Implementação de solução de virtualização e consolidação de servidores no CPD da UFRGS usando o Citrix XenServer.

Alexandre Albino Marchi, Éverton Didoné Foscarini, Felipe Mendonça Scheeren, Francisco Faleiro Fialho, Leandro Fortes Rey

> ¹Universidade Federal do Rio Grande do Sul Centro de Processamento de Dados Rua Ramiro Barcelos, 2574 – Portão K – Porto Alegre – RS

{marchi, foscarini, scheeren, francisco, leandro}@cpd.ufrgs.br

Resumo. Este artigo apresenta uma visão de como foi implementado o processo de virtualização dos servidores do CPD da UFRGS, desde o processo de estudo de soluções de virtualização ao uso efetivo da plataforma escolhida. Será explicado também as modificações feitas nos Sistemas Operacionais a fim de obterem um melhor desempenho nos servidores virtualizados, bem como sobre quais hardwares os servidores foram alocados.

Introdução

No início do ano de 2009, o CPD da UFRGS resolveu implementar massivamente virtualização em seu Datacenter. Novos equipamentos haviam sido adquiridos utilizando recursos do REUNI e já havia grande demanda por servidores para aplicações de diversos tipos.

Os principais objetivos a serem alcançados com a utilização de virtualização eram a economia de energia e espaço físico, um melhor aproveitamento dos recursos de hardware e a gerência simplificada de hosts virtuais. Além disso, a criação de servidores virtuais é mais dinâmica, permitindo suprir a demanda reprimida por servidores mais rapidamente.

Hardware

Foram adquiridos os seguintes equipamentos, através de registros de preços vigentes na época:

- 2x BladeCenter H 8853 4XU IBM
 - 10x BladeServer HS21 8852 PQG 2xQuad Xeon 2.6GHz 16GB RAM
 - 10x BladeServer HS21 8852 PQG 2xQuad Xeon 2.6GHz 8GB RAM
- 2x Storage DS 4700 70A IBM
 - 6x Expansão EXP810
 - 73x HDD FC 300GB

Os servidores e o espaço em discos deveriam ser utilizados para possibilitar a atualização do hardware utilizado para os demais serviços da UFRGS, exceto por algumas novas máquinas e uma parte do espaço em disco, que já tinham destino definido. A melhor forma de utilizar racionalmente o novo hardware é através da virtualização, pois é um conjunto pequeno (15 máquinas) com processadores rápidos e quantidade considerável de memória.

Ferramentas de virtualização

A virtualização já era utilizada no Datacenter da UFRGS há vários anos, porém eram iniciativas pontuais e restritas. Entre os hosts instalados, tínhamos os seguintes:

- 1x Vmware ESX: Hospedava de 3 a 5 hosts simultaneamente, sendo 1 servidor de arquivos, 1 servidor de email Exchange, 1 servidor Linux de uso esporádico e alguns hosts temporários
- 1x Vmware Server: Hospedava 4 servidores web
- 5x Xen: Hospedavam próximo de 15 servidores Linux variados (servidores web, desenvolvimento e testes)

Apesar da experiência que já tínhamos nessas soluções, nenhuma delas nos permitiria utilizar todo o potencial do nosso novo hardware. Assim, foram analisados alguns aspectos das ferramentas de virtualização de uso corporativo existentes na época (início de 2009).

Vmware ESXi

- Na versão gratuita, é um subconjunto do Vmware ESX
- Permite a utilização de Storage compartilhado para armazenamento dos discos das máquinas virtuais
- Permite desligar uma máquina e migrá-la entre hosts que fazem parte de um pool. Na versão paga existe o *vMotion*, que migra sem necessidade de desligamento
- Migração de máquinas virtuais do Vmware Server ou Vmware ESX seria transparente
- Ferramenta poderosa para converter máquinas reais (Vmware Converter)
- Ferramenta de administração já conhecida por nossos administradores

Xen open source

- Interfaces de administração eram incipientes na época
 - Debian tinha gerência apenas em modo texto, através dos scripts providos pelo pacote xen-tools
 - CentOS tinha uma interface minimalista, ainda nas versões iniciais, baseada na nova libvirt/virt-manager
- Maior parte das implementações documentadas eram artesanais e executadas em hardware simples e sem uso de Storage compartilhado

Citrix XenServer 5

- Versão Express (grátis) não possibilitava o uso de Storage compartilhado e nem o uso de vlans
- Versão Enterprise tinha suporte ao Storage compartilhado para armazenamento dos discos das máquinas virtuais e ao *Xen Motion*
- Ferramenta de gerência totalmente gráfica, a qual permite gerenciar visualmente todo o ciclo de vida de uma máquina virtual
- Custo da versão Enterprise era próximo de 20 vezes menor que o Vmware
- Utiliza o CentOS no domínio de gerência, permitindo grande flexibilidade de configuração

Baseados nas opções disponíveis, iniciamos a implantação de algumas máquinas virtuais utilizando a versão gratuita do Vmware ESXi, para dar vazão à demanda reprimida. Em paralelo estávamos procurando uma forma de adquirir licenças do XenServer, o qual acreditávamos ser a solução que utilizaríamos a longo prazo.

Durante as tratativas da UFRGS para a abertura de uma licitação para adquirir as licenças, a Citrix liberou a versão Enterprise do XenServer gratuitamente [Citrix 2009a], buscando atingir uma fatia maior do mercado de virtualização. A partir deste momento, tínhamos a nossa disposição gratuitamente um Hypervisor de nível corporativo, com ferramenta de gerência completa e simples e com suporte total à *Xen Motion* e ao uso de Storage compartilhado.

Instalação do XenServer

A instalação do XenServer é efetuada a partir de 2 CDs e consiste na instalação do sistema operacional do domínio de gerência (dom0) e do hypervisor.

O sistema operacional do domínio de gerência é o CentOS, atualmente na versão 5.3 (Xenserver 5.5). A instalação cria 3 partições no disco, sendo que a 1ª (sda1, 4GB) que contém os arquivos de boot e a base do CentOS, a 2ª (sda2, 4GB) onde será armazenado um backup da 1ª partição durante uma atualização de versão e a 3ª (sda3, restante do disco) que é disponibilizada como área para instalação de máquinas virtuais. Abaixo está um exemplo de particionamento em uma máquina com um disco de 73GB.

Personalização/padronização dos servidores

Para padronizar a instalação de servidores XenServer, criamos um pacote básico de configurações, que deve ser aplicado ao servidor logo após sua instalação. Este pacote consiste de alguns scripts e configurações que são armazenados em /opt/ufrgs/ e que são atualizados via rsync. Os seguintes arquivos fazem parte desse pacote:

```
/opt/ufrgs/ntp.conf - configuração do servidor ntpd
/opt/ufrgs/snmpd.conf - configuração do snmpd
/opt/ufrgs/initd-firewall - carrega as regras de firewall
/opt/ufrgs/default-firewall - arquivo de regras de firewall
/opt/ufrgs/converte - chaveia entre fullvirt e paravirt
```

Depois de copiar esses arquivos através de rsync, eles precisam substituir os arquivos originais e os serviços, reiniciados:

```
ln -sf /opt/ufrgs/ntp.conf /etc/ntp.conf
ln -sf /opt/ufrgs/snmpd.conf /etc/snmp/snmpd.conf
ln -sf /opt/ufrgs/initd-firewall /etc/init.d/firewall
ln -sf /opt/ufrgs/default-firewall /etc/default/firewall
ln -sf /opt/ufrgs/converte /usr/local/bin/converte
```

```
/etc/init.d/ntpd restart
chkconfig snmpd on
/etc/init.d/snmpd start
chkconfig iptables off
chmod 755 /etc/init.d/firewall
chkconfig --add firewall
chkconfig firewall on
/etc/init.d/firewall start
```

Futuras alterações nas configurações deverão ser feitas no servidor que contém os arquivos fonte e replicadas para todos os servidores XenServer via rsync. É importante que a configuração de firewall permita que todos os hosts XenServer comuniquem-se livremente, além de ter uma configuração genérica, permitindo que as mesmas regras sejam aplicadas em todos os hosts. Os scripts e arquivos de configuração citados neste artigo estão disponíveis em [UFRGS 2010].

Resource Pool

Para o XenServer, um *Resource Pool* é um conjunto de servidores rodando XenServer que são gerenciados como uma única entidade e que, obrigatoriamente, compartilham configurações de hardware semelhantes, como marca/modelo de sua CPU, entre outros itens requeridos [Citrix 2010]. Se o *Resource Pool* também contém um volume de disco compartilhado, é possível que as máquinas virtuais sejam inicializadas em qualquer um dos hosts que faz parte do *Resource Pool*, bem como a possibilidade de realizar o *Xen Motion* entre hosts.

Todos servidores adquiridos pelo CPD são lâminas de BladeServer HS21 de mesmo sub-modelo e características idênticas, e o Storage DS 4700 disponibiliza os seus volumes através de HBAs Fibre Channel que podem ter acesso compartilhado por múltiplos hosts. Pela similaridade da configuração, foi possível criar o *Resource Pool* principal do CPD, que é formado atualmente por 9 lâminas de 16GB de memória, como apresentado na figura 1. Maiores informações serão apresentadas na seção .

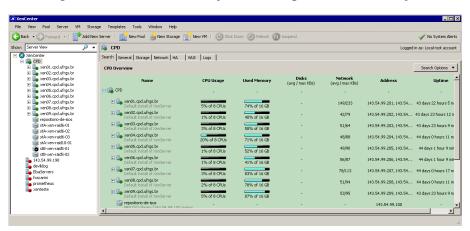


Figura 1. Tela Inicial do XenCenter

Xen Motion

O Xen Motion consiste em transferir a memória alocada por uma máquina virtual entre os servidores físicos, sem precisar desligar a máquina virtual ou parar de atender requisições

dos usuários. Essa operação permite que sejam executadas manutenções nos servidores sem a interrupção dos serviços que estão rodando nas máquinas virtuais. Esse conceito é demonstrado em [Citrix 2008].

A configuração do *Resource Pool* do CPD permite que seja utilizado o *Xen Motion* entre quaisquer dos 9 hosts que fazem parte do pool. Dessa forma, é possível realizar atualizações e aplicações de patches de segurança nos XenServer's sem a necessidade de parada das máquinas virtuais e nem dos serviços nelas hospedados. Esse recurso também permite distribuir uniformemente a carga de CPU entre os servidores, aliviando aqueles que estiverem sendo mais exigidos em um determinado momento.

Network Deployment

No CPD da UFRGS, costumamos utilizar massivamente servidores Linux para prover os serviços de infra-estrutura da Universidade. Para automatizar a criação de máquinas virtuais Linux, foi criada uma estrutura de deployment via rede, que entrega hosts já instalados e personalizados. Compõem essa estrutura:

- subrede vmdeployment ambiente exclusivo para instalação de máquinas virtuais
- servidor de dhcp disponibiliza IPs da rede vmdeployment e boot via PXE
- sistema bootável via rede, que executa a formatação dos discos e cópia de um sistema operacional
- servidor rsync para distribuição do sistema operacional

Todo o procedimento de criação das máquinas é feito através da interface gráfica do XenCenter. Ao criar uma nova máquina virtual no XenCenter, deve ser escolhida a instalação do tipo *Other install media*, como visto na figura 2. O primeiro boot da máquina virtual deverá ser feito via rede, de forma a acessar a sistema de instalação.

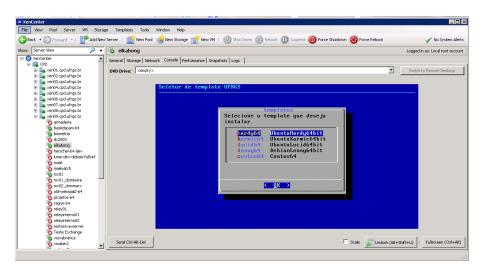


Figura 2. Seleção do sistema a ser instalado

Através desses procedimentos, é possível acessar um servidor de templates, o qual disponibiliza algumas versões do Linux personalizadas pelo CPD. Os templates disponíveis para instalação no momento são:

- Ubuntu Server Hardy 8.04LTS 64 bits
- Ubuntu Server Karmic 9.10 64 bits

- Ubuntu Server Lucid 10.04LTS 64 bits (para testes, versão beta)
- Debian Lenny 64 bits
- Centos 5.4 64 bits

Esses templates não são apenas cópias de instalações executadas pelos instaladores originais das distribuições. Eles foram modificados a fim de conter o mínimo de software possível, além de já receberem algumas personalizações utilizadas comumente no CPD, como scripts de backup, instalação e/ou configuração do rsyslog, postfix, snmpd, ntpd e muitos outros. Os pacotes que fazem parte desses templates são atualizados periodicamente através do uso do *chroot*. Com isso, novas máquinas virtuais instaladas a partir de um template estarão com o sistema operacional já atualizado.

Os templates também tem algumas configurações necessárias para o correto funcionamento do host virtual dentro do XenServer:

- pacote xe-guest-utilities Programas de suporte à paravirtualização, fornecidos pela Citrix
- /etc/sysctl.conf xen.independent_wallclock=1 Desvincula o relógio de hardware do relógio do sistema. Necessário para permitir sincronização via ntp.
- /etc/init.d/firstboot Script que roda no 1º boot da máquina virtual, configurando nome, endereço de rede e senha de root, entre outros detalhes.

Script de conversão FullVirt/ParaVirt

No âmbito do XenServer, uma máquina virtual pode ser de dois tipos:

- Full-Virtualizada O host virtual não precisa ter conhecimento de que é virtualizado. O sistema operacional trabalha como se a máquina fosse real, com drivers comuns. Dispositivos de hardware são emulados (disco, rede, USB, etc)
- Paravirtualizada O host virtual tem conhecimento da plataforma de virtualização. O sistema operacional tem drivers otimizados e utilizam interfaces de I/O providas pelo Hypervisor, normalmente com melhor performance e com suporte à características avançadas.

Uma máquina Linux Full-Virtualizada é aquela que tem um kernel normal, compilado para executar em processadores 32bit ou 64bit e provido pelos pacotes linux-image-generic ou linux-image-server no caso do ubuntu. Uma máquina Linux Paravirtualizada tem uma imagem de kernel preparada para utilizar as interfaces Xen, e é provida no Ubuntu pelos pacotes linux-image-xen (Hardy) ou linux-image-ec2 (Lucid). As máquinas virtuais também podem ser 32bit ou 64bit.

O XenServer permite alternar o tipo de virtualização de uma máquina virtual Linux através da modificação de alguns dos seus parâmetros de configuração. Para automatizar este processo, foi criado o script converte, cujo código está disponível em [UFRGS 2010]. Máquinas virtuais Windows tem o tipo de virtualização alterado automaticamente com a instalação dos drivers otimizados (xs-tools).

O script converte modifica as variáveis HVM-boot-policy, PV-bootloader e PV-args de acordo com o tipo de virtualização escolhida. Ao mudar o tipo de virtualização é necessário que o kernel correto esteja configurado como opção padrão de carregamento do GRUB. O novo GRUB2 ainda não é suportado.

Gerência restrita para operadores através do XenCenterWeb

A gerência das máquinas virtuais nos XenServers é feita através do XenCenter. Entretanto, até a versão 5.5, não é possível definir papéis nem diferentes níveis de acesso para administradores. Apesar disso, é importante que os operadores do Datacenter e administradores de máquinas tenham acesso a uma interface de gerência de sua máquina virtual que permita acesso ao console local e a operações básicas, como ligar, desligar e rebootar. Devido a referida inexistência de políticas restritivas no XenCenter, não era desejável que o seu acesso fosse liberado a todos os operadores e administradores de máquinas hospedadas nos *Resource Pools*. Para suprir essa lacuna, foi instalado o *XenCenterWeb*.

O XenCenterWeb era disponibilizado pela Citrix na forma de um appliance virtual e consiste em uma aplicação PHP rodando em um sistema Debian Etch. Ainda é possível encontrar no site da Citrix um PDF com instruções de instalação [Citrix 2009b], mas o appliance não está mais disponível para download devido a uma série de vulnerabilidades de segurança [SecurityTracker 2009] e possivelmente pela falta de manutenção do produto. Em nenhum momento a Citrix suportou essa aplicação ou recomendou sua instalação, deixando toda a responsabilidade com o administrador do sistema.

Na UFRGS (figura 3) este *appliance* está instalado em uma subrede privada, restrita via firewall para 5 hosts que tem direitos de uso. A autenticação é feita com usuários locais e a permissão de acesso para cada máquina virtual é definida através da adição de tags na sua configuração. Por exemplo, uma máquina que contém somente a tag operação só será acessível para o usuário autenticado sob as credenciais deste usuário no XenCenterWeb.

A ferramenta atualmente recomendada pela Citrix é o xvp [XVP 2010], mas ainda não foi testada pela nossa equipe.

Figura 3. Telas do XenCenterWeb

Status da implementação na UFRGS

O primeiro *Resource Pool* XenServer da UFRGS foi criado em fev/2009 e ainda no mesmo mês as primeiras máquinas virtuais começaram a rodar naquele ambiente. Hoje, 14 meses depois do início da implantação, a UFRGS tem 13 hosts XenServer em produção, com 92 máquinas virtuais, distribuídas da seguinte forma:

- Pool CPD servidores do CPD
 - 9 hosts BladeServer HS21 2x Xeon QuadCore 2.6GHz 16GB
 - 61 máquinas virtuais

- 72 CPUs reais total, 126 CPUs virtuais alocadas
- 144GB memória total, 65,6GB alocado
- 6.2TB Storage compartilhado
- Pool Elsa servidores do projeto Elsa Brasil
 - 2 hosts BladeServer HS21 2x Xeon QuadCore 2.5GHz 16GB
 - 5 máquinas virtuais
 - 16 CPUs reais total, 17 CPUs virtuais alocadas
 - 32GB memória total, 12GB alocado
- Pool Prometheus servidores de infra-estrutura secundários, para tolerância a falhas (dns, proxy, email, etc)
 - 1 host HP DL 380G4 2x Xeon QuadCore 2.0GHz 16GB
 - 16 máquinas virtuais
 - 8 CPUs reais total, 20 CPUs virtuais alocadas
 - 8GB memória total, 7.2GB alocado
- Pool Devildog servidores de teste e desenvolvimento
 - 1 host IBM x3650 2x DualCore 1.6GHz 12GB
 - 10 máquinas virtuais
 - 8 CPUs reais total, 15 CPUs virtuais alocadas
 - 12GB memória total, 7.5GB alocado

Conclusão

Depois de mais de um ano de experiência com a plataforma de virtualização XenServer, obtivemos grande êxito no uso da virtualização em nosso ambiente. Com grande parte de nossos serviços institucionais já rodando sobre esta plataforma, uniformizamos o perfil de nossos servidores Linux ao utilizar a distribuição Ubuntu Server, assim como diminuímos nossas preocupações com a manutenção de hardware antigo nos servidores Windows, podendo focar nossa atenção para os serviços prestados à comunidade acadêmica.

Referências

- Citrix (2008). Demonstração do funcionamento do XenMotion. http://www.xenserver5.com/xenmotion.php, acesso em Abr de 2010.
- Citrix (2009a). Anúncio da disponibilidade do XenServer gratuito. http://www.citrix.com/English/NE/news/news.asp?newsID=1687130, acesso em Abr de 2010.
- Citrix (2009b). Recomendações para instalação do XenCenterWeb. http://community.citrix.com/download/attachments/54591507/ XenCenterWeb+Virtual+Appliance+Setup.pdf, acesso em Mar de 2010.
- Citrix (2010). Requisitos para a configuração de um Resource Pool. http://docs.vmd.citrix.com/XenServer/5.5.0/1.0/en_gb/reference.html#pooling_homogeneity_requirement acesso em Abr de 2010.
- SecurityTracker (2009). Recomendações para instalação do XenCenterWeb. http://securitytracker.com/alerts/2009/Jul/1022520.html, acesso em Mar de 2010.
- UFRGS (2010). Scripts do CPD da UFRGS para configuração e gerência do XenServer. disponível em http://pacotes.ufrgs.br/xenserver.tar.gz.
- XVP (2010). Xen VNC Proxy. http://www.xvpsource.org/.