0640-310 10000. 5.382 0.002 0.232 spSpec-52178-0640-310 12600. 5.382 0.002 0.232 spSpec-52178-0640-310 12600. 5.382 0.001 0.468 spSpec-52178-0640-613 7820. 23. 7.274 0.011 0.287 spSpec-5218-0640-613 7820. 23. 7.274	spSpec-52176-0636-592	19091.	29.	7.575	0.015	0.433
spSpec-52177-0657-105 29600. 1083. 7.117 0.050 0.333 spSpec-52177-0657-511 9522. 7. 8.720 0.025 1.040 spSpec-52177-0657-569 70300. 0. 5.280 0.100 0.431 spSpec-52177-0660-277 23884. 7. 8.760 0.007 1.058 spSpec-52177-0660-389 11281. 24. 8.373 0.000 0.831 spSpec-52177-0660-388 13691. 26. 7.815 0.022 0.597 spSpec-52177-0660-438 1041. 28. 7.965 0.022 0.597 spSpec-52177-0660-518 14800. 0. 7.197 0.018 0.543 spSpec-52178-0640-370 100000. 5.395 0.018 0.543 spSpec-52178-0640-389 17306. 19. 8.841 0.022 1.094 spSpec-52178-0640-310 12600. 0. 5.382 0.002 0.236 spSpec-52178-0640-316 7260. 3. 7.274 0.011 0.287 <tr< td=""><td>spSpec-52176-0636-617</td><td>82040.</td><td>1083.</td><td>7.411</td><td>0.050</td><td>0.570</td></tr<>	spSpec-52176-0636-617	82040.	1083.	7.411	0.050	0.570
spSpec-52177-0657-538 7866. 19. 7.866 0.025 0.140 spSpec-52177-0657-511 9522. 7. 8.720 0.025 1.040 spSpec-52177-0660-277 23884. 7. 8.760 0.007 1.058 spSpec-52177-0660-280 11281. 24. 8.373 0.000 0.831 spSpec-52177-0660-388 13691. 26. 7.815 0.027 0.507 spSpec-52177-0660-433 17482. 8. 7.965 0.022 0.597 spSpec-52177-0660-458 10041. 28. 7.945 0.002 0.539 spSpec-52178-0640-306 11800. 0. 5.843 0.002 0.232 spSpec-52178-0640-310 12600. 0. 5.382 0.002 0.232 spSpec-52178-0640-613 7820. 23. 7.274 0.011 0.468 spSpec-52178-0640-613 7820. 23. 7.274 0.011 0.287 spSpec-52178-0640-613 7820. 23. 7.274 0.011 0.287	spSpec-52177-0657-105	29600.	1083.	7.117	0.050	0.333
spSpec-52177-0657-511 9522. 7. 8.720 0.025 1.040 spSpec-52177-0660-277 23884. 7. 8.760 0.007 1.058 spSpec-52177-0660-280 11281. 24. 8.373 0.000 0.831 spSpec-52177-0660-389 18179. 22. 8.127 0.016 0.6931 spSpec-52177-0660-438 13691. 26. 7.815 0.024 0.566 spSpec-52177-0660-458 10041. 28. 7.943 0.024 0.566 spSpec-52178-0640-273 100000. 0. 5.395 0.018 0.543 spSpec-52178-0640-306 11800. 0. 5.484 0.002 0.236 spSpec-52178-0640-310 12600. 0. 5.382 0.002 0.236 spSpec-52178-0640-316 17306. 19. 8.841 0.022 1.094 spSpec-52178-0640-576 42480. 154. 7.488 0.001 0.468 spSpec-52199-0659-107 12138. 35. 7.921 0.033 0.56	spSpec-52177-0657-358	7866.	19.	7.866	0.028	0.516
spspec-52177-0657-569 70300. 0. 5.280 0.100 0.431 spSpec-52177-0660-277 23884. 7. 8.760 0.007 1.058 spSpec-52177-0660-380 11281. 24. 8.373 0.000 6.693 spSpec-52177-0660-339 18179. 22. 8.127 0.016 0.693 spSpec-52177-0660-438 10041. 28. 7.943 0.024 0.566 spSpec-52177-0660-518 10411. 28. 7.943 0.024 0.566 spSpec-52178-0640-373 100000. 0. 5.395 0.018 0.308 spSpec-52178-0640-310 12600. 0. 5.382 0.002 0.236 spSpec-52178-0640-576 42480. 154. 7.488 0.001 0.468 spSpec-52178-0640-570 12138. 35. 7.921 0.033 0.560 spSpec-52178-0640-570 12138. 35. 7.921 0.033 0.566 spSpec-52199-0659-107 12138. 35. 7.921 0.033 0.5	spSpec-52177-0657-511	9522.	7.	8.720	0.025	1.040
spSpec-52177-0660-277 23884. 7. 8.760 0.007 1.058 spSpec-52177-0660-380 11281. 24. 8.373 0.000 0.831 spSpec-52177-0660-388 13691. 26. 7.815 0.027 0.507 spSpec-52177-0660-433 17482. 8. 7.965 0.022 0.597 spSpec-52177-0660-458 10041. 28. 7.943 0.024 0.566 spSpec-52178-0640-273 100000. 5.395 0.018 0.308 spSpec-52178-0640-306 11800. 0. 5.843 0.002 0.232 spSpec-52178-0640-389 17306. 19. 8.841 0.022 1.094 spSpec-52178-0640-613 7820. 23. 7.274 0.011 0.287 spSpec-52178-0640-613 7820. 23. 7.274 0.011 0.287 spSpec-52178-0640-613 7820. 23. 7.274 0.011 0.287 spSpec-52199-0659-207 10309. 21. 7.943 0.001 0.567 <t< td=""><td>spSpec-52177-0657-569</td><td>70300.</td><td>0.</td><td>5.280</td><td>0.100</td><td>0.431</td></t<>	spSpec-52177-0657-569	70300.	0.	5.280	0.100	0.431
spSpec-52177-0660-280 11281. 24. 8.373 0.000 0.831 spSpec-52177-0660-339 18179. 22. 8.127 0.016 0.693 spSpec-52177-0660-438 13691. 26. 7.815 0.027 0.507 spSpec-52177-0660-438 10041. 28. 7.943 0.024 0.566 spSpec-52177-0660-438 10041. 28. 7.943 0.024 0.566 spSpec-52178-0640-273 100000. 0. 5.395 0.018 0.543 spSpec-52178-0640-306 11800. 0. 5.483 0.002 0.236 spSpec-52178-0640-376 42480. 154. 7.488 0.001 0.468 spSpec-52178-0640-576 42480. 154. 7.488 0.0287 spSpec-52178-0640-576 42480. 154. 7.488 0.021 0.287 spSpec-52178-0640-576 42480. 154. 7.488 0.028 0.487 spSpec-52199-0659-207 10309. 21. 7.943 0.001 0.567 <	spSpec-52177-0660-277	23884	7	8,760	0.007	1.058
spSpec-52177-0660-339 18179. 22. 8.127 0.016 0.693 spSpec-52177-0660-438 13691. 26. 7.815 0.027 0.507 spSpec-52177-0660-438 10041. 28. 7.943 0.024 0.566 spSpec-52177-0660-518 10041. 28. 7.943 0.024 0.566 spSpec-52178-0640-273 100000. 0. 5.395 0.018 0.308 spSpec-52178-0640-306 11800. 0. 5.433 0.002 0.232 spSpec-52178-0640-310 12600. 0. 5.382 0.001 0.468 spSpec-52178-0640-613 7820. 23. 7.274 0.011 0.287 spSpec-52199-0659-107 12138. 35. 7.921 0.033 0.660 spSpec-52199-0659-107 12138. 35. 7.921 0.013 1.039 spSpec-52199-0659-239 17750. 0. 6.843 0.028 0.263 spSpec-52199-0659-342 95000. 0. 7.330 0.012 0.6561	spSpec-52177-0660-280	11281	24	8 373	0.000	0.831
spSpec-52177-0660-388 13691 26. 7.815 0.027 0.507 spSpec-52177-0660-433 17482. 8. 7.965 0.022 0.597 spSpec-52177-0660-458 10041. 28. 7.943 0.024 0.566 spSpec-52178-0640-273 100000. 0. 5.395 0.018 0.543 spSpec-52178-0640-310 12600. 0. 5.382 0.002 0.232 spSpec-52178-0640-310 12600. 0. 5.382 0.002 0.236 spSpec-52178-0640-576 42480. 154. 7.488 0.001 0.468 spSpec-52178-0640-613 7820. 23. 7.274 0.011 0.287 spSpec-52199-0659-107 12138. 35. 7.921 0.033 0.560 spSpec-52199-0659-239 17750. 0. 6.843 0.028 0.263 spSpec-52199-0659-342 95000. 0. 7.330 0.015 0.561 spSpec-52199-0659-424 95000. 0. 7.330 0.011 0.493 <td>spSpec-52177-0660-339</td> <td>18179</td> <td>22</td> <td>8.127</td> <td>0.016</td> <td>0.693</td>	spSpec-52177-0660-339	18179	22	8.127	0.016	0.693
spSpec-52177-0660-433 17482. 8. 7.965 0.022 0.597 spSpec-52177-0660-458 10041. 28. 7.943 0.024 0.566 spSpec-52178-0640-273 100000. 0. 5.395 0.018 0.308 spSpec-52178-0640-373 100000. 0. 5.382 0.002 0.232 spSpec-52178-0640-310 12600. 0. 5.382 0.002 0.236 spSpec-52178-0640-576 42480. 154. 7.488 0.001 0.468 spSpec-52199-0641-112 11302. 68. 7.778 0.033 0.560 spSpec-52199-0659-107 12138. 35. 7.921 0.033 0.560 spSpec-52199-0659-207 10309. 21. 7.943 0.001 0.567 spSpec-52199-0659-381 8831. 27. 8.717 0.013 1.039 spSpec-52199-0659-342 95000. 0. 7.330 0.020 0.465 spSpec-52199-0659-342 9500. 0. 7.330 0.010 0.465<	spSpec-52177-0660-388	13691	26	7.815	0.027	0.507
spSpec-52177-0660-458 1004.1 28. 7.943 0.024 0.566 spSpec-52178-0640-273 100000. 0. 5.395 0.018 0.308 spSpec-52178-0640-306 11800. 0. 5.382 0.002 0.236 spSpec-52178-0640-310 12600. 0. 5.382 0.002 0.236 spSpec-52178-0640-310 12600. 0. 5.382 0.002 0.236 spSpec-52178-0640-576 42480. 154. 7.488 0.001 0.468 spSpec-52199-0659-107 12138. 35. 7.921 0.033 0.560 spSpec-52199-0659-207 10309. 21. 7.943 0.001 0.567 spSpec-52199-0659-239 17750. 0. 6.843 0.028 0.263 spSpec-52199-0659-381 8831. 27. 8.717 0.013 1.039 spSpec-52203-0645-057 25232. 6. 6.916 0.018 0.289 spSpec-52203-0645-374 8412. 17. 7.759 0.000 0.465 </td <td>spSpec-52177-0660-433</td> <td>17482</td> <td>8</td> <td>7 965</td> <td>0.022</td> <td>0.597</td>	spSpec-52177-0660-433	17482	8	7 965	0.022	0.597
spSpec-52177-0660-518 14800 0. 7.197 0.018 0.308 spSpec-52178-0640-273 100000. 0. 5.395 0.018 0.308 spSpec-52178-0640-306 11800. 0. 5.443 0.002 0.232 spSpec-52178-0640-310 12600. 0. 5.382 0.002 0.236 spSpec-52178-0640-376 42480. 154. 7.488 0.001 0.468 spSpec-52178-0640-613 7820. 23. 7.274 0.011 0.287 spSpec-52199-0659-107 12138. 35. 7.921 0.033 0.560 spSpec-52199-0659-207 10309. 21. 7.943 0.001 0.567 spSpec-52199-0659-239 17750. 0. 6.843 0.028 0.263 spSpec-52199-0659-542 95000. 0. 7.330 0.055 0.561 spSpec-5203-0645-057 25232. 65. 6.916 0.018 0.289 spSpec-5203-0645-464 2382. 8.959 0.000 0.465	spSpec-52177-0660-458	10041	28	7.943	0.022	0.566
spSpec-52178-0640-273 100000 0. 5.395 0.018 0.543 spSpec-52178-0640-306 11800. 0. 5.382 0.002 0.232 spSpec-52178-0640-310 12600. 0. 5.382 0.002 0.236 spSpec-52178-0640-389 17306. 19. 8.841 0.022 1.094 spSpec-52178-0640-613 7820. 23. 7.274 0.011 0.287 spSpec-52199-0641-112 11302. 68. 7.788 0.039 0.487 spSpec-52199-0659-207 10309. 21. 7.943 0.001 0.567 spSpec-52199-0659-381 8831. 27. 8.717 0.013 1.039 spSpec-52199-0659-542 95000. 0. 7.330 0.055 0.561 spSpec-52199-0659-542 95000. 0. 7.330 0.012 0.601 spSpec-52199-0659-542 95000. 0. 7.330 0.012 0.601 spSpec-5203-0645-657 25232. 65. 6.916 0.018 0.289	spSpec-52177-0660-518	14800	0	7 197	0.024	0.308
spSpec 5175 60002 6.7 5.843 0.002 0.232 spSpec 52178-0640-310 12600. 0. 5.843 0.002 0.236 spSpec 52178-0640-389 17306. 19. 8.841 0.022 1.094 spSpec 52178-0640-613 7820. 23. 7.274 0.011 0.287 spSpec-52199-0641-112 11302. 68. 7.788 0.039 0.487 spSpec-52199-0659-107 12138. 35. 7.921 0.033 0.560 spSpec-52199-0659-239 17750. 0. 6.843 0.028 0.263 spSpec-52199-0659-381 8831. 27. 8.717 0.013 1.039 spSpec-52203-0645-057 25232. 65. 6.916 0.018 0.289 spSpec-52203-0645-057 25232. 65. 6.916 0.018 0.289 spSpec-52203-0645-461 32382. 82. 8.959 0.002 1.154 spSpec-52203-0645-622 1204. 71.	spSpec-52177-0000-510	100000	0.	5 395	0.018	0.500
spSpec-52178-0640-310 12600. 0. 5.382 0.002 0.236 spSpec-52178-0640-389 17306. 19. 8.841 0.022 1.094 spSpec-52178-0640-576 42480. 154. 7.488 0.011 0.468 spSpec-52178-0640-613 7820. 23. 7.274 0.011 0.287 spSpec-52199-0651-171 12138. 35. 7.921 0.033 0.560 spSpec-52199-0659-107 10309. 21. 7.943 0.001 0.567 spSpec-52199-0659-239 17750. 0. 6.843 0.028 0.263 spSpec-52199-0659-381 8831. 27. 8.717 0.013 1.039 spSpec-52199-0659-542 95000. 0. 7.330 0.055 0.561 spSpec-52203-0645-057 25232. 65. 6.916 0.018 0.289 spSpec-52203-0645-266 26368. 35. 7.933 0.012 0.601 spSpec-52203-0645-641 32382. 82. 8.959 0.002 1.154	spSpec 52178-0640-306	11800	0.	5 8/3	0.010	0.232
spSpec-52178-0640-389 17306. 19. 8.841 0.022 1.094 spSpec-52178-0640-576 42480. 154. 7.488 0.001 0.468 spSpec-52178-0640-613 7820. 23. 7.274 0.011 0.287 spSpec-52199-0641-112 11302. 68. 7.788 0.039 0.487 spSpec-52199-0659-207 10309. 21. 7.943 0.001 0.567 spSpec-52199-0659-239 17750. 0. 6.843 0.028 0.2263 spSpec-52199-0659-381 8831. 27. 8.717 0.013 1.039 spSpec-52199-0659-342 95000. 0. 7.330 0.055 0.561 spSpec-52203-0645-057 25232. 65. 6.916 0.018 0.289 spSpec-52203-0645-266 26368. 35. 7.933 0.012 0.601 spSpec-52203-0645-402 21004. 71. 7.747 0.014 0.493 spSpec-52203-0645-461 12382. 82. 8.959 0.002 1.1	spSpec-52178-0640-310	12600.	0.	5 382	0.002	0.232
spSpec-52178-0640-576 42480. 154. 7.488 0.001 0.468 spSpec-52178-0640-613 7820. 23. 7.274 0.011 0.287 spSpec-52199-0641-112 11302. 68. 7.788 0.039 0.487 spSpec-52199-0659-107 12138. 35. 7.921 0.033 0.560 spSpec-52199-0659-207 10309. 21. 7.943 0.001 0.567 spSpec-52199-0659-239 17750. 0. 6.843 0.028 0.263 spSpec-52199-0659-542 95000. 0. 7.330 0.055 0.561 spSpec-52203-0645-057 25232. 65. 6.916 0.018 0.289 spSpec-52203-0645-266 26368. 35. 7.933 0.012 0.601 spSpec-52203-0645-460 14600. 0. 5.402 0.038 0.247 spSpec-52203-0645-461 32382. 82. 8.959 0.002 1.154 spSpec-52203-0645-596 16612. 32. 7.758 0.017 0.48	spSpec-52178-0640-380	17306	10	8 8/1	0.002	1.094
spSpec-52178-0640-613 7820. 23. 7.274 0.011 0.287 spSpec-52199-0641-112 11302. 68. 7.788 0.039 0.487 spSpec-52199-0659-107 12138. 35. 7.921 0.033 0.560 spSpec-52199-0659-207 10309. 21. 7.943 0.001 0.567 spSpec-52199-0659-239 17750. 0. 6.843 0.028 0.263 spSpec-52199-0659-381 8831. 27. 8.717 0.013 1.039 spSpec-52199-0659-542 95000. 0. 7.330 0.055 0.561 spSpec-52201-0649-041 9322. 17. 9.738 0.040 1.653 spSpec-52203-0645-057 25232. 65. 6.916 0.018 0.289 spSpec-52203-0645-064 26368. 35. 7.933 0.014 0.493 spSpec-52203-0645-461 32382. 82. 8.959 0.002 1.154 spSpec-52203-0645-461 32382. 82. 8.959 0.002 1.154 spSpec-52203-0645-622 12270. 35. 7.810 0	spSpec-52178-0640-576	17300.	154	7 / 88	0.022	0.468
spSpec-52199-0641-112 11302. 68. 7.788 0.039 0.487 spSpec-52199-0659-107 12138. 35. 7.921 0.033 0.560 spSpec-52199-0659-207 10309. 21. 7.943 0.001 0.567 spSpec-52199-0659-239 17750. 0. 6.843 0.028 0.263 spSpec-52199-0659-381 8831. 27. 8.717 0.013 1.039 spSpec-52199-0659-542 95000. 0. 7.330 0.055 0.561 spSpec-52203-0645-057 25232. 65. 6.916 0.018 0.289 spSpec-5203-0645-062 26368. 35. 7.933 0.012 0.601 spSpec-5203-0645-422 21004. 71. 7.747 0.014 0.493 spSpec-52203-0645-420 14600. 0. 5.402 0.038 0.247 spSpec-52203-0645-461 32382. 82. 8.959 0.002 1.154 spSpec-52203-0645-622 12270. 35. 7.810 0.027 0.501 spSpec-52203-0645-624 7598. 23. 6.796 0.0	spSpec-52178-0040-570	7820	23	7.700	0.001	0.700
spSpec-52199-0659-107 12138. 35. 7.921 0.033 0.560 spSpec-52199-0659-207 10309. 21. 7.943 0.001 0.567 spSpec-52199-0659-239 17750. 0. 6.843 0.028 0.263 spSpec-52199-0659-381 8831. 27. 8.717 0.013 1.039 spSpec-52199-0659-542 95000. 0. 7.330 0.055 0.561 spSpec-52201-0649-041 9322. 17. 9.738 0.040 1.653 spSpec-52203-0645-057 25232. 65. 6.916 0.018 0.289 spSpec-52203-0645-266 26368. 35. 7.933 0.012 0.601 spSpec-52203-0645-374 8412. 17. 7.759 0.000 0.465 spSpec-52203-0645-461 32382. 82. 8.959 0.002 1.154 spSpec-52203-0645-622 12270. 35. 7.810 0.027 0.501 spSpec-52203-0645-624 7598. 23. 6.796 0.049 0.203 WD0102-0032 13334. 17. 7.531 0.025	spSpec-52178-0040-015	11302	23. 68	7 788	0.011	0.287
spSpec-52199-0659-207 10309. 21. 7.943 0.001 0.567 spSpec-52199-0659-239 17750. 0. 6.843 0.028 0.263 spSpec-52199-0659-381 8831. 27. 8.717 0.013 1.039 spSpec-52199-0659-381 8831. 27. 8.717 0.013 1.039 spSpec-52199-0659-542 95000. 0. 7.330 0.055 0.561 spSpec-52203-0645-057 25232. 65. 6.916 0.018 0.289 spSpec-52203-0645-266 26368. 35. 7.933 0.012 0.601 spSpec-52203-0645-374 8412. 17. 7.747 0.014 0.493 spSpec-52203-0645-461 32382. 82. 8.959 0.002 1.154 spSpec-52203-0645-622 12270. 35. 7.810 0.027 0.501 spSpec-52203-0645-624 7598. 23. 6.796 0.049 0.203 wD0102-0032 13334. 17. 7.576 0.028 0.415 wD0318+0030 24804. 66. 7.495 0.011 0	spSpec-52199-0641-112 spSpec-52199-0659-107	12138	35	7.021	0.039	0.487
spSpec-52199-0659-209 17750. 0. 6.843 0.028 0.263 spSpec-52199-0659-239 17750. 0. 6.843 0.028 0.263 spSpec-52199-0659-381 8831. 27. 8.717 0.013 1.039 spSpec-52199-0659-542 95000. 0. 7.330 0.055 0.561 spSpec-52201-0649-041 9322. 17. 9.738 0.040 1.653 spSpec-52203-0645-057 25232. 65. 6.916 0.018 0.289 spSpec-52203-0645-266 26368. 35. 7.933 0.012 0.601 spSpec-52203-0645-462 21004. 71. 7.747 0.014 0.493 spSpec-52203-0645-460 14600. 0. 5.402 0.038 0.247 spSpec-52203-0645-641 32382. 82. 8.959 0.002 1.154 spSpec-52203-0645-622 12270. 35. 7.810 0.027 0.501 spSpec-52203-0645-624 7598. 23. 6.796 0.049 0.203 WD0102-0032 13334. 17. 7.576 0.028	spSpec-52199-0059-107	10300	21	7.921	0.033	0.567
spSpec-52199-0659-381 8831. 27. 8.717 0.013 1.039 spSpec-52199-0659-342 95000. 0. 7.330 0.055 0.561 spSpec-52201-0649-041 9322. 17. 9.738 0.040 1.653 spSpec-52203-0645-057 25232. 65. 6.916 0.018 0.289 spSpec-52203-0645-374 8412. 17. 7.759 0.000 0.465 spSpec-52203-0645-374 8412. 17. 7.747 0.014 0.493 spSpec-52203-0645-460 14600. 0. 5.402 0.038 0.247 spSpec-52203-0645-461 32382. 82. 8.959 0.002 1.154 spSpec-52203-0645-622 12270. 35. 7.810 0.027 0.501 spSpec-52203-0645-624 7598. 23. 6.796 0.049 0.203 WD0102-0032 13334. 17. 7.576 0.026 0.461 WD0318-0030 24804. 66. 7.495 0.011 0.606 WD0332-0049 14800. 0. 7.686 0.022 0.454	spSpec-52199-0059-207	17750	0	6843	0.001	0.307
spSpec-52199-0659-542 95000. 0. 7.330 0.055 0.561 spSpec-52201-0649-041 9322. 17. 9.738 0.040 1.653 spSpec-52203-0645-057 25232. 65. 6.916 0.018 0.289 spSpec-52203-0645-057 25232. 65. 6.916 0.018 0.289 spSpec-52203-0645-374 8412. 17. 7.759 0.000 0.465 spSpec-52203-0645-374 8412. 17. 7.747 0.014 0.493 spSpec-52203-0645-460 14600. 0. 5.402 0.038 0.247 spSpec-52203-0645-461 32382. 82. 8.959 0.002 1.154 spSpec-52203-0645-622 12270. 35. 7.810 0.027 0.501 spSpec-52203-0645-624 7598. 23. 6.796 0.049 0.203 WD0102-0032 13334. 17. 7.576 0.028 0.415 WD0303-0808 13826. 22. 7.995 0.011 0.606 WD0332-0049 14800. 0. 7.686 0.022 0.454	spSpec-52100-0650-381	8831	0. 27	8 717	0.020	1.030
spSpec-52203-0645-057 25232. 65. 6.916 0.018 0.289 spSpec-52203-0645-057 25232. 65. 6.916 0.018 0.289 spSpec-52203-0645-266 26368. 35. 7.933 0.012 0.601 spSpec-52203-0645-374 8412. 17. 7.759 0.000 0.465 spSpec-52203-0645-374 8412. 17. 7.777 0.014 0.493 spSpec-52203-0645-460 14600. 0. 5.402 0.038 0.247 spSpec-52203-0645-461 32382. 82. 8.959 0.002 1.154 spSpec-52203-0645-622 12270. 35. 7.810 0.027 0.501 spSpec-52203-0645-622 12270. 35. 7.810 0.027 0.501 spSpec-52203-0645-624 7598. 23. 6.796 0.049 0.203 WD0102-0032 13334. 17. 7.576 0.028 0.415 WD0318+0030 24804. 66. 7.495 0.001 0.461 WD0332-0049 14800. 0. 7.686 0.022 0.454	spSpec-52199-0059-581	05000	27.	7 330	0.015	0.561
spSpec-52201-0649-041 9522. 17. 9.738 0.040 1.053 spSpec-52203-0645-057 25232. 65. 6.916 0.018 0.289 spSpec-52203-0645-266 26368. 35. 7.933 0.012 0.601 spSpec-52203-0645-374 8412. 17. 7.759 0.000 0.465 spSpec-52203-0645-422 21004. 71. 7.747 0.014 0.493 spSpec-52203-0645-460 14600. 0. 5.402 0.038 0.247 spSpec-52203-0645-461 32382. 82. 8.959 0.002 1.154 spSpec-52203-0645-622 12270. 35. 7.810 0.027 0.501 spSpec-52203-0645-624 7598. 23. 6.796 0.049 0.203 WD0102-0032 13334. 17. 7.576 0.028 0.415 WD0111+0018 11623. 18. 7.733 0.025 0.427 WD0303-0808 13826. 22. 7.995 0.011 0.606 WD0332-0049 14800. 0. 7.686 0.022 0.454	spSpec-52199-0039-542	0322	0. 17	0.738	0.033	1.653
spSpec-52203-0645-266 26368. 35. 7.933 0.012 0.601 spSpec-52203-0645-264 26368. 35. 7.933 0.012 0.601 spSpec-52203-0645-374 8412. 17. 7.759 0.000 0.465 spSpec-52203-0645-422 21004. 71. 7.747 0.014 0.493 spSpec-52203-0645-460 14600. 0. 5.402 0.038 0.247 spSpec-52203-0645-461 32382. 82. 8.959 0.002 1.154 spSpec-52203-0645-622 12270. 35. 7.810 0.027 0.501 spSpec-52203-0645-624 7598. 23. 6.796 0.049 0.203 WD0102-0032 13334. 17. 7.576 0.028 0.415 WD0111+0018 11623. 18. 7.733 0.026 0.461 WD0303-0808 13826. 22. 7.995 0.011 0.606 WD0332-0049 14800. 0. 7.686 0.022 0.454 WD0814+4608 14260. 31. 7.404 0.019 0.363	spSpec-52201-0049-041	25222	65	6.016	0.040	0.280
spSpec-52203-0645-200 2036. 33. 7.933 0.012 0.011 spSpec-52203-0645-374 8412. 17. 7.759 0.000 0.465 spSpec-52203-0645-422 21004. 71. 7.747 0.014 0.493 spSpec-52203-0645-460 14600. 0. 5.402 0.038 0.247 spSpec-52203-0645-461 32382. 82. 8.959 0.002 1.154 spSpec-52203-0645-596 16612. 32. 7.758 0.017 0.488 spSpec-52203-0645-622 12270. 35. 7.810 0.027 0.501 spSpec-52203-0645-624 7598. 23. 6.796 0.049 0.203 WD0102-0032 13334. 17. 7.576 0.028 0.415 WD0111+0018 11623. 18. 7.733 0.026 0.461 WD0303-0808 13826. 22. 7.995 0.011 0.606 WD0332-0049 14800. 0. 7.686 0.022 0.454 WD0814+4608 14260. 31. 7.404 0.019 0.363	spSpec-52205-0045-057	25252.	25	7 022	0.013	0.209
sp3pec-52203-0645-374 8412. 17. 7.739 0.000 0.403 sp5pec-52203-0645-422 21004. 71. 7.747 0.014 0.493 sp5pec-52203-0645-460 14600. 0. 5.402 0.038 0.247 sp5pec-52203-0645-461 32382. 82. 8.959 0.002 1.154 sp5pec-52203-0645-596 16612. 32. 7.758 0.017 0.488 sp5pec-52203-0645-622 12270. 35. 7.810 0.027 0.501 sp5pec-52203-0645-624 7598. 23. 6.796 0.049 0.203 WD0102-0032 13334. 17. 7.576 0.028 0.415 WD0111+0018 11623. 18. 7.733 0.026 0.461 WD0214-0823 11398. 1. 7.631 0.025 0.427 WD033-0808 13826. 22. 7.995 0.011 0.606 WD0318+0030 24804. 66. 7.495 0.001 0.416 WD032-0049 14800. 0. 7.686 0.022 0.454 WD	spSpec-52203-0045-200	20308.	55. 17	7.955	0.012	0.001
sp3pec-52203-0645-460 14600. 0. 5.402 0.038 0.247 sp5pec-5203-0645-461 32382. 82. 8.959 0.002 1.154 sp5pec-5203-0645-596 16612. 32. 7.758 0.017 0.488 sp5pec-5203-0645-622 12270. 35. 7.810 0.027 0.501 sp5pec-5203-0645-624 7598. 23. 6.796 0.049 0.203 WD0102-0032 13334. 17. 7.576 0.028 0.415 WD0111+0018 11623. 18. 7.733 0.026 0.461 WD0214-0823 11398. 1. 7.631 0.025 0.427 WD0330-0808 13826. 22. 7.995 0.011 0.606 WD0318+0030 24804. 66. 7.495 0.001 0.416 WD032-0049 14800. 0. 7.686 0.022 0.454 WD0814+4608 14260. 31. 7.404 0.019 0.363 WD0815+4437 11797. 2. 7.660 0.034 0.437 WD0825+4119 <t< td=""><td>spspec-52203-0645-374</td><td>21004</td><td>17.</td><td>7.739</td><td>0.000</td><td>0.403</td></t<>	spspec-52203-0645-374	21004	17.	7.739	0.000	0.403
sp3pec-52203-0645-460 14000. 0. 3.402 0.038 0.247 sp5pec-52203-0645-461 32382. 82. 8.959 0.002 1.154 sp5pec-52203-0645-596 16612. 32. 7.758 0.017 0.488 sp5pec-5203-0645-622 12270. 35. 7.810 0.027 0.501 sp5pec-5203-0645-624 7598. 23. 6.796 0.049 0.203 WD0102-0032 13334. 17. 7.576 0.028 0.415 WD0111+0018 11623. 18. 7.733 0.026 0.461 WD0214-0823 11398. 1. 7.631 0.025 0.427 WD03303-0808 13826. 22. 7.995 0.011 0.606 WD0318+0030 24804. 66. 7.495 0.001 0.416 WD032-0049 14800. 0. 7.686 0.022 0.454 WD0345-0036 16500. 0. 7.591 0.020 0.429 WD0814+4608 14260. 31. 7.404 0.019 0.363 WD0815+4437	spSpec-52203-0045-422	14600	/1.	5 402	0.014	0.495
spspec-52203-0645-596 16612. 32. 8.939 0.002 1.134 spspec-5203-0645-596 16612. 32. 7.758 0.017 0.488 spspec-5203-0645-622 12270. 35. 7.810 0.027 0.501 spspec-5203-0645-624 7598. 23. 6.796 0.049 0.203 WD0102-0032 13334. 17. 7.576 0.028 0.415 WD0111+0018 11623. 18. 7.733 0.026 0.461 WD0214-0823 11398. 1. 7.631 0.025 0.427 WD0303-0808 13826. 22. 7.995 0.011 0.606 WD0318+0030 24804. 66. 7.495 0.001 0.416 WD032-0049 14800. 0. 7.686 0.022 0.454 WD0345-0036 16500. 0. 7.591 0.020 0.429 WD0814+4608 14260. 31. 7.404 0.019 0.363 WD0825+4119 12017. 11. 7.946 0.030 0.573 WD0842+3707 12646.	spspec-52203-0045-400	22282	0.	9.402 8.050	0.038	0.247
spspec-52203-0645-622 12270. 32. 7.738 0.017 0.488 spspec-52203-0645-622 12270. 35. 7.810 0.027 0.501 spspec-52203-0645-624 7598. 23. 6.796 0.049 0.203 WD0102-0032 13334. 17. 7.576 0.028 0.415 WD0111+0018 11623. 18. 7.733 0.026 0.461 WD0214-0823 11398. 1. 7.631 0.025 0.427 WD0303-0808 13826. 22. 7.995 0.011 0.606 WD0318+0030 24804. 66. 7.495 0.001 0.416 WD0332-0049 14800. 0. 7.686 0.022 0.454 WD0345-0036 16500. 0. 7.591 0.020 0.429 WD0814+4608 14260. 31. 7.404 0.019 0.363 WD0825+4119 12017. 11. 7.946 0.030 0.573 WD0842+3707 12646. 42. 7.463 0.031 0.374 WD0847+4510 12055.	spspec-52205-0045-401	52562.	02. 22	0.939 7 750	0.002	0.499
spspec-52203-0643-022 12270. 33. 7.610 0.027 0.301 spspec-52203-0645-624 7598. 23. 6.796 0.049 0.203 WD0102-0032 13334. 17. 7.576 0.028 0.415 WD0111+0018 11623. 18. 7.733 0.026 0.461 WD0214-0823 11398. 1. 7.631 0.025 0.427 WD0303-0808 13826. 22. 7.995 0.011 0.606 WD0318+0030 24804. 66. 7.495 0.001 0.416 WD0332-0049 14800. 0. 7.686 0.022 0.454 WD0345-0036 16500. 0. 7.591 0.020 0.429 WD0814+4608 14260. 31. 7.404 0.019 0.363 WD0825+4119 12017. 11. 7.946 0.030 0.573 WD0842+3707 12646. 42. 7.463 0.031 0.374 WD0847+4510 12055. 17. 7.609 0.028 0.422 <td>spspec-32203-0043-390</td> <td>10012.</td> <td>52. 25</td> <td>7.738</td> <td>0.017</td> <td>0.466</td>	spspec-32203-0043-390	10012.	52. 25	7.738	0.017	0.466
spspec-32205-0043-024 7398. 25. 6.796 0.049 0.205 WD0102-0032 13334. 17. 7.576 0.028 0.415 WD0111+0018 11623. 18. 7.733 0.026 0.461 WD0303-0808 13826. 22. 7.995 0.011 0.6066 WD0332-0049 14800. 0. 7.686 0.022 0.454 WD0332-0049 14800. 0. 7.686 0.022 0.454 WD0345-0036 16500. 0. 7.591 0.020 0.429 WD0814+4608 14260. 31. 7.404 0.019 0.363 WD0815+4437 11797. 2. 7.660 0.034 0.437 WD0825+4119 12017. 11. 7.946 0.030 0.573 WD0842+3707 12646. 42. 7.463 0.031 0.374 WD0847+4510 12055. 17. 7.609 0.028 0.422	spspec-32203-0043-022	12270.	33. 22	6 706	0.027	0.301
wD0102-0032 13334. 17. 7.576 0.028 0.415 wD0111+0018 11623. 18. 7.733 0.026 0.461 wD0214-0823 11398. 1. 7.631 0.025 0.427 wD0303-0808 13826. 22. 7.995 0.011 0.606 wD0332-0049 14800. 0. 7.686 0.022 0.445 wD0345-0036 16500. 0. 7.591 0.001 0.416 wD0814+4608 14260. 31. 7.404 0.019 0.363 wD0815+4437 11797. 2. 7.660 0.034 0.437 wD0825+4119 12017. 11. 7.946 0.030 0.573 wD0842+3707 12646. 42. 7.463 0.031 0.374 wD0847+4510 12055. 17. 7.609 0.028 0.422	spspec-52203-0645-624	/598.	23.	0.790	0.049	0.203
WD0111+0018 11623. 18. 7.733 0.025 0.461 WD0214-0823 11398. 1. 7.631 0.025 0.427 WD0303-0808 13826. 22. 7.995 0.011 0.606 WD0318+0030 24804. 66. 7.495 0.001 0.416 WD0332-0049 14800. 0. 7.686 0.022 0.454 WD0345-0036 16500. 0. 7.591 0.020 0.429 WD0814+4608 14260. 31. 7.404 0.019 0.363 WD0815+4437 11797. 2. 7.660 0.034 0.437 WD0825+4119 12017. 11. 7.946 0.030 0.573 WD0842+3707 12646. 42. 7.463 0.031 0.374 WD0847+4510 12055. 17. 7.609 0.028 0.422	WD0102-0032	13334.	17.	7.576	0.028	0.415
WD0214-082311398.1.7.6310.0250.427WD0303-080813826.22.7.9950.0110.606WD0318+003024804.66.7.4950.0010.416WD0332-004914800.0.7.6860.0220.454WD0345-003616500.0.7.5910.0200.429WD0814+460814260.31.7.4040.0190.363WD0815+443711797.2.7.6600.0340.437WD0825+411912017.11.7.9460.0300.573WD0842+370712646.42.7.4630.0310.374WD0847+451012055.17.7.6090.0280.422	WD0111+0018	11623.	18.	7.733	0.026	0.461
wD0305-080813820.22.7.9950.0110.606WD0318+003024804.66.7.4950.0010.416WD0332-004914800.0.7.6860.0220.454WD0345-003616500.0.7.5910.0200.429WD0814+460814260.31.7.4040.0190.363WD0815+443711797.2.7.6600.0340.437WD0825+411912017.11.7.9460.0300.573WD0842+370712646.42.7.4630.0310.374WD0847+451012055.17.7.6090.0280.422	WD0214-0823	11398.	1.	7.031	0.025	0.427
WD0318+0030 24804. 66. 7.495 0.001 0.416 WD0332-0049 14800. 0. 7.686 0.022 0.454 WD0345-0036 16500. 0. 7.591 0.020 0.429 WD0814+4608 14260. 31. 7.404 0.019 0.363 WD0815+4437 11797. 2. 7.660 0.034 0.437 WD0825+4119 12017. 11. 7.946 0.030 0.573 WD0842+3707 12646. 42. 7.463 0.031 0.374 WD0847+4510 12055. 17. 7.609 0.028 0.422	WD0303-0808	13826.	22.	7.995	0.011	0.606
wD0332-0049 14800. 0. 7.686 0.022 0.454 wD0345-0036 16500. 0. 7.591 0.020 0.429 wD0814+4608 14260. 31. 7.404 0.019 0.363 wD0815+4437 11797. 2. 7.660 0.034 0.437 wD0825+4119 12017. 11. 7.946 0.030 0.573 wD0842+3707 12646. 42. 7.463 0.031 0.374 wD0847+4510 12055. 17. 7.609 0.028 0.422	WD0318+0030	24804.	66.	7.495	0.001	0.416
wD0345-0036 16500. 0. 7.591 0.020 0.429 WD0814+4608 14260. 31. 7.404 0.019 0.363 WD0815+4437 11797. 2. 7.660 0.034 0.437 WD0825+4119 12017. 11. 7.946 0.030 0.573 WD0842+3707 12646. 42. 7.463 0.031 0.374 WD0847+4510 12055. 17. 7.609 0.028 0.422	WD0332-0049	14800.	0.	7.686	0.022	0.454
WD0814+4608 14260. 31. 7.404 0.019 0.363 WD0815+4437 11797. 2. 7.660 0.034 0.437 WD0825+4119 12017. 11. 7.946 0.030 0.573 WD0842+3707 12646. 42. 7.463 0.031 0.374 WD0847+4510 12055. 17. 7.609 0.028 0.422	WD0345-0036	16500.	0.	7.591	0.020	0.429
WD0815+4437 11797. 2. 7.660 0.034 0.437 WD0825+4119 12017. 11. 7.946 0.030 0.573 WD0842+3707 12646. 42. 7.463 0.031 0.374 WD0847+4510 12055. 17. 7.609 0.028 0.422	WD0814+4608	14260.	31.	7.404	0.019	0.363
WD0825+4119 12017. 11. 7.946 0.030 0.573 WD0842+3707 12646. 42. 7.463 0.031 0.374 WD0847+4510 12055. 17. 7.609 0.028 0.422	WD0815+4437	11797.	2.	7.660	0.034	0.437
WD0842+3707 12646. 42. 7.463 0.031 0.374 WD0847+4510 12055. 17. 7.609 0.028 0.422	WD0825+4119	12017.	11.	7.946	0.030	0.573
WD0847+4510 12055. 17. 7.609 0.028 0.422	WD0842+3707	12646.	42.	7.463	0.031	0.374
	WD0847+4510	12055.	17.	7.609	0.028	0.422

Tabela 10.1 (continuação)

Tabela 10.1 (continuação)

Nome	$T_{\rm ef}$	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Mass
WD0853+0005	12534.	23.	7.629	0.026	0.429
WD0906-0024	14069.	49.	7.672	0.020	0.447
WD0923+0120	11061.	21.	7.822	0.000	0.503
WD0939+5609	12238.	28.	7.782	0.032	0.486
WD0942+5733	11407.	4.	7.694	0.029	0.445
WD0949-0000	11098.	24.	7.568	0.022	0.405
WD0958+0130	12050.	34.	7.503	0.004	0.386
WD1015+0306	12492.	27.	7.602	0.026	0.421
WD1015+5954	11494.	35.	7.676	0.026	0.441
WD1056-0006	13158.	11.	7.556	0.025	0.408
WD1122+0358	14800.	0.	7.611	0.023	0.430
WD1125+0345	11721.	27.	7.626	0.029	0.427
WD1157+0553	11258.	48.	7.725	0.018	0.457
WD1345-0055	14803.	2.	7.719	0.018	0.467
WD1345+0328	11477.	23.	7.612	0.024	0.421
WD1354+0108	13318.	19.	7.559	0.027	0.410
WD1417+0058	15126.	31.	7.828	0.025	0.517
WD1443-0006	13001.	0.	7.629	0.026	0.431
WD1443+0134	11200.	0.	8.039	0.026	0.626
WD1502-0001	16342.	57.	7.424	0.017	0.379
WD1503-0052	15960.	9.	7.809	0.020	0.510
WD1617+4324	11681.	55.	7.473	0.021	0.373
WD1700+3549	11200.	0.	7.699	0.026	0.446
WD1711+6541	13626.	17.	8.195	0.032	0.726
WD1720+6350	22884.	71.	7.271	0.008	0.370
WD1724+5835	15671.	31.	7.692	0.020	0.458
WD1726+5331	11291.	39.	7.891	0.031	0.541
WD1732+5905	17882.	34.	8.387	0.027	0.855
WD2350-0054	10904.	41.	7.779	0.023	0.481

11. APÊNDICE B - RESULTADOS 2DF

Neste capítulo apresentamos os resultados de $T_{\rm ef}$ e Massa, obtidos para espectros do 2df apresentados no capítulo 5.

Nome	T _{ef}	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Massa	σ_{Massa}
J000119.1-312449a	10288.	41.	8.027	0.000	0.616	0.000
J000244.5-290337a	10583.	14.	8.158	0.059	0.697	0.013
J000313.1-313500a	11100.	51.	8.354	0.059	0.820	0.025
J000432.2-283102a	10922.	42.	7.955	0.000	0.576	0.000
J000600.5-282808a	18551.	80.	7.953	0.036	0.593	0.013
J000947.2-284047a	10388.	5.	8.040	0.000	0.624	0.000
J001033.7-293017a	6374.	3.	8.500	0.000	0.859	0.000
J001119.6-273846a	18392.	65.	8.017	0.035	0.629	0.000
J001239.1-304350a	10045.	46.	8.121	0.117	0.673	0.000
J001325.7-285647a	17386.	63.	8.625	0.034	0.996	0.000
J001546.8-300605a	10805.	3.	7.759	0.000	0.471	0.000
J001636.5-293930a	10594.	5.	7.984	0.175	0.592	0.000
J001809.1-293058a	22528.	143.	8.982	0.033	1.160	0.000
J001833.0-304040a	16613.	71.	8.269	0.036	0.778	0.054
J001955.4-285858a	10870.	49.	7.778	0.000	0.481	0.089
J002150.4-284755a	10786.	14.	7.960	0.001	0.578	0.000
J002202.1-282959a	11348.	28.	7.903	0.000	0.548	0.000
J002429.6-293339a	24988.	115.	7.958	0.008	0.611	0.016
J002533.6-275517a	11341.	53.	8.956	0.056	1.183	0.008
J002617.5-290306a	11470.	72.	8.912	0.055	1.156	0.068
J002653.8-295506a	19161.	51.	8.299	0.045	0.801	0.037
J002744.6-290754a	10893.	66.	9.090	0.071	1.263	0.023
J002811.1-272802a	11010.	11.	8.300	0.083	0.789	0.048
J003053.1-280336a	10963.	23.	8.053	0.000	0.634	0.059
J003103.8-284044a	16602.	176.	9.031	0.075	1.180	0.027
J003125.9-310841a	10840.	15.	7.838	0.000	0.511	0.000
J003214.1-310244a	10742.	28.	7.741	0.000	0.463	0.035
J003431.4-273047a	10200.	0.	8.583	0.000	0.958	0.015
J003448.5-294908a	13117.	156.	8.746	0.014	1.056	0.080
J003645.8-304821a	32340.	162.	7.977	0.003	0.637	0.051
J003656.1-281919a	11072.	83.	7.666	0.061	0.437	0.097
J003745.5-293049a	11626.	22.	8.058	0.051	0.638	0.062
J003817.5-291824a	32460.	209.	5.752	0.035	0.312	0.000
J003858.8-284517a	11288.	68.	8.158	0.054	0.698	0.074
J004021.9-274917a	10477.	35.	7.800	0.000	0.491	0.000
J004043.0-300915a	27772.	32.	8.565	0.041	0.974	0.010
J004114.1-273417a	10644.	17.	7.616	0.000	0.420	0.000
J004126.3-301232a	13711.	192.	8.524	0.073	0.935	0.095
J004212.8-321137a	11044.	24.	7.826	0.000	0.506	0.000
J004341.0-303323a	10957.	15.	7.827	0.000	0.506	0.000
J004549.8-304554a	6372.	2.	8.936	0.001	1.095	0.093
J004629.2-300106a	25700.	2.	5.248	0.001	0.290	0.000
J004806.6-293918a	10353.	48.	8.936	0.076	1.171	0.034
J004834.0-310606a	18328.	96.	8.726	0.039	1.046	0.000
J005037.9-292245a	10636.	36.	7.929	0.051	0.560	0.061
J005111.2-290940a	11118.	43.	8.020	0.002	0.614	0.022
J005408.6-292822a	30485.	62.	8.387	0.045	0.872	0.053
J005525.7-293915a	11530.	50.	8.149	0.060	0.693	0.012
J005728.4-274304a	10219.	17.	8.231	0.212	0.743	0.000
J005732.1-273815a	12724.	47.	9.630	0.056	1.588	0.098
J005822.2-314821a	11509.	67.	9.631	0.061	1.589	0.041
J005838.8-282425a	10910.	37.	7.838	0.000	0.511	0.000
J005952.5-310435a	10287.	59.	7.622	0.063	0.421	0.082

Tabela 11.1. Tabela $T_{\rm ef}$ e \log g com modelo ML2 $\alpha=0.6$ usando perfil de linha

Nome	T _{ef}	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Massa	σ_{Massa}
J010212.4-311725a	11474.	63.	7.632	0.061	0.428	0.050
J010644.9-282834a	26064.	10.	8.592	0.034	0.988	0.004
J010747.6-283108a	12106.	56.	7.906	0.047	0.551	0.091
J010939.7-281956a	10622.	18.	8.299	0.000	0.787	0.000
J011356.3-312134a	44400.	3.	6.098	0.000	0.352	0.000
J011447.0-273037a	10554.	17.	7.881	0.001	0.533	0.057
J011519.2-285148a	13463.	135.	8.472	0.062	0.891	0.033
J011543.8-280926a	10491.	60.	7.962	0.037	0.579	0.037
J011933.6-300203a	24552.	154.	7.002	0.001	0.287	0.000
J011946.1-313601a	31906.	159.	7.924	0.010	0.609	0.048
J012125.6-271606a	10552.	19.	7.874	0.000	0.529	0.057
J012346.3-311348a	42290.	421.	6.327	0.025	0.346	0.000
J012821.5-311604a	27100.	421.	6.327	0.025	0.295	0.000
J012903.1-283816a	11100.	34.	8.292	0.000	0.784	0.065
J013228.6-301352a	6374.	3.	7.250	0.000	0.270	0.031
J013252.1-283635a	9015.	17.	7.866	0.102	0.520	0.078
J013334.4-282730a	10736.	31.	7.840	0.008	0.512	0.056
J013432.8-303134a	11286.	52.	7.899	0.000	0.546	0.058
J013628.9-315443a	11194.	5.	8.206	0.054	0.729	0.017
J013851.7-274753a	10618.	9.	7.877	0.000	0.531	0.057
J013856.9-282228a	11255.	33.	7.866	0.000	0.527	0.056
J014033.1-282701a	21032.	120.	8.949	0.044	1.145	0.047
J014035.4-290355a	11336.	53.	8.074	0.070	0.647	0.086
J014212.8-274117a	10846.	32.	7.780	0.000	0.481	0.090
J014434.4-275244a	10629.	12.	7.824	0.001	0.503	0.053
J014739.4-305409a	10669.	41.	8.057	0.001	0.635	0.088
J014800.8-304758a	10554.	14.	7.848	0.001	0.516	0.055
J015045.8-311821a	10560.	12.	7.839	0.003	0.511	0.000
J015257.8-293802a	10345.	24.	7.776	0.000	0.478	0.000
J015409.2-304531a	63700.	3.	5.552	0.000	0.460	0.000
J015658.6-303736a	10700.	39.	7.813	0.001	0.498	0.000
J021004.4-294009a	17240.	8.	8.111	0.032	0.681	0.000
J021050.1-293200a	28200.	40.	7.747	0.003	0.515	0.560
J021121.8-284019a	10400.	0.	8.639	0.061	0.991	0.029
J021501.0-283457a	11357.	49.	8.283	0.057	0.778	0.070
J021520.9-292146a	10681.	35.	7.838	0.000	0.510	0.000
J021714.2-290253a	19598.	77.	8.326	0.045	0.818	0.000
J022207.7-281845a	11825.	21.	8.360	0.062	0.824	0.098
J022830.9-285801a	10320.	38.	7.899	0.003	0.543	0.043
J022907.9-290127a	11161.	13.	8.091	0.000	0.657	0.000
J023218.2-294248a	10731.	34.	7.846	0.003	0.515	0.000
J023517.7-284539a	10743.	25.	7.836	0.000	0.510	0.054
J023559.8-284600a	10359.	25.	8.148	0.000	0.690	0.000
J023642.4-284325a	11275.	71.	8.220	0.029	0.738	0.040
J023758.8-284651a	10482.	36.	7.872	0.000	0.528	0.000
J023826.4-282840a	6373.	3.	8.750	0.000	0.994	0.016
J024430.8-285401a	10800.	0.	7.554	0.049	0.399	0.006
J024657.7-280341a	10416.	15.	8.142	0.127	0.687	0.000
J024723.5-280754a	6374.	3.	7.250	0.000	0.270	0.000
J024844.6-295351a	11026.	24.	8.043	0.065	0.627	0.021
J024906.6-290810a	10581.	9.	7.955	0.002	0.575	0.000
J024922.3-305848a	11001.	1.	7.650	0.000	0.432	0.077
J025019.2-313816a	11486.	82.	9.415	0.051	1.459	0.027

Tabela 11.1 (continuação)

Nome	$T_{\rm ef}$	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Massa	σ_{Massa}
J025050.5-303554a	10760.	13.	7.800	0.001	0.492	0.000
J025205.7-314207a	10726.	29.	7.819	0.000	0.501	0.000
J025314.1-281412a	12961.	26.	8.635	0.056	0.989	0.066
J025412.9-284014a	17340.	56.	8.337	0.102	0.822	0.000
J025509.6-300739a	10601.	0.	7.790	0.001	0.486	0.000
J025554.2-301035a	11098.	46.	8.210	0.001	0.731	0.000
J025629.8-295427a	11094.	67.	8.053	0.062	0.634	0.084
J025646.1-315326a	14509.	43.	7.790	0.055	0.497	0.021
J025647.0-314121a	10992.	6.	7.897	0.055	0.544	0.028
J025714.0-303704a	31437.	202.	8.304	0.012	0.824	0.047
J025923.1-280533a	17916.	51.	8.844	0.015	1.095	0.065
J030020.7-284702a	10604.	2.	7.855	0.057	0.519	0.061
J030042.8-315803a	9822.	111.	8.432	0.066	0.867	0.089
J030223.6-294124a	10953.	28.	8.035	0.000	0.623	0.000
J030233.8-304110a	18404.	65.	7.607	0.030	0.438	0.000
J030347.8-314317a	11523.	80.	7.930	0.071	0.563	0.002
J030521.1-321403a	23012.	102.	8.304	0.036	0.810	0.000
J030552.4-313338a	10903.	62.	7.948	0.000	0.572	0.000
J030650.9-301944a	10800.	0.	7.884	0.000	0.536	0.000
J030740.7-300339a	10600.	0.	7.878	0.059	0.532	0.025
J031028.1-292949a	10720.	32.	7.735	0.000	0.460	0.000
J031208.4-283554a	11720.	98.	8.553	0.064	0.940	0.048
J031226.1-283321a	10489.	69.	8.224	0.160	0.739	0.000
J031412.3-300856a	11077.	51.	8.142	0.003	0.688	0.000
J031530.5-295713a	10684.	48.	7.915	0.002	0.552	0.000
J031534.4-281109a	10466.	54.	8.357	0.072	0.822	0.082
J031559.7-293535a	10717.	24.	7.824	0.000	0.503	0.000
J031600.8-275120a	28476.	100.	9.196	0.068	1.242	0.000
J095220.3+005912a	10668.	34.	7.778	0.000	0.480	0.000
J095354.8+012032a	10629.	10.	7.804	0.001	0.493	0.000
J095458.8-002458a	6441.	13.	7.500	0.002	0.355	0.000
J095515.3+004621a	10466.	41.	7.737	0.001	0.460	0.000
J095538.0-024651a	10258.	58.	8.285	0.059	0.777	0.049
J095637.9-001648a	10669.	83.	7.936	0.000	0.564	0.000
J095655.8-025039a	11013.	6.	7.800	0.000	0.492	0.000
J095835.7-013352a	10491.	61.	8.008	0.010	0.605	0.053
J095838.9-023830a	10469.	45.	7.775	0.001	0.478	0.000
J095917.7-001053a	10508.	27.	7.901	0.003	0.544	0.000
J095933.3-000046a	10485.	44.	8.109	0.000	0.666	0.000
J095933.3-000046a	10600.	0.	8.138	0.000	0.685	0.048
J095937.0+001514a	10580.	8.	7.912	0.003	0.551	0.000
J095940.1+003634a	10499.	31.	7.916	0.002	0.553	0.000
J095943.6+002320a	10542.	21.	7.919	0.002	0.554	0.000
J100046.0-015028a	10688.	30.	7.858	0.001	0.521	0.000
J100059.4+005902a	11000.	0.	8.326	0.000	0.803	0.000
J100108.3-010806a	10412.	5.	7.934	0.003	0.563	0.000
J100334.4+002851a	11000.	0.	8.090	0.000	0.656	0.000
J100553.9-004358a	10400.	0.	8.624	0.058	0.982	0.065
J100639.5-011757a	10910.	32.	7.816	0.000	0.500	0.000
J100756.6-014854a	10986.	10.	7.946	0.000	0.571	0.000
J100828.2-000100a	10628.	21.	7.925	0.001	0.558	0.000
J100835.6+013735a	10580.	9.	7.881	0.000	0.533	0.000
J100953.7-002853a	10800.	0.	8.368	0.003	0.828	0.000

Tabela 11.1 (continuação)

Т

Nome	$T_{\rm ef}$	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Massa	σ_{Massa}
J101005.5-011554a	10358.	24.	8.066	0.129	0.640	0.000
J101124.3-005357a	39250.	85.	7.296	0.020	0.410	0.000
J101225.3-003009a	11131.	31.	7.868	0.000	0.528	0.082
J101231.0+003238a	26488.	112.	7.821	0.033	0.545	0.095
J101232.4+015443a	10470.	41.	7.876	0.000	0.530	0.000
J101241.9-020557a	17000.	0.	6.187	0.042	0.257	0.000
J101425.0-002639a	10705.	54.	8.280	0.000	0.775	0.000
J101530.2+000716a	10772.	27.	8.657	0.063	1.003	0.041
J101607.3+002037a	10951.	40.	8.578	0.065	0.955	0.022
J101742.9-004654a	10642.	31.	7.958	0.000	0.576	0.000
J101913.2-014044a	10631.	37.	7.930	0.000	0.561	0.000
J101933.9-024840a	10693.	38.	7.850	0.000	0.517	0.000
J102026.5-024625a	11294.	39.	7.908	0.000	0.550	0.000
J102419.5+004246a	26124.	20.	8.728	0.045	1.049	0.000
J102500.6-022247a	6542.	14.	6.260	0.142	0.196	0.000
J102529.6-002138a	10389.	8.	7.826	0.076	0.503	0.066
J102539.9+002313a	10919.	38.	8.093	0.001	0.658	0.000
J102710.3-014011a	10706.	37.	7.837	0.000	0.510	0.000
J102713.6-002810a	11170.	22.	8.608	0.060	0.973	0.025
J102732.5-005441a	10232.	26.	8.857	0.072	1.123	0.069
J102742.4-011709a	10651.	39.	7.770	0.001	0.476	0.036
J102743.6-002922a	24248.	40.	8.516	0.034	0.941	0.000
J102837.6-014716a	13081.	60.	7.822	0.055	0.509	0.068
J103004.5-010919a	13446.	60.	9.999	0.000	1.810	0.015
J103009.4-025535a	10850.	62.	8.003	0.144	0.603	0.000
J103152.6-010819a	10522.	48.	8.187	0.003	0.715	0.000
J103448.9+005200a	18750.	0.	7.616	0.037	0.444	0.044
J103635.6-000036a	11518.	53.	8.353	0.060	0.819	0.063
J103643.7-025807a	10461.	50.	7.957	0.000	0.576	0.000
J104211.6-020108a	10831.	13.	7.845	0.000	0.515	0.000
J104913.8+000559a	29032.	102.	9.231	0.045	1.252	0.060
J105422.5-024709a	32550.	176.	9.745	0.024	1.349	0.094
J105549.5-010026a	10800.	0.	8.618	0.066	0.979	0.045
J105613.0-025046a	6627.	34.	5.500	0.000	0.196	0.000
J105727.9+002117a	10309.	29.	8.000	0.000	0.600	0.000
J110200.0-004057a	10528.	19.	7.799	0.003	0.490	0.000
J110204.2-004216a	10473.	32.	7.950	0.002	0.572	0.000
J110306.6-000724a	10309.	23.	7.826	0.003	0.503	0.000
J110311.1-022246a	10514.	46.	8.042	0.038	0.625	0.011
J110420.7-024311a	12224.	13.	8.113	0.000	0.673	0.058
J110636.8-001122a	11110.	59.	7.921	0.056	0.557	0.037
J110901.6-023800a	72500.	59.	5.343	0.056	0.441	0.000
J111028.8-003344a	10511.	53.	9.320	0.070	1.402	0.035
J111512.6-013328a	11712.	60.	7.818	0.057	0.503	0.001
J111525.8-012037a	10666.	54.	7.874	0.045	0.530	0.000
J112118.7+005721a	10174.	20.	8.494	0.027	0.904	0.089
J112620.7-024140a	6492.	2.	8.568	0.162	0.896	0.044
J112712.1+001643a	10762.	11.	7.820	0.000	0.502	0.000
J112748.2-002901a	11143.	28.	7.805	0.001	0.495	0.000
J112855.3-011656a	6371.	2.	9.333	0.002	1.309	0.069
J112859.3-024518a	10527.	50.	8.139	0.051	0.685	0.000
J112913.4-012150a	6374.	3.	9.999	0.000	1.669	0.009
J113014.7-000951a	12114.	79.	7.701	0.060	0.449	0.019

Tabela 11.1 (continuação)

Nome	$T_{\rm ef}$	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Massa	σ_{Massa}
J113036.1-005436a	10338.	18.	7.905	0.002	0.546	0.000
J113038.2-021924a	13800.	0.	9.702	0.044	1.344	0.097
J113140.2+003304a	10719.	21.	7.810	0.001	0.496	0.000
J113212.9-003037a	6370.	2.	9.286	0.002	1.284	0.015
J113232.8-021824a	6516.	5.	6.251	0.200	0.195	0.000
J113313.2-013825a	10349.	22.	8.057	0.000	0.634	0.000
J113330.1-021503a	11722.	23.	9.265	0.046	1.369	0.059
J113338.6-004444a	10648.	31.	7.988	0.002	0.594	0.000
J113530.4-011928a	15904.	68.	7.469	0.038	0.392	0.014
J113748.2-002715a	10584.	8.	7.909	0.000	0.549	0.000
J113800.3-001145a	10589.	6.	7.984	0.000	0.591	0.000
J113901.2+000321a	11725.	48.	9.120	0.055	1.281	0.052
J113952.6-021502a	10296.	38.	7.723	0.001	0.454	0.000
J114026.0+001218a	11219.	18.	8.302	0.066	0.789	0.056
J114049.4-025713a	10982.	9.	7.848	0.000	0.517	0.000
J114312.5+000926a	15500.	0.	9.635	0.047	1.335	0.043
J114423.6-002917a	10893.	32.	7.808	0.001	0.496	0.000
J114436.9+010224a	13800.	0.	9.621	0.048	1.333	0.027
J114624.4-002824a	10412.	11.	8.000	0.000	0.600	0.046
J115026.7+003133a	11371.	17.	7.882	0.052	0.536	0.053
J115302.6-024730a	10337.	40.	8.166	0.047	0.702	0.000
J115439.6+000231a	10860.	49.	7.696	0.000	0.445	0.000
J115722.1-012615a	10616.	15.	7.947	0.118	0.570	0.000
J115726.8-012915a	10914.	41.	7.873	0.000	0.530	0.000
J115734.8+004637a	11000.	0.	8.390	0.000	0.842	0.073
J115808.4-012313a	11209.	9.	7.969	0.052	0.584	0.014
J115919.9+003211a	10572.	12.	7.864	0.001	0.524	0.082
J115924.9-011842a	10604.	3.	8.341	0.070	0.812	0.078
J115954.3-020558a	11164.	29.	7.974	0.056	0.587	0.024
J120032.1-002005a	24272.	43.	8.661	0.056	1.020	0.000
J120353.1-023816a	12993.	7.	8.938	0.061	1.171	0.009
J120455.5-015943a	8433.	67.	7.843	0.069	0.506	0.026
J120642.3-024413a	11000.	0.	8.136	0.055	0.684	0.066
J120648.3-003202a	12585.	9.	7.547	0.043	0.403	0.038
J120703.2-022901a	10590.	8.	8.155	0.118	0.695	0.000
J120807.6-020453a	10928.	28.	7.816	0.000	0.500	0.050
J120950.9-012811a	10968.	45.	8.457	0.076	0.882	0.049
J121004.7-013057a	7878.	38.	8.480	0.000	0.896	0.000
J121011.2-005011a	10587.	4.	7.834	0.001	0.508	0.000
J121057.4-003334a	10396.	3.	8.856	0.048	1.122	0.000
J121531.4-020746a	6370.	2.	9.184	0.002	1.229	0.049
J121825.3-013916a	10562.	13.	7.898	0.002	0.543	0.000
J122011.0-014929a	10289.	29.	7.829	0.003	0.504	0.000
J122600.8-020301a	6630.	28.	6.000	0.000	0.196	0.000
J122716.3-013037a	10765.	37.	7.940	0.000	0.567	0.000
J123706.2-001602a	28144.	23.	8.989	0.013	1.166	0.018
J123717.1-003900a	10937.	34.	8.031	0.001	0.620	0.000
J123837.1+001842a	26404.	76.	8.530	0.038	0.952	0.000
J123910.2-010006a	6372.	2.	9.364	0.002	1.326	0.033
J123922.3+005548a	11394.	6.	8.411	0.068	0.854	0.074
J124328.5-014457a	51400.	6.	5.322	0.068	0.370	0.000
J124438.9-022108a	10645.	12.	7.846	0.002	0.515	0.000
J124631.1+010602a	16968.	22.	8.377	0.087	0.847	0.099

Tabela 11.1 (continuação)

Nome	$T_{\rm ef}$	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Massa	σ_{Massa}
J124709.8+005532a	18346.	78.	8.124	0.030	0.691	0.001
J124920.1+001910a	19915.	46.	7.824	0.059	0.527	0.056
J125139.8-010254a	42100.	364.	6.995	0.001	0.345	0.000
J125156.7-015949a	10561.	13.	7.855	0.000	0.519	0.000
J125318.8+000423a	10998.	1.	7.786	0.000	0.485	0.000
J125320.4-014755a	10776.	9.	7.807	0.001	0.495	0.000
J125350.9-000932a	10079.	68.	8.167	0.000	0.702	0.000
J125355.2+001429a	10757.	14.	7.803	0.000	0.493	0.000
J125417.8+003734a	10440.	20.	7.786	0.001	0.483	0.000
J125730.2-001151a	8525.	18.	8.333	0.102	0.808	0.053
J125733.5+000605a	10748.	30.	7.877	0.000	0.532	0.000
J125837.5+003306a	10576.	8.	7.891	0.002	0.539	0.000
J130307.7-004745a	10848.	50.	7.953	0.001	0.575	0.000
J130540.3-020422a	11128.	30.	8.427	0.001	0.864	0.000
J130807.4-010117a	10862.	66.	8.187	0.000	0.716	0.068
J131316.7+002122a	11342.	46.	8.455	0.051	0.881	0.017
J131955.0+015258a	25796.	39.	7.312	0.032	0.371	0.000
J132103.1+015329a	10281.	55.	7.937	0.000	0.564	0.000
J132429.1-003124a	10664.	31.	7.883	0.001	0.535	0.000
J132510.8+001406a	12774.	40.	7.771	0.057	0.482	0.009
J132836.2+000516a	16180.	44.	8.112	0.054	0.680	0.092
J132838.9-001046a	10630.	24.	7.958	0.000	0.576	0.085
J132946.6+004230a	10800.	0.	8.135	0.000	0.683	0.024
J133535.4-024723a	13118.	85.	9.999	0.004	1.810	0.000
J133536.6-024207a	6412.	21.	5.500	0.000	0.195	0.000
J133642.8-003849a	10704.	61.	7.993	0.000	0.597	0.034
J133746.4-000637a	11132.	51.	7.987	0.025	0.595	0.011
J133824.1-021455a	33470.	127.	8.378	0.026	0.871	0.045
J133838.5-000713a	11337.	49.	8.825	0.057	1.103	0.034
J133840.2-023821a	8228.	17.	7.885	0.093	0.528	0.067
J133918.1-025035a	9804.	68.	8.475	0.034	0.893	0.191
J133938.0+010456a	10635.	12.	7.839	0.000	0.511	0.000
J134230.1-015933a	10984.	14.	8.190	0.054	0.718	0.032
J134450.1-021746a	10695.	29.	7.849	0.002	0.517	0.000
J134500.3-012529a	11106.	34.	7.799	0.000	0.492	0.000
J134630.0-014054a	21001.	129.	8.345	0.034	0.832	0.000
J134733.7-011640a	10978.	16.	7.949	0.000	0.572	0.000
J134735.2-003731a	10542.	35.	7.981	0.000	0.590	0.000
J134756.4-021019a	8652.	78.	7.508	0.009	0.371	0.085
J135058.1-011224a	43620.	271.	7.054	0.024	0.363	0.000
J135109.6-014722a	10536.	57.	8.206	0.097	0.728	0.028
J135536.5-021325a	11090.	55.	8.250	0.000	0.757	0.085
J135621.3-012610a	10842.	47.	7.986	0.000	0.593	0.000
J135757.1-002737a	10630.	10.	7.835	0.001	0.509	0.000
J135823.6-020817a	16294.	40.	8.551	0.061	0.954	0.000
J135848.1+010059a	11365.	24.	8.635	0.059	0.989	0.020
J135906.9-024207a	6374.	3.	6.130	0.002	0.195	0.000
J135933.1-013424a	10612.	7.	7.917	0.000	0.554	0.000
J140054.1-012238a	10683.	48.	8.080	0.000	0.649	0.000
J140121.1-022456a	10708.	40.	7.855	0.000	0.519	0.041
J140123.6-000718a	10428.	20.	7.906	0.048	0.547	0.096
J140238.0-011557a	10234.	32.	8.154	0.063	0.694	0.066
J140500.9-023325a	10391.	4.	7.822	0.001	0.501	0.000

Tabela 11.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Massa	σ_{Massa}
J140910.8-020402a	10738.	18.	7.838	0.002	0.511	0.000
J141014.0-014812a	10595.	2.	7.787	0.002	0.484	0.000
J141028.7-020048a	10780.	16.	7.996	0.000	0.599	0.000
J141057.7-020237a	10275.	41.	8.035	0.000	0.621	0.000
J141126.2-025150a	10700.	70.	7.957	0.002	0.576	0.098
J141136.2+000400a	10766.	10.	7.800	0.003	0.491	0.000
J141237.9+002116a	33790.	130.	6.585	0.020	0.316	0.000
J141401.6+003712a	32680.	154.	8.219	0.004	0.775	0.076
J141418.5-022931a	9592.	74.	7.428	0.001	0.347	0.000
J141451.7-013243a	10916.	38.	7.794	0.003	0.489	0.000
J141557.2-020052a	10776.	11.	7.836	0.000	0.510	0.000
J141642.6-022342a	10455.	42.	7.927	0.001	0.559	0.000
J141741.2-014654a	10718.	45.	8.063	0.000	0.639	0.000
J142058.4-025325a	10422.	9.	7.892	0.001	0.539	0.000
J142308.3-024524a	11115.	36.	8.129	0.001	0.680	0.000
J142858.8-025023a	10166.	23.	7.731	0.003	0.457	0.000
J143017.2-024034a	10575.	11.	7.809	0.001	0.496	0.000
J143043.8-022013a	11109.	34.	7.979	0.001	0.590	0.000
J143230.6-012833a	10496.	79.	8.445	0.001	0.875	0.000
J143744.4-020522a	10000.	0.	7.660	0.001	0.432	0.000
J143834.5-004928a	12377.	18.	9.432	0.053	1.469	0.052
J143906.0-005102a	18500.	0.	9.434	0.018	1.301	0.000
J144334.6-015341a	17312.	68.	8.683	0.033	1.025	0.000
J144430.4-022043a	10762.	18.	7.732	0.000	0.459	0.000
J144515.1-022459a	10000.	0.	7.863	0.001	0.522	0.000
J144620.7-022338a	10561.	18.	8.013	0.000	0.608	0.000
J144642.2-013836a	10827.	10.	7.836	0.001	0.510	0.000
J144701.8-010326a	11234.	43.	7.991	0.026	0.597	0.035
J144719.4-013612a	10845.	62.	7.966	0.000	0.582	0.000
J144828.2-010525a	16310.	83.	8.459	0.052	0.897	0.000
J144914.1-004958a	16892.	54.	8.581	0.055	0.971	0.037
J214226.5-304428a	10655.	46.	8.042	0.067	0.626	0.025
J214233.9-285057a	10775.	10.	7.785	0.001	0.484	0.000
J214305.0-320700a	11919.	21.	9.234	0.015	1.350	0.000
J214325.1-280900a	10508.	25.	7.882	0.001	0.534	0.000
J214342.1-282113a	10651.	16.	7.859	0.002	0.522	0.000
J214359.7-292021a	11023.	15.	7.775	0.000	0.479	0.000
J214452.9-294950a	10395.	3.	8.008	0.000	0.605	0.000
J214530.4-311615a	10778.	9.	7.789	0.000	0.486	0.000
J214531.6-294612a	11216.	9.	7.804	0.000	0.495	0.000
J214539.0-300101a	10732.	29.	7.835	0.000	0.509	0.056
J214543.0-281209a	10218.	15.	8.128	0.077	0.678	0.000
J214605.1-291908a	10736.	22.	7.839	0.001	0.511	0.000
J214612.1-312305a	11090.	51.	8.093	0.014	0.658	0.000
J214/06.1-291546a	11393.	5.	7.670	0.049	0.439	0.088
J214837.2-294338a	10394.	3.	7.980	0.000	0.589	0.000
J214935.1-302543a	11293.	46.	7.830	0.001	0.508	0.000
J215049.3-292141a	18886.	61.	8.065	0.035	0.657	0.000
J215153.4-291300a	28872.	107.	8.289	0.009	0.811	0.055
J215229.5-291849a	10957.	30.	8.090	0.071	0.656	0.081
J215350.6-274429a	51230.	509.	9.561	0.039	1.304	0.056
J215409.4-311732a	10451.	59.	8.186	0.001	0.714	0.026
J215532.2-304735a	15790.	41.	8.150	0.069	0.702	0.090

Tabela 11.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{ m ef}}$	$\log g$	$\sigma_{\log g}$	Massa	σ_{Massa}
J215701.5-302346a	10534.	42.	8.065	0.049	0.639	0.066
J220205.0-314243a	10681.	46.	7.718	0.000	0.453	0.000
J220400.6-293033a	32739.	180.	6.873	0.016	0.313	0.000
J220545.7-280251a	11497.	60.	8.093	0.053	0.659	0.062
J220553.3-283601a	11262.	41.	7.823	0.000	0.505	0.000
J220754.2-312628a	10855.	33.	7.753	0.002	0.468	0.000
J220812.2-285208a	10883.	55.	7.816	0.018	0.500	0.000
J220850.6-314851a	10203.	2.	8.022	0.065	0.613	0.084
J221059.7-312651a	10840.	20.	7.783	0.002	0.483	0.000
J221232.7-274751a	10855.	53.	7.916	0.000	0.554	0.000
J221255.9-313352a	11408.	6.	8.346	0.066	0.815	0.087
J221343.3-313158a	17624.	63.	8.556	0.032	0.958	0.000
J221356.7-312402a	10690.	73.	7.948	0.002	0.571	0.060
J221532.8-281252a	11170.	15.	7.943	0.002	0.569	0.000
J221556.0-272648a	11689.	65.	7.862	0.063	0.526	0.022
J221556.5-275300a	10408.	7.	8.262	0.064	0.763	0.024
J221614.8-315058a	10938.	51.	8.022	0.035	0.615	0.028
J221855.7-313253a	39080.	97.	8.003	0.001	0.665	0.061
J222531.1-295144a	17500.	0.	8.100	0.029	0.676	0.023
J223136.1-273949a	6372.	2.	9.286	0.003	1.284	0.005
J223137.6-271621a	10607.	3.	7.912	0.002	0.551	0.000
J223150.7-302806a	10622.	26.	8.215	0.051	0.733	0.072
J223329.5-271447a	11903.	38.	7.868	0.000	0.530	0.000
J223717.9-301038a	11323.	52.	8.508	0.011	0.913	0.055
J223743.9-302936a	10404.	2.	8.053	0.000	0.632	0.030
J223748.6-305907a	11087.	47.	7.822	0.000	0.504	0.000
J223830.5-301610a	11601.	1.	8.505	0.063	0.911	0.011
J223945.4-303006a	18360.	88.	8.383	0.040	0.852	0.000
J223959.4-275631a	10654.	48.	7.925	0.001	0.558	0.000
J224032.6-300128a	19125.	84.	8.241	0.041	0.764	0.000
J224128.6-275239a	10639.	23.	8.033	0.000	0.621	0.000
J224137.0-303350a	11264.	79.	7.693	0.043	0.445	0.018
J224436.9-293919a	25340.	92.	9.924	0.046	1.364	0.000
J224500.3-300424a	10485.	42.	7.900	0.000	0.544	0.000
J224539.3-312242a	13406.	7.	9.999	0.000	1.810	0.032
J224834.3-310306a	17219.	26.	8.395	0.013	0.858	0.085
J225039.0-311436a	11346.	22.	8.611	0.000	0.975	0.062
J225249.4-274041a	6374.	3.	7.250	0.000	0.270	0.046
J225324.7-304620a	10791.	7.	8.345	0.080	0.814	0.066
J225403.9-272116a	10464.	45.	7.899	0.000	0.543	0.000
J225939.1-271820a	10652.	44.	8.296	0.167	0.785	0.000
J225957.0-274448a	10508.	24.	7.763	0.003	0.472	0.000
J230010.0-273314a	55300.	24.	6.546	0.012	0.380	0.000
J230029.1-274423a	10600.	0.	7.885	0.003	0.535	0.000
J230048.8-274440a	6370.	2.	9.397	0.001	1.344	0.046
J230147.8-284550a	11136.	38.	8.250	0.067	0.756	0.000
J230244.0-284211a	10970.	22.	8.180	0.001	0.712	0.000
J230344.1-272714a	11224.	21.	7.928	0.047	0.561	0.022
J230419.0-312745a	15750.	0.	7.119	0.013	0.296	0.062
J230515.5-291302a	10623.	12.	7.832	0.150	0.507	0.000
J230622.9-315302a	10713.	53.	7.975	0.000	0.586	0.000
J230701.6-275339a	10854.	64.	7.668	0.059	0.437	0.013
J230732.9-321123a	10973.	17.	7.750	0.000	0.467	0.002

Tabela 11.1 (continuação)

Nome	T _{ef}	$\sigma_{T_{\rm ef}}$	$\log g$	$\sigma_{\log g}$	Massa	σ_{Massa}
J230919.8-280455a	15500.	0.	9.703	0.047	1.344	0.079
J231013.3-290615a	100000.	0.	6.203	0.047	0.543	0.000
J231050.5-284957a	16799.	55.	8.517	0.064	0.934	0.073
J231112.0-285104a	10620.	13.	7.925	0.000	0.558	0.000
J231631.2-310731a	11276.	56.	8.067	0.002	0.643	0.000
J231633.8-305030a	10987.	6.	8.087	0.000	0.654	0.000
J231720.2-290322a	24564.	109.	8.661	0.023	1.021	0.041
J231758.3-291819a	10314.	56.	9.040	0.041	1.233	0.096
J231804.8-302210a	32130.	186.	7.249	0.000	0.376	0.000
J231836.8-295854a	10598.	1.	7.869	0.000	0.527	0.000
J231845.5-284840a	6394.	19.	8.000	0.002	0.588	0.000
J231955.0-291842a	10844.	59.	7.930	0.058	0.561	0.079
J232006.2-293028a	11033.	33.	7.743	0.015	0.464	0.017
J232008.0-293835a	10569.	18.	7.886	0.006	0.536	0.005
J232355.6-303235a	11220.	13.	8.338	0.057	0.811	0.007
J232500.8-285222a	19584.	48.	9.169	0.062	1.231	0.068
J232545.6-292228a	26688.	141.	7.676	0.017	0.481	0.063
J232554.2-311706a	10956.	31.	8.278	0.036	0.774	0.034
J232645.8-290027a	27824.	30.	7.549	0.033	0.436	0.082
J232831.9-300340a	20515.	165.	9.052	0.003	1.189	0.000
J232931.7-290922a	6374.	3.	6.500	0.000	0.151	0.087
J233032.3-294832a	12812.	12.	8.614	0.065	0.976	0.054
J233231.2-280854a	13788.	61.	8.268	0.081	0.773	0.009
J233246.4-292424a	11165.	24.	8.287	0.045	0.780	0.048
J233258.3-285658a	10440.	22.	7.833	0.004	0.507	0.054
J233414.3-283755a	11185.	12.	7.972	0.000	0.586	0.000
J233416.7-292841a	12984.	19.	8.569	0.055	0.950	0.046
J233435.6-311103a	24724.	145.	7.665	0.017	0.470	0.024
J233747.7-321144a	10700.	40.	7.862	0.000	0.523	0.000
J233803.6-310049a	10290.	50.	8.106	0.000	0.664	0.000
J233847.7-315053a	28088.	19.	7.102	0.048	0.324	0.000
J233915.3-305105a	10667.	63.	7.917	0.000	0.553	0.000
J233923.8-284732a	11182.	8.	8.145	0.000	0.690	0.000
J234025.6-292553a	6528.	10.	6.988	0.014	0.207	0.034
J234046.7-300102a	10832.	18.	7.819	0.008	0.501	0.088
J234257.1-294945a	27184.	95.	8.171	0.020	0.736	0.069
J234318.1-305133a	10625.	10.	7.809	0.000	0.496	0.000
J234401.1-272805a	10752.	34.	7.919	0.000	0.555	0.000
J234417.6-275823a	10487.	32.	7.784	0.002	0.483	0.000
J234615.0-281312a	12200.	0.	6.173	0.006	0.234	0.000
J234634.9-313152a	11287.	80.	8.184	0.054	0.715	0.048
J234708.4-303443a	10655.	45.	8.125	0.060	0.676	0.078
J234725.5-310509a	13400.	0.	9.619	0.058	1.582	0.002
J234748.2-310210a	11109.	76.	8.743	0.012	1.054	0.001
J234806.5-294125a	10446.	33.	9.352	0.066	1.421	0.005
J234846.3-300714a	11162.	23.	8.258	0.015	0.762	0.051
J235055.6-313134a	59500.	23.	7.257	0.015	0.461	0.000
J235252.8-273919a	10731.	25.	7.846	0.001	0.515	0.000
J235258.7-305641a	18794.	25.	8.870	0.049	1.108	0.031
J235300.6-320201a	11425.	22.	8.020	0.000	0.615	0.000
J235313.6-281002a	10670.	29.	7.853	0.000	0.518	0.000
J235620.5-311932a	11007.	6.	7.937	0.001	0.566	0.000
J235644.3-305610a	11121.	56.	7.768	0.023	0.476	0.096

Tabela 11.1 (continuação)

REFERÊNCIAS

[1] ABAZAJIAN, K.; ADELMAN-MCCARTHY, J. K.; AGÜEROS, M. A.; AL-LAM, S. S.; ANDERSON, K. S. J.; ANDERSON, S. F.; ANNIS, J.; BAH-CALL, N. A.; BALDRY, I. K.; BASTIAN, S.; BERLIND, A.; BERNARDI, M.; BLANTON, M. R.; BOCHANSKI, J. J.; BOROSKI, W. N.; BREWING-TON, H. J.; BRIGGS, J. W.; BRINKMANN, J.; BRUNNER, R. J.; BU-DAVÁRI, T.; CAREY, L. N.; CASTANDER, F. J.; CONNOLLY, A. J.; CO-VEY, K. R.; CSABAI, I.; DALCANTON, J. J.; DOI, M.; DONG, F.; EISENS-TEIN, D. J.; EVANS, M. L.; FAN, X.; FINKBEINER, D. P.; FRIEDMAN, S. D.; FRIEMAN, J. A.; FUKUGITA, M.; GILLESPIE, B.; GLAZEBROOK, K.; GRAY, J.; GREBEL, E. K.; GUNN, J. E.; GURBANI, V. K.; HALL, P. B.; HAMABE, M.; HARBECK, D.; HARRIS, F. H.; HARRIS, H. C.; HAR-VANEK, M.; HAWLEY, S. L.; HAYES, J.; HECKMAN, T. M.; HENDRY, J. S.; HENNESSY, G. S.; HINDSLEY, R. B.; HOGAN, C. J.; HOGG, D. W.; HOLMGREN, D. J.; HOLTZMAN, J. A.; ICHIKAWA, S.; ICHIKAWA, T.; IVEZIC, Z.; JESTER, S.; JOHNSTON, D. E.; JORGENSEN, A. M.; JURIC, M.; KENT, S. M.; KLEINMAN, S. J.; KNAPP, G. R.; KNIAZEV, A. Y..; KRON, R. G.; KRZESINSKI, J.; LAMB, D. Q.; LAMPEITL, H.; LEE, B. C.; LIN, H.; LONG, D. C.; LOVEDAY, J.; LUPTON, R. H.; MANNERY, E.; MARGON, B.; MARTÍNEZ-DELGADO, D.; MATSUBARA, T.; MCGEHEE, P. M.; MCKAY, T. A.; MEIKSIN, A.; MÉNARD, B.; MUNN, J. A.; NASH, T.; NEILSEN, E. H.; NEWBERG, H. J.; NEWMAN, P. R.; NICHOL, R. C.; NICINSKI, T.; NIETO-SANTISTEBAN, M.; NITTA, A.; OKAMURA, S.; O'MULLANE, W.; OWEN, R.; PADMANABHAN, N.; PAULS, G.; PE-OPLES, J.; PIER, J. R.; POPE, A. C.; POURBAIX, D.; QUINN, T. R.; RADDICK, M. J.; RICHARDS, G. T.; RICHMOND, M. W.; RIX, H.; ROC-KOSI, C. M.; SCHLEGEL, D. J.; SCHNEIDER, D. P.; SCHROEDER, J.; SCRANTON, R.; SEKIGUCHI, M.; SHELDON, E.; SHIMASAKU, K.; SIL-VESTRI, N. M.; SMITH, J. A.; SMOLCIC, V.; SNEDDEN, S. A.; STEB-BINS, A.; STOUGHTON, C.; STRAUSS, M. A.; SUBBARAO, M.; SZALAY, A. S.; SZAPUDI, I.; SZKODY, P.; SZOKOLY, G. P.; TEGMARK, M.; TEO-DORO, L.; THAKAR, A. R.; TREMONTI, C.; TUCKER, D. L.; UOMOTO, A.; VANDEN B., D. E.; VANDENBERG, J.; VOGELEY, M. S.; VOGES, W.; VOGT, N. P.; WALKOWICZ, L. M.; WANG, S..; WEINBERG, D. H.; WEST, A. A.; WHITE, S. D. M.; WILHITE, B. C.; XU, Y.; YANNY, B.; YASUDA, N.; YIP, C.; YOCUM, D. R.; YORK, D. G.; ZEHAVI, I.; ZI-BETTI, S.; ZUCKER, D. B. The Third Data Release of the Sloan Digital Sky Survey. *Astronomical Journal*, Chicago, v. 129, n. 3, p. 1755-1759, Mar, 2005.

- [2] ABELL, G. O. On the luminosity function of cluster 194. *Astrophysical Journal*, Chicago, v. 140, n. 4, p. 1624-1626, Nov. 1964.
- [3] ABELL, G. O. Properties of some old planetary nebulae. *Astrophysical Journal*, Chicago, v. 144, n. 1, p. 259-279, Apr. 1966.
- [4] ALTHAUS, L. G.; BENVENUTO, O. G. Evolution of DA white dwarfs in the context of a new theory of convection. *Monthly Notices Royal Astronomical Society*, Oxford, v. 296, n. 1, p. 206-216, June 1998.
- [5] ALTHAUS, L. G.; SERENELLI, A. M.; CÓRSICO, A. H.; BENVENUTO, O. G. Evolution of a $3-M_{\odot}$ star from the main sequence to the ZZ Ceti stage: the role played by element diffusion. *Monthly Notices Royal Astronomical Society*, Oxford, v. 330, n. 3, p. 685-698, Mar. 2002.
- [6] ALCOCK, C.; ILLARIONOV, A. The surface chemistry of stars. I. Diffusion of heavy ions in white dwarf envelopes. *Astrophysical Journal*, Chicago, v. 235, n. 1, p. 534-540, Jan. 1980.
- [7] BAILEY, J. The distances of cataclysmic variables. *Monthly Notices Royal Astronomical Society*, Oxford, v. 197, n. 1, p. 31-39, Oct. 1981.
- [8] BAKER, N.; KIPPENHAHN, R. The pulsations of models of δ cephei stars. *Astronomical Journal*, Chicago, v. 66, n. 1, p. 278-279, Mar. 1962.
- [9] BERGERON, P.; McGRAW, J. T. A spectroscopically predicted new ZZ Ceti variable : GD 165. Astrophysical Journal, Chicago, v. 352, n. 2, p. L45-L48, Apr. 1990.
- [10] BERGERON, P.; WESEMAEL, F.; FONTAINE, G.; LIEBERT, J. On the surface composition of cool, hidrogen-line white dwarfs: discovery of helium in the atmospheres of cool DA stars and evidence for convective mixing. *Astrophysical Journal*, Chicago, v. 351, n. 1, p. L21-L24, Mar. 1990.
- [11] BERGERON, P.; WESEMAEL, F.; FONTAINE, G. Synthetic spectra and atmospheric properties of cool DA white dwarfs. *Astrophysical Journal*, Chicago, v. 367, n. 1, p. 253-269, Jan. 1991.

- [12] BERGERON, P.; SAFFER, R. A.; LIEBERT, J. A spectroscopic determination of the mass distribution of DA white dwarfs. *Astrophysical Journal*, Chicago, v. 394, n. 1, p. 228-247, July 1992.
- [13] BERGERON, P.; WESEMAEL, F.; FONTAINE, G. On the influence of the convective efficiency on the determination of the atmospheric parameters of DA white dwarfs. *Astrophysical Journal*, Chicago, v. 387, n. 1, p. 288-293, Mar. 1992.
- [14] BERGERON, P.; LIEBERT, J.; FULBRIGHT, M. S. Masses of DA white dwarfs with gravitational redshift determinations. *Astrophysical Journal*, Chicago, v. 444, n. 2, p. 810-817, May 1995.
- [15] BERGEGON, P.; WESEMAEL, F.; LAMONTAGNE, R.; FONTAINE, G.; SAFFER, R. A.; ALLARD, N. F. Optical and ultraviolet analysis of ZZ Ceti stars and study of the atmospheric convective efficiency in DA white dwarfs. *Astrophysical Journal*, Chicago, v. 449, n. 1, p. 258-279, Aug. 1995.
- [16] BERGEGON, P.; LEGGETT, S. K.; RUIZ, M. T. Photometric a spectroscopic analysis of cool white dwarfs with trigonometric parallax measurements. *Astrophysical Journal*, Chicago, v. 133, n. 2, p. 413-449, Apr. 2001.
- [17] BERGERON, P.; FONTAINE, G.; BILLÈRES, M.; BOUDREAULT, S.; GREEN, E. M. On the purity of the ZZ ceti instability strip: discovery of more pulsating DA white dwarfs on the basis of optical spectroscopy. *Astrophysical Journal* Chicago, v. 600, n. 1, p. 404-408, Jan. 2004.
- [18] BERGERON, P.; GIANNINAS, A.; BOUDREAULT, S. The mass distribution of white dwarfs: An unwavering obsession. In: European Workshop on White Dwarfs, 15, 2006, Leicester, United Kingdom. Proceedings of the conference ... San Francisco: Astronomical Society of the Pacific, 2007. p. 571-573. (ASP conference series, v. 372).
- [19] BIERMANN, P.; SCHMIDT, G. D.; LIEBERT, J.; TAPIA, S.; STRITT-MATTER, P. A.; WEST, S.; STOCKMAN, H. S.; KUEHR, H.; LAMB, D. Q. The new eclipsing magnetic binary system E 1114 + 182. Astrophysical Journal, Chicago, v. 293, n. 1, p. 303-320, June 1985.
- [20] BRAGAGLIA, A.; RENZINI, A.; BERGERON, P. Temperatures, gravities and masses for a sample of bright DA white dwarfs and the initial-to-final mass relation. *Astrophysical Journal*, Chicago, v. 443, n. 2, p. 735-752, Apr. 1995.

- [21] BRASSARD, P.; PELLETIER, C.; FONTAINE, G.; WESEMAEL, F. Adiabatic properties of pulsating DA white dwarfs. III. A finite-element code for solving nonradial pulsation equations. *Astrophysical Journal Supplement Series*, Chicago, v. 80, n. 2, p. 725-752, June 1992.
- [22] BRASSARD, P.; FONTAINE, G.; WESEMAEL, F. The modeling of energy distributions and light curves of ZZ Ceti stars. I. Basic theory and semianalytic expressions for the emergent flux. *Astrophysical Journal Supplement Series*, Chicago, v. 96. n. 2, p. 545-580, Feb. 1995.
- [23] BRADLEY, P. A.; WINGET, D. E. Hot or not? Theorical blue edges for DA and DB white dwarfs models. *Astrophysical Journal*, Chicago, v. 421, n. 1, p. 236-244, Jan. 1994.
- [24] BUES, I. The atmospheres of He-rich white dwarfs of spectral type DB. *Astronomy and Astrophysics*, Berlin, v. 7, n. 1, p. 91-108, July 1970.
- [25] BUES, I. Carbon abundance in the atmospheres of hydrogen-poor white dwarfs. Astronomy and Astrophysics, Berlin, v. 28, n. 2, p. 181-195, July 1973.
- [26] CANUTO, V. M.; GOLDMAN, I.; MAZZITELLI, I. Stellar turbulent convection: A self-consistent model. Astrophysical Journal, Chicago, v. 473, n. 2, p. 550-559, Dec. 1996.
- [27] CASTANHEIRA, B. G.; KEPLER, S. O.; MULLALLY, F.; WINGET, D. E.; KOESTER, D.; VOSS, B.; KLEINMAN, S. J.; NITTA, A.; EISENSTEIN, D. J.; NAPIWOTZKI, R.; REIMERS, D. Discovery of eleven new ZZ Ceti stars. Astronomy and Astrophysics, Berlin, v. 450, n. 1, p. 227-231, May 2006.
- [28] CASTANHEIRA, B. G.; KEPLER, S. O.; COSTA, A. F. M.; GIOVANNINI, O.; ROBINSON, E. L.; WINGET, D. E.; KLEINMAN, S. J.; NITTA, A.; EISENSTEIN, D.; KOESTER, D.; SANTOS, M. G. Towards a pure ZZ Ceti instability strip. Astronomy and Astrophysics, Berlin, v. 462, n. 3, p. 989-993, Feb. 2007.
- [29] CASTANHEIRA, B. G.; KEPLER, S. O.; COSTA, A. F. M.; GIOVANNINI, O.; ROBINSON, E. L.; WINGET, D. E.; NITTA, A.; KOESTER, D.; SAN-TOS, M. G. Testing the Purity of the ZZ Ceti Instability Strip In: European Workshop on White Dwarfs, 15, 2006, Leicester, United Kingdom. Proceedings of the conference ... San Francisco: Astronomical Society of the Pacific, 2007. p. 571-573. (ASP conference series, v. 372).

- [30] CASTANHEIRA, B. G.; KEPLER, S. O. Seismological studies of ZZ Ceti stars. I. The model grid and the application to individual stars. *Monthly Notices of the Royal Astronomical Society*, Oxford, v. 677, n. 1, p. L35-L38, Apr. 2008.
- [31] CHANDRASEKHAR, S. Introduction to the study of stellar structure. Chicago: Dover, 1939.
- [32] CHANDRASEKHAR, S. The dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity. *Astrophysical Journal*, Chicago, v. 140, n. 1, p. 417-433, Aug. 1964.
- [33] COX, J. P.; GUILI, R. T. *Principles of stellar structure* New York: Gordon and Breach, 1968.
- [34] COSTA, J. E. S.; KEPLER, S. O.; WINGET, D. E.; O'BRIEN, M. S.; KAWALER, S. D.; COSTA, A. F. M.; GIOVANNINI, O.; KANAAN, A.; MUKADAM, A. S.; MULLALLY, F.; NITTA, A.; PROVENÇAL, J. L.; SHIP-MAN, H.; WOOD, M. A.; AHRENS, T. J.; GRAUER, A.; KILIC, M.; BRADLEY, P. A.; SEKIGUCHI, K.; CROWE, R.; JIANG, X. J.; SULLI-VAN, D.; SULLIVAN, T.; ROSEN, R.; CLEMENS, J. C.; JANULIS, R.; O'DONOGHUE, D.; OGLOZA, W.; BARAN, A.; SILVOTTI, R.; MARI-NONI, S.; VAUCLAIR, G.; DOLEZ, N.; CHEVRETON, M.; DREIZLER, S.; SCHUH, S.; DEETJEN, J.; NAGEL, T.; SOLHEIM, J.-E.; GONZALEZ PEREZ, J. M.; ULLA, A.; BARSTOW, M.; BURLEIGH, M.; GOOD, S.; METCALFE, T. S.; KIM, S.-L.; LEE, H.; SERGEEV, A.; AKAN, M. C.; ÇAKIRLI, Ö.; PAPARO, M.; VIRAGHALMY, G.; ASHOKA, B. N.; HAN-DLER, G.; HÜRKAL, Ö.; JOHANNESSEN, F.; KLEINMAN, S. J.; KALY-TIS, R.; KRZESINSKI, J.; KLUMPE, E.; LARRISON, J.; LAWRENCE, T.; MEIŚTAS, E.; MARTINEZ, P.; NATHER, R. E.; FU, J.-N.; PAKŚTIENE, E.; ROSEN, R.; ROMERO-COLMENERO, E.; RIDDLE, R.; SEETHA, S.; SILVESTRI, N. M.; VUĆKOVIĆ, M.; WARNER, B.; ZOLA, S.; ALTHAUS, L. G.; CÓRSICO, A. H.; MONTGOMERY, M. H. The pulsation modes of the pre-white dwarf PG 1159-035. Astronomy and Astrophysics, Berlin, v. 477, n. 2, p. 627-640, Jan. 2008.
- [35] DAOU, D.; WESEMAEL, F.; BERGERON, P.; FONTAINE, G.; HOL-BERG, J. B. Spectroscopic studies and atmospheric parameters of pulsating DA white dwarf (ZZ Ceti) stars. *Astrophysical Journal*, Chicago, v. 364, n. 1, p. 242-250, Nov. 1990.
- [36] D'ANTONA, F.; MAZZITELLI, I. The progenitor masses and the lumino-

sity function of white dwarfs. *Astronomy and Astrophysics*, Berlin, v. 66, n. 3, p. 453-461, Aug. 1978.

- [37] D'ANTONA, F.; MAZZITELLI, I. White dwarf external layers. *Astronomy and Astrophysics*, Berlin, v. 27, n. 2, p. 161-171, June 1979.
- [38] D'ANTONA, F.; MAZZITELLI, I. Cooling of white dwarfs. *Annual Review of Astronomy and Astrophysics*, Palo Alto, v. 28, p. 139-181, 1990.
- [39] DÄPPER, W.; ANDERSON, L. S.; MIHALAS, B. W. Statistical mechanics of partially ionized stellar plasmas: the Planck-Larkin partition function, polarization shifts, and simulations of optical spectra. *Astrophysical Journal.*, Chicago, v. 319, n. 1, p. 195-206, Aug. 1987.
- [40] DOLEZ, N.; VAUCLAIR, G.; CHEVRETON, M. Identification of gravity modes in the newly discovered ZZ Ceti variable GD 66. Astronomy and Astrophysics, Berlin, v. 121, n. 2, p. L23-L26, May 1983.
- [41] DRILLING, J. S.; SCHÖNBERNER, D. The HR diagram of O-type subdwarfs. In: MAEDER, A.; RENZINI, A. (Eds.). Observational tests of the stellar evolution theory. Geneva: Kluwer Academic Publishers, 1984. p. 219-222. (International Astronomical Union Symposium, 105)
- [42] EGGEN, O. J.; GREENSTEIN, J. L. Spectra, colors, luminosities, and montions of the white dwarfs. *Astrophysical Journal*, Chicago, v. 141, n. 1 p. 83-108, Jan. 1965.
- [43] EGGEN, O. J. The colors and luminosities of white dwarfs. *Publications Astronomical Society of the Pacific*, San Francisco, v. 97, n. 3, p. 1029-1049, Nov. 1985.
- [44] EISENSTEIN, D. J.; ANNIS, J.; GUNN, J. E.; SZALAY, A. S.; CONNOLLY, A. J.; NICHOL, R. C.; BAHCALL, N. A.; BERNARDI, M.; BURLES, S.; CASTANDER, F. J.; FUKUGITA, M.; HOGG, D. W.; IVEZIC, Z.; KNAPP, G. R.; LUPTON, R. H.; NARAYANAN, V.; POSTMAN, M.; REICHART, D. E.; RICHMOND, M.; SCHNEIDER, D. P.; SCHLEGEL, D. J.; STRAUSS, M. A.; SUBBARAO, M.; TUCKER, D. L.; VANDEN, B. D.; VOGELEY, M. S.; WEINBERG, D. H.; YANNY, B. Spectroscopic target selection for the Sloan digital sky survey: The luminous red Galaxy sample. Astronomical Journal v. 122, n. 5, p. 2267-2280, Nov. 2001.
- [45] EISENSTEIN, D. J.; LIEBERT, J.; HARRIS, H. C.; KLEINMAN, S. J.; NITTA, A.; SILVESTRI, N.; ANDERSON, S. A.; BARENTINE, J. C.; BREWINGTON, H. J.; BRINKMANN, J.; HARVANEK, M.; KRZESINSKI,

J.; NEILSEN, E. H.,; LONG, D.; SCHNEIDER, D. P.; SNEDDEN, S. A. A Catalog of Spectroscopically Confirmed White Dwarfs from the Sloan Digital Sky Survey Data Release 4. *Astrophysical Journal Supplement Series*, Chicago, 167, n. 1, p. 40-58, Nov. 2006.

- [46] FINLEY, D.; KOESTER, D.; BASRI, G. The temperature scale and mass distribution of hot DA white dwarfs. *Astrophysical Journal*, Chicago, v. 488, n. 1, p. 375-396, Oct. 1997.
- [47] FONTAINE, G.; MICHAUD, G. Diffusion time scales in white dwarfs. *Astrophysical Journal*, Chicago, v. 231, n. 3, p. 826-840, Aug. 1979.
- [48] FONTAINE, G.; LACOMBE, P.; McGRAW, J. T.; PATTERSON, J.; VAU-CLAIR, G.; COLEMAN, L. GD 385 : a new ZZ Ceti variable. Astrophysical Journal, Chicago, v. 239, n. 1, p. 898-904, Aug. 1980.
- [49] FONTAINE, G.; LACOMBE, P.; McGRAW, J. T.; DEARBORN, D. S. P.; GUSTAFSON, J. On the statistics of ZZ Ceti stars. Astrophysical Journal, v. 258, n. 1, p. 651-660, July 1982.
- [50] FONTAINE, G.; WESEMAEL, F G238-53 : a new pulsating DA white dwarf. Astronomical Journal, Woodbury, v. 89, n. 5, p. 1728-1731, Nov. 1984.
- [51] FONTAINE, G.; BERGERON, P.; LACOMBE, R.; TALON, A. Strömgren photometry of ZZ Ceti and other DA white dwarfs. *The Astronomical Journal*, Woodbury, v. 90, n. 6, p. 1094-1103, June 1985.
- [52] FONTAINE, G.; WESEMAEL, F. Successes and challenges of the theory of white dwarf spectral evolution. In: MICHAUD, G.; TUTUKOV, A. (Eds). *Evolution of stars*: the photospheric abundance connection. Dordrecht: Kluwer Academic Publishers, 1991. p. 421-434. (International Astronomical Union Symposium, 145).
- [53] FUKUGITA, M.; ICHIKAWA, T.; GUNN, J. E.; DOI, M.; SHIMASAKU, K.; SCHNEIDER, D. P The Sloan Digital Sky Survey Photometric System. *Astronomical Journal*, Chicago, v. 111, n. 4, p. 1748-1749, Apr. 1996.
- [54] GARCIA-BERRO, E.; HERNANZ, M.; ISERN, J.; CHABRIER, G.; SE-GRATAIN, L.; MOCHKOVITCH, R. A simple method to compute white dwarf luminosity functions. *Astronomy and Astrophysics Supplement Series*, Berlin, v. 117, n. 1, p. 13-18, May 1996.

- [55] GATEWOOD, G. D.; GATEWOOD, C. V. A study of Sirus. Astrophysical Journal, Chicago, v. 225, n. 1, p. 191-197, Oct. 1978.
- [56] GIANNINAS, A.; BERGERON, P.; FONTAINE, G. Towards an empirical determination of the ZZ Ceti instability strip. *Astrophysical Journal*, Chicago, v. 631, n. 2, p. 1100-1112, Oct. 2005.
- [57] GIANNINAS, A.; BERGERON, P.; FONTAINE, G. A progress report on the empirical determination of the ZZ Ceti instability strip. In: European Workshop on White Dwarfs, 15, 2006, Leicester, United Kingdom. Proceedings of the conference ... San Francisco: Astronomical Society of the Pacific, 2007. p. 577-581. (ASP conference series, v. 372).
- [58] GIOVANNINI JUNIOR, O. Distribuição de massa, cristalização e variabilidade das estrelas anãs brancas DA. 1996. 119 f. Tese (Doutorado em Ciências) - Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, 1996.
- [59] GIOVANNINI, O.; KEPLER S. O.; KANAAN, A.; WOOD, M. A.; CLA-VER, C. F.; KOESTER, D. Blue edge of ZZ Ceti instability strip versus mass. *Baltic Astronomy*, Vilnius, v. 7, n. 1/2, p. 131-140, Mar. 1998.
- [60] GOLDREICH, P.; WU, Y. Gravity Modes in ZZ Ceti Stars. III. Effects of Turbulent Dissipation. Astrophysical Journal, Chicago, v. 532, n. 2, p. 805-811, Oct. 1999.
- [61] GREEN, R. F. The luminosity function of hot white dwarfs. *Astrophysical Journal*, Chicago, v. 238, n. 2, p. 685-698, June 1980.
- [62] GREEN, R. F.; SCHMIDT, M.; LIEBERT, J. The Palomar-Green catalog of ultraviolet-excess stellar objects. *Astrophysical Journal Supplement Series*, Chicago, v. 61, n. 1, p. 305-352, June 1986.
- [63] GREENSTEIN, J. L. *Stellar atmospheres*. Chicago: University of Chicago Press, 1960.
- [64] GREENSTEIN, J. L. Temperature as a unique predictor of ZZ Ceti variability. *Astrophysical Journal*, Chicago, v. 258, n. 1, p. 661-667, July 1982.
- [65] GUNN, J. E.; CARR, M.; ROCKOSI, C.; SEKIGUCHI, M.; BERRY, K.; ELMS, B.; DE HAAS, E.; IVEZI¿, ¿ .; KNAPP, G.; LUPTON, R.; PAULS, G.; SIMCOE, R.; HIRSCH, R.; SANFORD, D.; WANG, S.; YORK, D.; HARRIS, F.; ANNIS, J.; BARTOZEK, L.; BOROSKI, W.; BAKKEN, J.; HALDEMAN, M.; KENT, S.; HOLM, S.; HOLMGREN, D.; PETRAVICK,

D.; PROSAPIO, A.; RECHENMACHER, R.; DOI, M.; FUKUGITA, M.; SHI-MASAKU, K.; OKADA, N.; HULL, C.; SIEGMUND, W.; MANNERY, E.; BLOUKE, M.; HEIDTMAN, D.; SCHNEIDER, D.; LUCINIO, R.; BRINK-MAN, J. The Sloan digital sky survey photometric camera. *Astronomical Journal*, Chicago, v. 116, n. 6, p. 3040-3081, Dec. 1998.

- [66] GUNN, J. E.; SIEGMUND, W. A.; MANNERY, E. J.; OWEN, R. E.; HULL, C. L.; LEGER, R. F.; CAREY, L. N.; KNAPP, G. R.; YORK, D. G.; BO-ROSKI, W. N.; KENT, S. M.; LUPTON, R. H.; ROCKOSI, C. M.; EVANS, M. L.; WADDELL, P.; ANDERSON, J. E.; ANNIS, J.; BARENTINE, J. C.; BARTOSZEK, L. M.; BASTIAN, S.; BRACKER, S. B.; BREWINGTON, H. J.; BRIEGEL, C. I.; BRINKMANN, J.; BROWN, Y. J.; CARR, M. A.; CZARAPATA, P. C.; DRENNAN, C. C.; DOMBECK, T.; FEDERWITZ, G. R.; GILLESPIE, B. A.; GONZALES, C.; HANSEN, S. U.; HARVANEK, M.; HAYES, J.; JORDAN, W.; KINNEY, E.; KLAENE, M.; KLEINMAN, S. J.; KRON, R. G.; KRESINSKI, J.; LEE, G.; LIMMONGKOL, S.; LIN-DENMEYER, C. W.; LONG, D. C.; LOOMIS, C. L.; MCGEHEE, P. M.; MANTSCH, P. M.; NEILSEN, E. H., JR.; NESWOLD, R. M.; NEWMAN, P. R.; NITTA, A.; PEOPLES, J.; PIER, J. R.; PRIETO, P. S.; PROSAPIO, A.; RIVETTA, C.; SCHNEIDER, D. P.; SNEDDEN, S.; WANG, S. The 2.5 m telescope of the Sloan digital sky survey. Astronomical Journal, Chicago, v. 131, n. 4, p. 2332-2359, Apr. 2006.
- [67] HAGEN, H.-J.; GROOTE, D.; ENGELS, D.; REIMERS, D. The Hamburg Quasar Survey. I. Schmidt observations and plate digitization. Astronomy and Astrophysics Supplement, Berlin, v. 111, n. 1, p. 195-203, May 1995.
- [68] HAMADA, T.; SALPETER, E. E. Models for zero-temperature stars. *Astrophysical Journal*, Chicago, v. 134, n. 3, p. 683-698, Nov. 1961.
- [69] HANSEN, C. J.; KAWALER, S. D. *Stellar interiors*. Berlin: Springer-Verlag, 1994.
- [70] HARMAN, R. J.; SEATON, M. J. The central stars of planetary nebulae. *Astrophysical Journal*, Chicago, v. 140, n. 2, p. 824-827, Aug. 1964.
- [71] HARRIS, H. C.; HANSEN, B. M. S.; LIEBERT, J.; VANDEN B., DANIEL E.; ANDERSON, S. F.; KNAPP, G. R.; FAN, X.; MARGON, B.; MUNN, J. A.; NICHOL, R. C.; PIER, J. R.; SCHNEIDER, D. P.; SMITH, J. A.; WINGET, D. E.; YORK, D. G.; ANDERSON, J. E., JR.; BRINKMANN, J.; BURLES, S.; CHEN, B.; CONNOLLY, A. J.; CSABAI, I.; FRIEMAN, J. A.; GUNN, J. E.; HENNESSY, G. S.; HINDSLEY, R. B.; IVEZIC, Z.; KENT, S.; LAMB, D. Q.; LUPTON, R. H.; NEWBERG, H. J.; SCHLEGEL, D. J.;

SMEE, S.; STRAUSS, M. A.; THAKAR, A. R.; UOMOTO, A.; YANNY, B. A new very cool white dwarf discovered by the Sloan digital sky survey. *Astrophysical Journal*, Chicago, v. 549, n. 1, p. L109-L113, Mar. 2001.

- [72] HARRIS, H. C.; MUNN, J. A.; KILIC, M.; LIEBERT, J.; WILLIAMS, K. A.; HIPPEL, T. V.; LEVINE, S. E.; MONET, D. G.; EISENSTEIN, D. J.; KLEINMAN, S. J.; METCALFE, T. S.; NITTA, A.; WINGET, D. E.; BRINKMANN, J.; FUKUGITA, M.; KNAPP, G. R.; LUPTON, R. H.; SMITH, J. A.; SCHNEIDER D. P. The white dwarf luminosity function from SDSS imaging data. *Astronomical Journal*, New York, v. 131, n. 1, p. 571-581, Jan. 2005.
- [73] HEINTZ, W. D. Astrometric study of four visual binaries. Astronomical Journal, New York, v. 79, n. 7, p. 819-825, July 1974.
- [74] HERNANZ, M.; GARCIA-BERRO, E.; ISERN, J.; MOCHKOVITCH, R.; SEGRETAIN, L.; CHABRIER, G. The influence of crystallization on the luminosity function of white dwarfs. *Astrophysical Journal*, Chicago, v. 434, n. 2, p. 652-661, Oct. 1994.
- [75] HESSER, J. E.; OSTRIKER, J. P.; LAWRENCE, G. M. Ultrashort-period stellar oscillations. III. Power-spectrum analysis of photometric observations of white dwarfs. *Astrophysical Journal*, Chicago, v. 155, n. 1, p. 919-933, Mar. 1969.
- [76] HESSER, J. E.; LASKER, B. M.; NEUPERT, H. E. High-frequency stellar oscillations. XI. The ZZ Ceti star BPM 30551. Astrophysical Journal, Chicago, v. 209, n. 3, p. 853-857, Nov. 1976.
- [77] HOMEIER, D.; KOESTER, D.; HAGEN, H.-J.; JORDAN, S.; HEBER, U.; ENGELS, D.; REIMERS, D.; DREIZLER, S. An analysis of DA white dwarfs from the Hamburg Quasar Survey. Astronomy and Astrophysics, Berlin, v. 338, n. 2, p. 563-575, Oct. 1998.
- [78] HUMMER, D. G.; MIHALAS, D. The equation of state for stellar envelopes. I. An occupation probability formalism for the truncation of internal partition functions. *Astrophysical Journal*, Chicago, v. 331, n. 2, p. 794-814, Aug. 1988.
- [79] IBEN JUNIOR, I. Low mass asymptotic giant branch evolution. I. Astrophysical Journal, Chicago, v. 260, n. 1, p. 821-837, Sep. 1982.

- [80] IBEN Junior, I.; MacDONALD, J. The effects of diffusion due to gravity and due to composition gradients on the rate of hydrogen burning in a cooling degenerate dwarf. I. The case of a thick helium buffer layer. *Astrophysical Journal*, Chicago, v. 296, n. 2, p. 540-553, Sept. 1985.
- [81] IBEN Junior, I.; TUTUKOV, A. V. Evolutionary scenarios for intermediate-mass stars in close binaries. *Astrophysical Journal*, Chicago, v. 313, n. 2, p. 727-742, Feb. 1987.
- [82] IGLESIAS, C. A.; ROGERS, F. J. Radiative opacities for carbon- and oxygen-rich mixtures. *Astrophysical Journal*, Chicago, v. 412, n. 2, p. 752-760, Aug. 1993.
- [83] ITOH, N.; MITAKE, S.; IYETOMI, H.; ICHIMARU, S. Electrical and thermal conductivities of dense matter in the liquid metal phase. I - Hightemperature results. *Astrophysical Journal*, Chicago, v. 237, n. 1, p. 774-782, Oct. 1983.
- [84] ITOH, N.; MATSUMOTO, N.; SEKI, M.; KOHYAMA, Y. Neutrino-pair bremsstrahlung in dense stars. II - Crystalline lattice case. Astrophysical Journal, Chicago, v. 279, n. 2, p. 413-418, Apr. 1984.
- [85] JORDAN, S.; KOESTER, D.; VAUCLAIR, G.; DOLEZ, N.; HEBER, U.; HAGEN, H.-J.; REIMERS, D.; CHEVRETON, M.; DREIZLER, S. HS0507+0434: a double DA degenerate with a ZZ Ceti component. Astronomy and Astrophysics, Berlin, v. 330, n. 1, p. 277-284, Feb. 1998.
- [86] KALIRAI, J. S.; BERGERON, P.; HANSEN, B. M. S.; KELSON, D. D.; REITZEL, D. B.; RICH, R. M.; RICHER, H. B. Stellar evolution in NGC 6791: Mass loss on the red giant branch and the formation of low-mass white dwarfs. *Astrophysical Journal*, Chicago, v. 671, n. 1, p. 748-760, Dec. 2007.
- [87] KANAAN, A. Anãs brancas pulsantes. 1990. 91 f. Dissertação (Mestrado em Física) - Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, 1990.
- [88] KANAAN, A.; KEPLER, S. O.; GIOVANNINI, O.; DIAZ, M. The discovery of a new DAV star using IUE temperature determination. *Astrophysical Journal*, Chicago, v. 390, n. 2, p. L89-L91, May 1992.
- [89] KANAAN, A.; NITTA, A.; WINGET, D. E.; KEPLER, S. O.; MONTGO-MERY, M. H.; METCALFE, T. S.; OLIVEIRA, H.; FRAGA, L.; DA COSTA, A. F. M.; COSTA, J. E. S.; CASTANHEIRA, B. G.; GIOVANNINI, O.; NATHER, R. E.; MUKADAM, A.; KAWALER, S. D.; O'BRIEN, M. S.;

REED, M. D.; KLEINMAN, S. J.; PROVENCAL, J. L.; WATSON, T. K.; KILKENNY, D.; SULLIVAN, D. J.; SULLIVAN, T.; SHOBBROOK, B.; JI-ANG, X. J.; ASHOKA, B. N.; SEETHA, S.; LEIBOWITZ, E.; IBBETSON, P.; MENDELSON, H.; MEISTAS, E. G.; KALYTIS, R.; ALISAUSKAS, D.; O'DONOGHUE, D.; BUCKLEY, D.; MARTINEZ, P.; VAN WYK, F.; STO-BIE, R.; MARANG, F.; VAN ZYL, L.; OGLOZA, W.; KRZESINSKI, J.; ZOLA, S.; MOSKALIK, P.; BREGER, M.; STANKOV, A.; SILVOTTI, R.; PICCIONI, A.; VAUCLAIR, G.; DOLEZ, N.; CHEVRETON, M.; DEET-JEN, J.; DREIZLER, S.; SCHUH, S.; GONZALEZ P. J. M.; ØSTENSEN, R.; ULLA, A.; MANTEIGA, M.; SUAREZ, O.; BURLEIGH, M. R.; BARSTOW, M. A. Whole earth telescope observations of BPM 37093: a seismological test of crystallization theory in white dwarfs. *Astronomy and Astrophysics*, Berlin, v. 432, n. 1, p. 219-224, Mar. 2005.

- [90] KAWALER, S. D. The hydrogen shell game : pulsational instabilities in hydrogen shell-burning planetary nebula nuclei. *Astrophysical Journal*, Chicago, v. 334, n. 1, p. 220-228, Nov. 1988.
- [91] KEPLER, S. O. Light and line profile variations due to r-mode pulsations with an application to the ZZ Ceti star G117-B15A. *Astrophysical Journal*, Chicago, v. 286, n. 1, p. 314-327, Nov. 1984.
- [92] KEPLER, S. O.; WINGET, D. E.; NATHER, R. E.; BRADLEY, P. A.; GRAUER, A. D.; FONTAINE, G.; BERGERON, P.; VAUCLAUIR, G.; CLAVER, C. F.; MARAR, T. M. K.; SEETHA, S.; ASHOKA, B. N.; MA-ZEH, T.; LEIBOWITZ, E.; DOLEZ, N.; CHEVRETON, M.; BARSTOW, M. A.; CLEMENS, J. C.; KLEINMAN, S. J.; SANSOM, A. E.; TWEEDY, R. W.; KANAAN, A.; HINE, B. P.; PROVENCAL, J. L.; WESEMAEL, F.; WOOD, M. A.; BRASSARD, P.; SOLHEIM, J. E.; EMANUELSEN, P. A detection of the evolutionary time scale of the DA white dwarf G117 - B15A with the whole earth telescope. *The Astronomical Journal*, Chicago, v. 378, n. 1, p. 45-48, Sept. 1991.
- [93] KEPLER, S. O.; GIOVANNINI, O.; COSTA, A. F. M.; WINGET, D. E.; NATHER, R. E.; KANAAN, A.; KLEINMAN, S. J.; MARAR, T. M. K.; ASHOKA, B. N.; MAHRA, H. S.; SOLHEIM, J.-E.; EMANUELSEN, P.-I.; OLSEN, O.; MEISTAS, E. G.; TERESHCHENKO, V.; KARDAPOLOV, V.; RSPAEV, F.; SULLIVAN, D. J.; WICKRAMASINGHE, D. T.; BESSELL, M. S.; WU, K.; O'DONOGHUE, D.; BUCKLEY, D. A.; WARNER, B.; HASWELL, C.; BAPTISTA, R.; NEILL, D.; BIRCH, P. Multi-site observations of the DAV white dwarf R 548. *Baltic Astronomy*, Vilnius, v. 4, n. 1, p. 238-244, Jan. 1995.

- [94] KEPLER, S. O.; NELAN, E. P. IEU temperatures for white dwarfs in and arround the ZZ Ceti instability strip. *The Astronomical Journal*, New York, v. 105, n. 2, p. 608-613, Feb. 1993.
- [95] KEPLER, S. O.; BRADLEY, P. A. Structure and evoluction of white dwarfs. *Baltic Astronomy*, Vilnius, v. 4, n. 2/4, p. 166-220, Sept. 1995.
- [96] KEPLER, S. O.; SARAIVA, M. F. O. Fundamentos de astronomia e astrofísica Porto Alegre: Instituto de Física - UFRGS, 1999.
- [97] KEPLER, S. O.; NATHER, R. E.; WINGET, D. E.; NITTA, A.; KLEINMAN, S. J.; METCALFE, T.; SEKIGUCHI, K.; XIAOJUN, JIANG; SULLIVAN, D.; SULLIVAN, T.; JANULIS, R.; MEISTAS, E.; KALYTIS, R.; KRZESINSKI, J.; OGOZA, W.; ZOLA, S.; O'DONOGHUE, D.; ROMERO-COLMENERO, E.; MARTINEZ, P.; DREIZLER, S.; DEETJEN, J.; NAGEL, T.; SCHUH, S. L.; VAUCLAIR, G.; NING, FU JIAN; CHEVRETON, M.; SOLHEIM, J.-E.; GONZALEZ PEREZ, J. M.; JOHANNESSEN, F.; KANAAN, A.; COSTA, J. E.; COSTA, A. F. M.; WOOD, M. A.; SILVESTRI, N.; AHRENS, T. J.; JONES, A. K.; COLLINS, A. E.; BOYER, M.; SHAW, J. S.; MUKADAM, A.; KLUMPE, E. W.; LARRISON, J.; KAWALER, S.; RIDDLE, R.; ULLA, A.; BRADLEY, P. The everchanging pulsating white dwarf GD358. Astronomy and Astrophysics, Berlin, v. 401, n. 1, p. 639-654, May 2003.
- [98] KEPLER, S. O.; CASTANHEIRA, B. G.; SARAIVA, M. F. O.; NITTA, A.; KLEINMAN, S. J.; MULLALLY, F.; WINGET, D. E.; EISENSTEIN, D. J. Discovery of fourteen new ZZ Cetis with SOAR. Astronomy and Astrophysics, Berlin, v. 442, n. 2, p. 629-634, Nov. 2005.
- [99] KEPLER, S. O.; CASTANHEIRA, B. G.; COSTA, A. F. M.; KOESTER, D. Gemini spectra of 12000 K white dwarf stars. *Monthly Notices of the Royal Astronomical Society*, Oxford, v. 372, n. 4, p. 1799-1803, Nov. 2006.
- [100] KEPLER, S. O.; KLEINMAN, S. J.; NITTA, A.; KOESTER, D.; CAS-TANHEIRA, B. G.; GIOVANNINI, O.; COSTA, A. F. M.; ALTHAUS, L. White dwarf mass distribution in the SDSS. *Monthly Notices of the Royal Astronomical Society*, Oxford, v. 375, n. 4, p. 1315-1324, Mar. 2007.
- [101] KIDDER, K. M.; HOLBERG, J. B.; BARSTOW, M. A.; TWEEDY, R. W.; WESEMAEL, F. The coolest DA white dwarfs detected at soft X-ray wavelengths. *Astrophysical Journal*, Chicago, v. 394, n. 1, p. 288-297, July 1992.

- [102] KILIC, M.; PRIETO, C. A.; BROWN, W. R.; KOESTER, D. The lowest mass white dwarfs. *Astrophysical Journal*, Chicago, v. 660, n. 2, p. 1451-1461, May, 2007.
- [103] KLEINMAN, S. J.; HARRIS, H. C.; EISENSTEIN, D. J.; LIEBERT, J.; NITTA, A.; KRZESICSKI, J.; MUNN, J. A.; DAHN, C. C.; HAWLEY, S. L.; PIER, J. R.; SCHMIDT, G.; SILVESTRI, N. M.; SMITH, J. A.; SZKODY, P.; STRAUSS, M. A.; KNAPP, G. R.; COLLINGE, M. J.; MUKADAM, A. S.; KOESTER, D.; UOMOTO, A.; SCHLEGEL, D. J.; ANDERSON, S. F.; BRINKMANN, J.; LAMB, D. Q.; SCHNEIDER, D. P.; YORK, D. G. A Catalog of spectroscopically identified white dwarf stars in the first data release of the Sloan Digital Sky Survey. *Astrophysical Journal*, Chicago, v. 607, n. 1, p. 426-444, May 2004.
- [104] KOESTER, D. Outer envelopes and cooling of white dwarfs. *Astronomy and Astrophysics*, Berlin, v. 16, n. 3, p. 459-470, Feb. 1972.
- [105] KOESTER, D. Convective mixing and accretion in white dwarfs. *Astronomy and Astrophysics*, Berlin, v. 52, n. 3, p. 415-425, Nov. 1976.
- [106] KOESTER, D.; SCHULZ, H.; WEIDEMANN, V. Atmospheric parameters and mass distribution of DA white dwarfs. *Astronomy and Astrophysics*, Berlin, v. 76, n. 3, p. 262-275, July 1979.
- [107] KOESTER, D.; WEIDEMANN, V. White dwarf constraints on mass loss rates and models of galactic evolution. *Astronomy and Astrophysics*, Berlin, v. 81, n. 1, p. 145-151, Jan. 1980.
- [108] KOESTER, D. White dwarfs: recent developments. *Astronomy and Astrophysics Review*, Berlin, v. 11, n. 1, p. 33-66, June 2002.
- [109] KRZESINSKI, J.; NITTA, A.; KLEINMAN, S. J.; HARRIS, H. C.; LIE-BERT, J.; SCHMIDT, G.; LAMB, D. Q.; BRINKMANN, J. Fifteen DO, PG 1159 and related white dwarf stars in the SDSS, including two DO stars with ultra-high excitation ion lines. *Astronomy and Astrophysics*, Berlin, v. 417, n. 3, p. 1093-1099, Apr. 2004.
- [110] LAJOIE, C. P.; BERGERON, P. A comparative study of optical and ultraviolet effective temperature for white dwarfs from the IUE archive. Astrophysical Journal, Chicago, v. 667, n. 2, 1126-1138, Oct. 2007.
- [111] LANDOLT, A. U. A new short-period blue variable. *Astrophysical Journal*, Chicago, v. 153, n. 1, p. 151-164, July 1968.

- [112] LASKER, B. M.; HESSER, J. E. High-frequency stellar oscillations.VI. R548, a periodically variable white dwarf. *Astrophysical Journal*, Chicago, v. 163, n. 1, p. L89-L93, Fev. 1971.
- [113] LEWIS, I.; BALOGH, M.; DE PROPRIS, R.; COUCH, W.; BOWER, R.; OFFER, A.; BLAND-HAWTHORN, J.; BALDRY, I. K.; BAUGH, C.; BRID-GES, T.; CANNON, R.; COLE, S.; COLLESS, M.; COLLINS, C.; CROSS, N.; DALTON, G.; DRIVER, S. P.; EFSTATHIOU, G.; ELLIS, R. S.; FRENK, C. S.; GLAZEBROOK, K.; HAWKINS, E.; JACKSON, C.; LAHAV, O.; LUMSDEN, S.; MADDOX, S.; MADGWICK, D.; NORBERG, P.; PEACOCK, J. A.; PERCIVAL, W.; PETERSON, B. A.; SUTHERLAND, W.; TAYLOR, K. The 2dF Galaxy redshift survey: the environmental dependence of galaxy star formation rates near clusters. *Monthly Notices of the Royal Astronomical Society*, Oxford, v. 334, n. 3, p. 673-683, Aug. 2002.
- [114] LIEBERT, J.; WEHRSE, R. The hydrogen-rich, cool DA white dwarf Ross 627. Astronomy and Astrophysics, Berlin, v. 122, n. 1, p. 297-300, Nov. 1983.
- [115] LIEBERT, J.; DAHN, C. C.; MONET, D. G. The luminosity function of white dwarfs. *Astrophysical Journal*, Chicago, v. 332, n. 2, p. 891-909, Sept. 1988.
- [116] LIEBERT, J.; HARRIS, H. C.; DAHN, C. C.; SCHMIDT, G. D.; KLEIN-MAN, S. J.; NITTA, A.; KRZESINSKI, J.; EISENSTEIN, D.; SMITH, J. A.; SZKODY, P.; HAWLEY, S.; ANDERSON, S. F.; BRINKMANN, J.; COL-LINGE, M. J.; FAN, X.; HALL, P. B.; KNAPP, G. R.; LAMB, D. Q.; MARGON, B.; SCHNEIDER, D. P.; SILVESTRI, N. SDSS white dwarfs with spectra showing atomic Oxygen and/or Carbon lines. *Astronomical Journal*, Chicago, v. 126, n. 5 p. 2521-2528, Nov. 2003.
- [117] LIEBERT, J.; BERGERON, P.; EISENSTEIN, D.; HARRIS, H. C.; KLEIN-MAN, S. J.; NITTA, A.; KRZESINSKI, J. A Helium White Dwarf of Extremely Low Mass. *Astrophysical Journal*, Chicago, v. 606, n. 2, p. L147-L149, May 2004.
- [118] LIEBERT, J.; BERGERON, P.; HOLBERG, J. B. The formation rate and mass and luminosity functions of DA white dwarfs from the Palomar Green survey. *Astrophysical Journal Supplement Series*, Chicago, v. 156, n. 1, p. 47-68, Jan. 2005.
- [119] McCOOK, G. P.; SION, E. M. A catalog of spectroscopically identified white dwarfs. Astrophysical Journal Supplement Series, Chicago, v. 65, n. 4, p. 603-671, Dec. 1987.

- [120] McGRAW, J. T.; ROBINSON, E. L. G 29-38 and G 38-29: two new largeamplitude variable white dwarfs. *Astrophysical Journal*, Chicago, v. 220, n. 1, p. L89-L93, Sept. 1975. pt. 2.
- [121] McGRAW, J. T.; ROBINSON, E. L. High-speed photometry of luminosity-variable DA dwarfs: R808, GD 99, and G 117-B15A. Astrophysical Journal, Chicago, v. 205, n. 1, p. L155-L158, May 1976. pt. 2
- [122] McGRAW, J. T. BPM 31594: a new southern-hemisphere variable white dwarf. Astrophysical Journal, Chicago, v. 210, n. 1, p. L35-L38, Nov. 1976. pt. 2
- [123] McGRAW, J. T. The ZZ Ceti stars: A new class of pulsating white dwarfs.1977. 257 f. Ph.D. Thesis, Texas University, Austin, 1977.
- [124] McGRAW, J. T. Southern hemisphere ZZ Ceti stars: the new variable L19-2 and BPM 30551. Astrophysical Journal, Chicago, v. 214, n. 1, p. L213-L126, June 1977.
- [125] McGRAW, J. T. The physical properties of the ZZ Ceti stars and their pulsations. *Astrophysical Journal*, Chicago, v. 229, n. 1, p. 203-211, Apr. 1979.
- [126] McGRAW, J. T.; FONTAINE, G.; LACOMBE, P.; DEARBORN, D. S. P.; GUSTAFSON, J.; STARRFIELD, S. G. Two new variable white dwarfs : G185-32 and G191-16. Astrophysical Journal, Chicago, v. 250, n. 1, p. 349-354, Nov. 1981.
- [127] McMAHAN, R. K. Spectroscopy of the DA white dwarfs automatic atmospheric parameterization and mass distribution. *Astrophysical Journal*, Chicago, v. 336, n. 1, p. 409-420, Jan. 1989.
- [128] MARSH, C. M.; BARSTOW, M. A.; BUCKLEY, D. A.; BURLEIGH, M. R.; HOLBERG, J. B.; KOESTER, D.; O'DONOGHUE, D.; PENNY, A. J.; SANSOM A. E. An EUV-selected sample of DA white dwarfs from the ROSAT all-sky survey. I. Optically derived stellar parameters. *Monthly Notices of the Royal Astronomical Society*, Oxford, v. 286, n. 2, p. 369-383, Apr. 1997.
- [129] MESTEL, L. On the theory of white dwarf stars. I. The energy sources of white dwarfs. *Monthly Notices of the Royal Astronomical Society*, Oxford, v. 112, n. 3, p. 583-597, May 1952.

- [130] MESTEL, L.; RUDERMAN, M. A. The energy content of a white dwarf and its rate of cooling. *Monthly Notices of the Royal Astronomical Society*, Oxford, v. 136, n. 1, p. 27-38, Nov. 1967.
- [131] MIHALAS, D. Stellar atmospheres. San Francisco: Freedman, 1978.
- [132] MUKADAM, A. S.; KEPLER, S. O.; WINGET, D. E.; BERGERON, P. A new ZZ Ceti white dwarf pulsator: G30-20. Astrophysical Journal, Chicago, v. 580, n. 1, p. 429-433, Oct. 2002.
- [133] MUKADAM, A. S.; MULLALLY, F.; NATHER, R. E.; WINGET, D. E.; VON HIPPEL, T.; KLEINMAN, S. J.; NITTA, A.; KRZESICSKI, J.; KE-PLER, S. O.; KANAAN, A.; KOESTER, D.; SULLIVAN, D. J.; HOMEIER, D.; THOMPSON, S. E.; REAVES, D.; COTTER, C.; SLAUGHTER, D.; BRINKMANN, J. Thirty-five new pulsating DA white dwarf stars. Astrophysical Journal, Chicago, v. 607, n. 2, p. 982-998, June 2004.
- [134] MUKADAM, A. S.; WINGET, D. E.; VON HIPPEL, T.; MONTGOMERY, M. H.; KEPLER, S. O.; COSTA, A. F. M. Redefining the empirical ZZ Ceti instability strip. *Astrophysical Journal*, Chicago, v. 612, n. 2, p. 1052-1059, Sept. 2004.
- [135] MULLALLY, F.; THOMPSON, S. E.; CASTANHEIRA, B. G.; WINGET, D. E.; KEPLER, S. O.; EISENSTEIN, D. J.; KLEINMAN, S. J.; NITTA, A. Eleven new DAVs from the Sloan Survey. *Astrophysical Journal*, Chicago, v. 625, n. 2, p. 966-972, June 2005.
- [136] NAPIWOTZKI, R.; GREEN, P. J.; SAFFER, R. A. A comparative study of the mass distribution of extreme-ultraviolet-selected white dwarfs. *Astrophysical Journal*, Chicago, v. 517 n. 1, p. 399-415, May 1999.
- [137] NATHER, R. E. High-speed photometry. *Vistas in Astronomy*, Berlin, v. 15, n. 1, p. 91-104, Fev. 1973.
- [138] NATHER, R. E.; WINGET, D. E.; CLEMENS, J. C.; HANSEN, C. J.; HINE, B. P. The whole earth telescope - A new astronomical instrument. *Astrophysical Journal*, Chicago, v. 361, n. 1, p. 309-317, Sept. 1990.
- [139] NITTA, A.; KLEINMAN, S. J.; KRZESINSKI, J.; MUKADAM, A. S.; MULLALLY, F.; NATHER, R. E.; SULLIVAN, D. J.; THOMPSON, S. E.; WINGET, D. E.; WOOD, M. A. New DBVs from the SDSS. In: European Workshop on White Dwarfs, 14, 2004, Kiel, Germany. Proceedings of the conference ... San Francisco: Astronomical Society of the Pacific, 2005, p.585-588. (ASP Conference Series, v. 334).

- [140] O'DELL, C. R. The evolution of the central stars of planetary nebulae. *Astrophysical Journal*, Chicago, v. 138, n. 1, p. 67-78, July 1963.
- [141] OLSON, E. C. The calibration of uby photometry. *Publications of the Astronomical Society of the Pacific*, San Francisco, v. 86, n. 509, p. 80-89, Feb. 1974.
- [142] ORTIZ, R.; MALACARNE, M.; WILHELM, R.; COSTA, R. D. D.; ROSSI, S.; MACIEL, W. J.; COSTA, A. F. M. A Survey of Early-Type Stars Based on the Two Micron All Sky Survey Database. *Astronomical Journal*, Chicago, v. 134, n. 3, p. 1183-1194, Sept. 2007
- [143] RICHARDS, G. T.; FAN, X.; NEWBERG, H. J.; STRAUSS, M. A.; VAN-DEN BERK, D. E.; SCHNEIDER, D. P.; YANNY, B.; BOUCHER, A.; BUR-LES, S.; FRIEMAN, J. A.; GUNN, J. E.; HALL, P. B.; IVEZIC, Z.; KENT, S.; LOVEDAY, J.; LUPTON, R. H.; ROCKOSI, C. M.; SCHLEGEL, D. J.; STOUGHTON, C.; SUBBARAO, M.; YORK, D. G. Spectroscopic target selection in the Sloan digital sky survey: The Quasar sample. *Astronomical Journal*, Chicago, v. 123, n. 6, p. 2945-2975, June 2002.
- [144] RICHER, H. B.; ULRYCH, T. J. High-frequency optical variables. II. Luminosity-variable white dwarfs and maximum entropy spectral analysis. *Astrophysical Journal*, Chicago, v. 192, n. 3, p. 719-730, Sept. 1974.
- [145] ROBINSON, E. L.; McGRAW, J. T. Observations of variable white dwarfs: one new variable and 35 nonvariables. *Astrophysical Journal*, Chicago, v. 207, n. 1, p. L37-L40, July 1976. pt. 2
- [146] ROBINSON, E. L.; STOVER, R. J.; NATHER, R. E.; McGRAW, J. T. A new pulsating white dwarf : GD 154. Astrophysical Journal, Chicago, v. 220, n. 1, p. 614-618, Mar. 1978.
- [147] ROBINSON, E. L.; NATHER, R. E Quasi-periodic luminosity variations in dwarf novae. Astrophysical Journal Supplement Series, Chicago, v. 39, n. 2, p. 461-480, Apr. 1979.
- [148] ROBINSON, E. L.; KEPLER, S. O.; NATHER, R. E. Multicolor variations of the ZZ Ceti stars. *Astrophysical Journal*, Chicago, v. 259, n. 1, p. 219-231, Mar. 1982.
- [149] SANDAGE, A.; LUYTEN, W. J. On the nature of faint blue objects in high galactic latitudes. I. Photometry, proper motions, and spectra in PHL field 1:36+6° and Richter field M3. *Astrophysical Journal*, Chicago, v. 148, n. 3, p. 767-779, June 1967.
- [150] SILVOTTI, R.; VOSS, B.; BRUNI, I.; KOESTER, D.; REIMERS, D.; NA-PIWOTZKI, R.; HOMEIER, D. Two new ZZ Ceti pulsators from the HS and HE surveys. Astronomy and Astrophysics, Berlin, v. 441, n. 1, p. 195-199, Nov. 2005.
- [151] SION, E. M.; GREENSTEIN J. L.; LANDSTREET J. D.; LIEBERT, J.; SHIPMAN, H. L; WEGNER, G. A. A proposed new white dwarf spectral classification system. *Astrophysical Journal*, Chicago, v. 269, n. 1, p. 253-257, June 1983.
- [152] SION, E. M. Implications of the absolute magnitude distribution functions of DA and non-DA white dwarfs. *Astrophysical Journal*, Chicago, v. 282, n. 2, p. 612-614, July 1984.
- [153] SCHOENBERNER, D. Asymptotic giant branch evolution with steady mass loss. Astronomy and Astrophysics, Berlin, v. 79, n. 1, p. 108-114, Oct. 1979.
- [154] SCHMIDT, M. Space distribution and luminosity functions of quasistellar radio sources. *Astrophysical Journal*, Chicago, v. 151, n. 2, p. 393-409, Feb. 1968.
- [155] SCHMIDT, M. The mass of the galactic halo derived from the luminosity function of high-velocity stars. *Astrophysical Journal*, Chicago, v. 202, n. 1, p. 22-29, Nov. 1975.
- [156] SCHMIDT, G. D.; HARRIS, H. C.; LIEBERT, J.; EISENSTEIN, D. J.; ANDERSON, S. F.; BRINKMANN, J.; HALL, P. B.; HARVANEK, M.; HAWLEY, S.; KLEINMAN, S. J.; KNAPP, G. R.; KRZESINSKI, J.; LAMB, D. Q.; LONG, D.; MUNN, J. A.; NEILSEN, E. H.; NEWMAN, P. R.; NITTA, A.; SCHLEGEL, D. J.; SCHNEIDER, D. P.; SILVESTRI, N. M.; SMITH, J. A.; SNEDDEN, S. A.; SZKODY, P.; VANDEN B., D. Magnetic White Dwarfs from the Sloan Digital Sky Survey: The First Data Release. Astrophysical Journal, Chicago, v. 595, n. 1, p. 1101-1113, Oct. 2003.
- [157] SCHULZ, H.; WEIDEMANN, V. The calibration of white dwarf photometry. *Astronomy and Astrophysics*, Berlin, v. 68, n. 1, p. 75-78, Oct. 1978.
- [158] SHIPMANN, H. L.; LIEBERT, J.; GREEN, R. F. The DBA white dwarf stars in the Palomar-Green sample. *Astrophysical Journal*, Chicago, v. 315, n. 1, p. 239-250, Apr. 1987.

- [159] SILVESTRI, N. M.; HAWLEY, S. L.; OSWALT, T. D. The chromospheric activity and ages of M Dwarf stars in wide binary systems. *Astronomical Journal*, Chicago, v. 129, n. 5, p. 2428-2450, May 2005.
- [160] STOBIE, R. S.; CHEN, A.; O'DONOGHUE, D.; KILKENNY, D. A new large-amplitude variable white dwarf. *Monthly Notices Royal Astronomical Society*, Oxford, v. 263, n. 1, p. L13-L15, July 1993.
- [161] STOBIE, R. S.; KILKENNY, D.; O'DONOGHUE, D. The Edinburgh-Cape blue object Survey. Astrophysics and Space Science, Dordrecht, v. 230, n. 1-2, p. 101-115, Oct. 1995.
- [162] STOBIE, R. S.; KILKENNY, D.; O'DONOGHUE, D.; CHEN, A.; KOEN, C.; MORGAN, D. H.; BARROW, J.; BUCKLEY, D. A. H.; CANNON, R. D.; CASS, C. J. P.; CRANSTON, M. R.; DRINKWATER, M.; HARTLEY, M.; HAWKINS, M. R. S.; HUGHES, S.; HUMPHRIES, C. M.; MacGILLI-VRAY, H. T.; MCKENZIE, P. B.; PARKER, Q. A.; READ, M.; RUSSELL, K. S.; SAVAGE, A.; THOMSON, E. B.; TRITTON, S. B.; WALDRON, J. D.; WARNER, B.; WATSON, F. G. The Edinburgh-Cape blue object Survey I. Description of the survey. *Monthly Notices of the Royal Astronomical Society*, Oxford, v. 287, n. 4, p. 848-866, June 1997.
- [163] STOBIE, R. S.; O'DONOGHUE, D.; ASHLEY, R.; KOEN, C.; CHEN, A.; KILKENNY, D. Asteroseismology of new pulsating white dwarfs. *Monthly Notices Royal Astronomical Society*, Oxford, v. 272, n. 3, p. L21-L24, Feb. 1995.
- [164] STRITTMATTER, P. A.; WICKRAMASINGHE, D. T. The atmospheres of white dwarfs. III. The line spectra. *Monthly Notices of the Royal Astronomical Society*, Oxford, v. 152, n. 1, p. 47-73, Jan. 1971.
- [165] STRAUSS, M. A.; WEINBERG, D. H.; LUPTON, R. H.; NARAYANAN, V. K.; ANNIS, J.; BERNARDI, M.; BLANTON, M.; BURLES, S.; CONNOLLY, A. J.; DALCANTON, J.; DOI, M.; EISENSTEIN, D.; FRIEMAN, J. A.; FUKUGITA, M.; GUNN, J. E.; IVEZIC, Z.; KENT, S.; KIM, R. S. J.; KNAPP, G. R.; KRON, R. G.; MUNN, J. A.; NEWBERG, H. J.; NICHOL, R. C.; OKAMURA, S.; QUINN, T. R.; RICHMOND, M. W.; SCHLEGEL, D. J.; SHIMASAKU, K.; SUBBARAO, M.; SZALAY, A. S.; VANDEN, B. D.; VOGELEY, M. S.; YANNY, B.; YASUDA, N.; YORK, D. G.; ZEHAVI, I. Spectroscopic target selection in the Sloan digital sky survey: The main Galaxy sample. *Astronomical Journal*, Chicago, v. 124, n. 3, p. 1810-1824, Sept. 2002.

- [166] SZKODY, P.; ANDERSON, S. F.; AGÜEROS, M.; COVARRUBIAS, R.; BENTZ, M.; HAWLEY, S.; MARGON, B.; VOGES, W.; HENDEN, A.; KNAPP, G. R.; VANDEN B., DANIEL E.; REST, A.; MIKNAITIS, G.; MAGNIER, E.; BRINKMANN, J.; CSABAI, I.; HARVANEK, M.; HINDS-LEY, R.; HENNESSY, G.; IVEZIC, Z.; KLEINMAN, S. J.; LAMB, D. Q.; LONG, D.; NEWMAN, P. R.; NEILSEN, E. H.; NICHOL, R. C.; NITTA, A.; SCHNEIDER, D. P.; SNEDDEN, S. A.; YORK, D. G. Cataclysmic variables from The Sloan digital sky survey. I. The first results. *Astronomical Journal*, Chicago, v. 123, n. 1, p. 430-442, Jan. 2002.
- [167] SZKODY, P.; ANDERSON, S. F.; SCHMIDT, G.; HALL, P. B.; MARGON, B.; MICELI, A.; SUBBARAO, M.; FRITH, J.; HARRIS, H.; HAWLEY, S.; LAWTON, B.; COVARRUBIAS, R.; COVEY, K.; FAN, X.; MURPHY, T.; NARAYANAN, V.; RAYMOND, S.; REST, A.; STRAUSS, M. A.; STUBBS, C.; TURNER, E.; VOGES, W.; BAUER, A.; BRINKMANN, J.; KNAPP, G. R.; SCHNEIDER, D. P. Two rare magnetic cataclysmic variables with extreme cyclotron features identified in the Sloan digital sky survey. *Astrophysical Journal*, Chicago, v. 583, n. 2, p. 902-906, Feb. 2003.
- [168] SZKODY, P.; HENDEN, A.; FRASER, O.; SILVESTRI, N.; BOCHANSKI, J.; WOLFE, M. A.; AGÜEROS, M.; WARNER, B.; WOUDT, P; TAM-POSCH, J.; HOMER, L.; SCHMIDT, G.; KNAPP, G. R.; ANDERSON, S. F.; COVEY, K.; HARRIS, H.; HAWLEY, S.; SCHNEIDER, D. P.; VOGES, W.; BRINKMANN, J. Cataclysmic variables from the Sloan digital sky survey. III. The third year. *Astronomical Journal*, Chicago, v. 128, n. 4, p. 1882-1893, Oct. 2004.
- [169] SZKODY, P.; HENDEN, A.; FRASER, O. J.; SILVESTRI, N. M.; SCH-MIDT, G. D.; BOCHANSKI, J. J.; WOLFE, M. A.; AGÜEROS, M.; AN-DERSON, S. F.; MANNIKKO, L.; DOWNES, R. A.; SCHNEIDER, D. P.; BRINKMANN, J. Cataclysmic variables from Sloan digital sky survey. IV. The fourth year. *Astronomical Journal*, Chicago, v. 129, n. 5, p. 2386-2399, May 2005.
- [170] TASSOUL, M.; FONTAINE, G.; WINGET, D. E. Evolutionary models for pulsation studies of white dwarfs. *Astrophysical Journal Supplement Series*, Chicago, v. 72, n. 2, p. 335-386, Feb. 1990.
- [171] VANLANDINGHAM, K. M.; SCHMIDT, G. D.; EISENSTEIN, D. J.; HAR-RIS, H. C.; ANDERSON, S. F.; HALL, P. B.; LIEBERT, J.; SCHNEIDER, D. P.; SILVESTRI, N. M.; STINSON, G. S.; WOLFE, M. A. Magnetic White Dwarfs from the SDSS. II. The Second and Third Data Releases. *Astronomical Journal*, Chicago, v. 130, n. 2, p. 734-741, Aug. 2005.

- [172] VAUCLAIR, G.; REISSE, C. Elements separation and mixing processes in the envelopes of white dwarfs. *Astronomy and Astrophysics*, Berlin, v. 61, n. 3, p. 415-425, Nov. 1977.
- [173] VAUCLAIR, G.; VAUCLAIR, S.; GREENSTEIN, J. The chemical evolution of white dwarf atmospheres: diffusion and accretion. *Astronomy and Astrophysics*, Berlin, v. 80, n. 1, p. 79-96, Nov. 1979.
- [174] VAUCLAIR, G.; DOLEZ, N.; CHEVRETON, M. G255-2 A new ZZ Ceti variable star. Astronomy and Astrophysics, Berlin, v. 103, n. 1, p. L17-L19, Nov. 1981.
- [175] VAUCLAIR, G.; DOLEZ, N.; CHEVRETON, M. A new pulsating DA white dwarf: PG 2303 + 243. Astronomy and Astrophysics, Berlin, v. 175, n. 1/2, Mar. 1987.
- [176] VAUCLAIR, G.; BELMONTE, J. A.; PFEIFFER, B.; GRAUER, A. D.; JI-MENEZ, A.; CHEVRETON, M.; DOLEZ, N.; VIDAL, I.; HERPE, G. The pulsating DA white dwarf PG2303+243 revisited. *Astronomy and Astrophysics*, Berlin, v. 264, n. 2, p. 547-556, Oct. 1992.
- [177] VAUCLAIR, G.; DOLEZ, N.; FU, J. N.; CHEVRETON, M. New ZZ Ceti variables from the KISO survey. Astronomy and Astrophysics, Berlin, v. 322, n. 1, p. 155-158, June, 1997.
- [178] VAUCLAIR, G.; DOLEZ, N.; FU, J.-N.; HOMEIER, D.; ROQUES, S.; CHEVRETON, M.; KOESTER, D. PG1541+650: a new ZZ Ceti white dwarf. Astronomy and Astrophysics, Berlin, v. 355, n. 1, p. 291-294, Mar. 2000.
- [179] VOSS, B.; KOESTER, D.; ØSTENSEN, R.; KEPLER, S. O.; NAPIWOTZKI, R.; HOMEIER, D.; REIMERS, D. Discovery of seven ZZ Ceti stars using a new photometric selection method. *Astronomy and Astrophysics*, Berlin, v. 450, n. 3, p. 1061-1070, May 2006.
- [180] VENNES, S.; THEJLL, P. A.; GALVAN, R. G.; DUPUIS, J. Hot white dwarfs in the extreme ultraviolet explorer survey. II. Mass distribution, space density, and population age. *Astrophysical Journal*, Chicago, v. 480, n. 2, p. 714-734, May 1997.
- [181] VENNES, S.; SMITH, R. J.; BOYLE, B. J.; CROOM S. M.; KAWKA, A.; SHANKS, T.; MILLER, L.; LOARING, N. White dwarfs in the 2df QSO redshift survey. I. Hydrogen-rich (DA) stars. *Monthly Notices of the Royal Astronomical Society*, Oxford, v. 335, n. 1, p. 673-686, Nov. 2002.

- [182] VENNES, S.; KAWKA, A.; CROOM, S. M.; BOYLE, B. J.; SMITH, R. J.; SHANKS, T.; MILLER, L.; LOARING, N. The white dwarf population the 2QZ and Sloan survey. In: Sion, E. M.; Vennes, S.; Shipman, H. L. (Eds). White dwarfs: cosmological and galactic probes, Dordrecht: Springer, 2005. p. 49-60. (Astrophysics and Space Science Library, 320).
- [183] YORK, D. G.; ADELMAN, J.; ANDERSON, J. E.; ANDERSON, S. F.; ANNIS, J.; BAHCALL, N. A.; BAKKEN, J. A.; BARKHOUSER, R.; BAS-TIAN, S.; BERMAN, E.; BOROSKI, W. N.; BRACKER, S.; BRIEGEL, C.; BRIGGS, J. W.; BRINKMANN, J.; BRUNNER, R.; BURLES, S.; CAREY, L.; CARR, M. A.; CASTANDER, F. J.; CHEN, B.; COLESTOCK, P. L.; CONNOLLY, A. J.; CROCKER, J. H.; CSABAI, I.; CZARAPATA, P. C.; DAVIS, J. E.; DOI, M.; DOMBECK, T.; EISENSTEIN, D.; ELLMAN, N.; ELMS, B. R.; EVANS, M. L.; FAN, X.; FEDERWITZ, G. R.; FISCELLI, L.; FRIEDMAN, S.; FRIEMAN, J. A.; FUKUGITA, M.; GILLESPIE, B.; GUNN, J. E.; GURBANI, V. K.; HAAS, E.; HALDEMAN, M.; HARRIS, FEDE-RICK H.; HAYES, J.; HECKMAN, T. M.; HENNESSY, G. S.; HINDSLEY, R. B.; HOLM, S.; HOLMGREN, D. J.; HUANG, C.; HULL, C.; HUSBY, D.; ICHIKAWA, S.; ICHIKAWA, T.; IVEZIC, Z.; KENT, S.; KIM, R. S. J.; KINNEY, E.; KLAENE, M.; KLEINMAN, A. N.; KLEINMAN, S.; KNAPP, G. R.; KORIENEK, J.; KRON, R. G.; KUNSZT, P. Z.; LAMB, D. Q.; LEE, B.; LEGER, R. F.; LIMMONGKOL, S.; LINDENMEYER, C.; LONG, D. C.; LOOMIS, C.; LOVEDAY, J.; LUCINIO, R.; LUPTON, R. H.; MACKINNON, B.; MANNERY, E. J.; MANTSCH, P. M.; MARGON, B.; MCGEHEE, P.; MCKAY, T. A.; MEIKSIN, A.; MERELLI, A.; MONET, D. G.; MUNN, J. A.; NARAYANAN, V. K.; NASH, T.; NEILSEN, E.; NESWOLD, R.; NEW-BERG, H. J.; NICHOL, R. C.; NICINSKI, T.; NONINO, M.; OKADA, N.; OKAMURA, S.; OSTRIKER, J. P.; OWEN, R.; PAULS, A. G.; PEOPLES, J.; PETERSON, R. L.; PETRAVICK, D.; PIER, J. R.; POPE, A.; PORDES, R.; PROSAPIO, A.; RECHENMACHER, R.; QUINN, T. R.; RICHARDS, G. T.; RICHMOND, M. W.; RIVETTA, C. H.; ROCKOSI, C. M.; RUTHMANS-DORFER, K.; SANDFORD, D.; SCHLEGEL, D. J.; SCHNEIDER, D. P.; SE-KIGUCHI, M.; SERGEY, G.; SHIMASAKU, K.; SIEGMUND, W. A.; SMEE, S.; SMITH, J. A.; SNEDDEN, S.; STONE, R.; STOUGHTON, C.; STRAUSS, M. A.; STUBBS, C.; SUBBARAO, M.; SZALAY, A. S.; SZAPUDI, I.; SZO-KOLY, G. P.; THAKAR, A. R.; TREMONTI, C.; TUCKER, D. L.; UOMOTO, A.; VANDEN, B. D.; VOGELEY, M. S.; WADDELL, P.; WANG, S.,; WA-TANABE, M.; WEINBERG, D. H.; YANNY, B.; YASUDA, N. The Sloan Digital Sky Survey: Technical Summary. Astronomical Journal, Chicago, v. 120, n. 3, p. 1579-1587, Sept. 2000.

- [184] WARNER, B. Absolute magnitudes of cataclysmic variables. *Monthly Notices Royal Astronomical Society*, Oxford, v. 227, n. 1, p. 23-73, July 1987.
- [185] WEIDEMANN, V. Problems in stellar atmospheres and envelopes. Berlin: Springer-Verlag, 1975. p.173.
- [186] WEIDEMANN, V. Mass loss towards the white dwarf stage. *Astronomy and Astrophysics*, Berlin, v. 59, n. 3, p. 411-418, Aug. 1977.
- [187] WEIDEMANN, V.; KOESTER, D. Mass distribution of DA white dwarfs and atmospheric parameters of ZZ Ceti stars. *Astronomy and Astrophysics*, Berlin, v. 132, n. 1, p. 195-202, Mar. 1984.
- [188] WEIDEMANN, V. Masses and evolutionary status of white dwarfs and their progenitors. *Annual Review of the Astronomy and Astrophysics*, Palo Alto, v. 28, p. 103-137, 1990.
- [189] WEIDEMANN, V.; KOESTER, D. Trace hydrogen in DB white dwarfs: GD348: the lowest H abundance case. Astronomy and Astrophysics, Berlin, v. 249, n. 2, p. 389-391, May 1991.
- [190] WEISEMAEL, F.; GREENSTEIN, J. L.; LIEBERT, J.; LAMONTAGNE, R.; FONTANE, G.; BERGERON, P.; GLASPEY, J. W. An atlas of optical spectra of white-dwarf stars. *Publications of the Astronomical Society of the Pacific*, San Francisco, v. 105, n. 689, p. 761-778, July 1993.
- [191] WENER, K. Construction of non-LTE model atmospheres using approximate lambda operators. *Astronomy and Astrophysics*, Berlin, v. 161, n. 1, p. 177-182, June 1986.
- [192] WERNER, K. Non-LTE model atmosphere calculations with approximate lambda operators: application of tridiagonal operators. *Astronomy and Astrophysics*, Berlin, v. 226, n. 1, p. 265-269, Dec. 1989.
- [193] WINGET, D. E.; VAN HORN, H. M.; TASSOUL, M.; FONTAINE, G.; HANSEN, C. J.; CARROLL, B. W. Hydrogen-driving and the blue edge of compositionally stratified ZZ Ceti star models. *Astrophysical Journal*, Chicago, v. 252, n. 2, p. L65-L68, Jan. 1982.
- [194] WINGET, D. E.; ROBINSON, E. L.; NATHER, R. E.; KEPLER, S. O.; O'DONOGHUE, D. A measurement of secular evolution in the pre-white dwarf star. *Astrophysical Journal*, Chicago, v. 292, n. 2, p. 606-613, May 1985.

- [195] WINGET, D. E.; HANSEN, C. J.; LIEBERT, J.; VAN HORN, H. M.; FON-TAINE, G., NATHER, R. E.; KEPLER, S. O.; LAMB, D. Q. An independent method for determining the age of the universe. *Astrophysical Journal*, Chicago, v. 315, n. 1, p. L77-L81, Apr. 1987.
- [196] WINGET, D. E.; NATHER, R. E.; CLEMENS, J. C.; PROVENCAL, J.; KLEIMAN, S. J.; BRADLEY, P. A.; WOOD, M. A.; CLAUVER, C. F.; FRUEH, M. L.; GRAUER, A. D.; HINE, B. P.; HANSEN, C. J.; FON-TAINE, G.; ACHILLEOS, N.; WICKRAMASINGHE, D. T.; MARAR, T. M. K.; SEETHA, S.; ASHOKA, B. N., O'DONOGHUE, D.; WARNER, B.; KURTZ, D. W.; BUCKLEY, D. A.; BRICKHILL, J.; VAUCLAIR, G.; DOLEZ, N.; CHEVRETON, M.; BARSTOW, M. A.; SOLHEIM, J. E.; KA-NAAN, A.; KEPLER, S. O.; HENRY, G. W.; KAWALER, S. D. Asteroseismology of the DOV star PG 1159 - 035 with the whole earth telescope. *Astrophysical Journal*, Chicago, v. 378, n. 1, p. 326-346, Sept. 1991.
- [197] WOOD, M. A. Constraints on the age and evolution of the Galaxy from the white dwarf luminosity function. *Astrophysical Journal*, Chicago, v. 386, n. 2, p. 539-561, Feb. 1992.
- [198] WOOD, M. A. Theoretical white dwarf luminosity functions: DA models. In: European Workshop on White Dwarfs, 9, 1994, Kiel, Germany. Proceedings of the conference ... Berlin, Heidelberg and New York: Springer-Verlag, 1995. p. 41-53. (Lecture notes in physics, v. 443).
- [199] ZHANG, E. H.; ROBINSON, E. L.; NATHER, R. E. The eclipses of cataclismic variables. I. HT cassiopeiae. *Astrophysical Journal*. Chicago, v. 305, n. 2, p. 740-758, June 1987.