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RESUMO 
 
O mapeamento digital tem se tornado uma das mais importantes ferramentas na 
predição e mapeamento de solos. Apesar de sua importância, é ainda pouco 
difundido no Brasil, principalmente na predição e mapeamento de atributos de 
solo. O objetivo desta tese foi apresentar e avaliar diferentes modelos que podem 
ser utilizados no mapeamento digital de atributos de solo. Primeiramente foram 
discutidos e analisados diferentes modelos empíricos e, em sequência, também 
foram avaliados modelos mecanísticos. Dois estudos foram apresentados, um 
envolvendo um modelo empírico para predição e mapeamento de concentração 
e estoque de carbono no solo e outro utilizando modelos mecanísticos para 
predição de profundidade do solo e sua alteração com o tempo, em diferentes 
posições da paisagem. Os estudos foram aplicados no Vale dos Vinhedos, RS. 
Ambos modelos apresentaram validação satisfatória e capacidade de mapear 
atributos de solos. O modelo empírico apresentou maior dependência em 
relação aos dados de campo e seus resultados variaram de acordo com o 
método escolhido e o número e representatividade amostral. O modelo 
mecanístico se mostrou complexo e importante para identificar tendências de 
distribuição do atributo mapeado (profundidade do solo), apesar da 
impossibilidade de modelar todos os fenômenos envolvidos durante a 
pedogênese. Também apresentou menor dependência das condições amostrais 
e condições para melhor compreensão do comportamento dos elementos 
envolvidos durante os fenômenos naturais de pedogênese. Ambos modelos 
podem ser utilizados no mapeamento digital de solos, considerando as suas 
vantagens e respeitando as limitações de cada técnica utilizada. 
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ABSTRACT 
 
The digital mapping has become one of the most important tools on soil predicting 
and mapping. Although the importance, it is still a poorly disseminated 
methodology in Brazil, mainly when applied in soil attributes prediction and 
mapping. This thesis aimed to present and evaluate different models that can be 
used in digital mapping of soil attributes. Firstly, different techniques from 
empirical models to predict and map were discussed. In sequence, techniques 
from mechanistic models were also evaluated. Two studies were presented. The 
first study involved an empirical model to predict and map soil organic carbon 
content and stocks. The second used a mechanistic model to predict soil 
thickness and its variation over time in different landscape positions. The studies 
were conducted in Vale dos Vinhedos, RS, Brazil. Both models performance were 
considered satisfactory and able to map soil attributes. The empirical models 
depended from soil samples and results varied conform the method chosen, the 
soil samples number and representativity. The mechanistic models showed 
complexity and it was important to identify soil thickness tendencies, despite the 
impossibility to model all the phenomena involved during the pedogenesis. It was 
less dependent from soil samples and allowed a better understanding about the 
elements behavior involved. Both models can be used in digital mapping of soil 
attributes, considering their advantages and respecting each technique 
limitations. 
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1. INTRODUÇÃO GERAL 
 
 

O mapeamento digital de solos tem se tornado uma das mais 

importantes ferramentas na predição de classes e atributos ou propriedades de 

solos. O uso de técnicas aprimoradas de processamento de dados, junto a 

utilização de imagens com informações sobre a superfície do terreno (como os 

modelos digitais de elevação e imagens espectrais) tem facilitado e difundido o 

seu uso, trazendo uma importante ferramenta para os pedólogos na 

compreensão dos processos pedológicos e seu mapeamento. Apesar de sua 

importância, estudos no Brasil ainda são escassos, principalmente os 

relacionados à predição e mapeamento de propriedades de solo, o que denota 

a necessidade de um entendimento mais aprofundado de suas técnicas e 

funcionalidades. 

As técnicas envolvidas no mapeamento pedológico com o uso de 

meios digitais estão em constante evolução e podem-se distinguir dois ramos em 

relação ao seu objetivo: o mapeamento digital de classes de solos, com vistas à 

predição de unidades discretas, e o mapeamento digital de atributos de solos, 

cujas estimativas aparecem como dados contínuos. No Brasil, o uso do 

mapeamento digital de classes de solos antecede o de atributos e atualmente 

apresenta um maior número de estudos. Este trabalho se dedicou ao 

mapeamento digital de atributos de solos, um ramo de pesquisa ainda pouco 

difundido em território nacional.  

O objetivo geral do estudo foi descrever e avaliar diferentes métodos 

de mapeamento digital de atributos de solos, a partir de modelos empíricos e 

mecanísticos, aplicando as metodologias em uma microbacia no Rio Grande do 

Sul. O  estudo  se  justifica  devido  à  escassez  de  trabalhos no Brasil utilizando 

essa linha de pesquisa e à possibilidade de trazer informações úteis a 

continuidade dos estudos em diferentes regiões. A metodologia pode ser 
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aplicada em diversas áreas e a difusão das técnicas permite uma avaliação das 

reais facilidades e dos obstáculos que ocasionalmente possam ser encontrados 

quando utilizada sob diferentes condições. 

Os objetivos específicos consistiram em: i) avaliar diferentes técnicas 

estatísticas utilizadas em modelos empíricos para predição de carbono orgânico 

em diferentes profundidades do solo, ii) propor método de predição de incerteza 

em modelo empírico e iii) avaliar a possibilidade de uso de modelo mecanístico 

para a predição de profundidade de solo.  

No primeiro capítulo, é apresentada uma revisão bibliográfica dos dois 

principais modelos de estimativas de atributos de solos. Modelo empíricos são 

apresentados primeiramente, descrevendo suas principais metodologias e 

estudos realizados. Em seguida, o modelo mecanístico é apresentado, 

destacando-se os principais processos pedológicos e condições determinantes 

na contrução do modelo. 

No segundo capítulo, é apresentado um estudo do mapeamento 

digital de concentração e estoque de carbono orgânico no solo (COS), utilizando-

se de um modelo empírico. A variação espacial de COS no solo é analisada e 

quantificada em diferentes profundidades, com o uso de métodos de 

mapeamento digital. Quatro métodos de predição são testados e comparados. 

Os valores estimados são utilizados no cálculo e na elaboração de mapas de 

estoque de carbono orgânico no solo. É desenvolvido e avaliado um método para 

estimar a incerteza das predições. 

No terceiro capítulo, modelos mecanísticos são utilizados para a 

predição de profundidade do solo. Foram propostos modelos que utilizam a 

interação entre funções de produção de solo e equações de evolução da 

paisagem. Um primeiro modelo foi proposto para estimar a profundidade atual 

do solo. Um segundo modelo foi elaborado visando estudar a evolução da 

espessura do solo no decorrer de 100 mil anos, em diferentes posições da 

paisagem. Foram testados e avaliados diferentes cenários, variando-se as 

funções de produção de solo de acordo com o índice de umidade topográfica. 

 

 

 



 

 

 

 

2. CAPÍTULO I – REVISÃO BIBLIOGRÁFICA 

 

The digital mapping of soil properties attempts to offer information 

about the spatial distribution of soil properties over an area, as soil thickness, 

organic carbon, nutrients, etc. The technique allows to predict, by interpolation 

methods, values of soil properties to an entire area, using data obtained by soil 

survey in specific points on landscape. The digital soil mapping uses the Jenny 

(1941) study as an important base knowledge, comprising the soil formation 

based on five attributes: climate (cl), organisms (o), relief (r), parent material (p) 

and time (t), what is summarized by “clorpt” model of soil formation. This model 

has been extended to a soil predicting model “scorpan” (McBratney et al, 2003), 

which added information about soil (s), when some soil properties can be 

predicted by its class or other soil properties, or about sample spatial position (n). 

The digital map of soil properties can be elaborated using different 

models. The most common approaches are empirical models, which use 

statistical techniques to find relations between data from soil survey. Soil 

properties data obtained from soil samples are correlated with environmental 

covariates and the correlation allows to extrapolate the predictions to a whole 

study area. Less common approaches are mechanistic models, which prefer to 

explain why and how the phenomenon occurs, rather than use statistical 

correlations. The mechanistic models use several equations to determine the 

physical process involved in each system component. More complex methods 

are used, but with the advantage of being less dependent of soil samples and, 

additionally, stimulating knowledge about pedogenesis, trying to explain how the 

nature works and to discover the elements and processes involved. 

The prediction accuracy varies depending on the technology involved 

in each method applied. Make this information available might help to compare 

different methods and to evaluate  the results. This chapter  aims to  give  a  brief 
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explanation of some empirical and mechanistic methods available to estimate soil 

properties to a study area. The method descriptions were based in a compilation 

of studies from several authors.  

 

2.1 Empirical models 

 

The empirical models, when used in digital soil mapping, consider that 

soil properties can be predicted by different regression methods. The techniques 

involve knowledge of different sciences, as statistics and geostatistics. Soil 

properties sampled by pedons are correlated with terrain covariates derived from 

environmental data (digital elevation model, spectral images, geology maps, 

landform maps, etc.). The correlation is used with the appropriated technique to 

estimate the soil properties where they are unknown. Samples needs to be 

representative of the study area, and enough to produce significant relations 

between soil properties and terrain covariates. The Digital Elevation Model (DEM) 

resolution needs to be consistent with the map scale, and as error-free as 

possible.  GIS (Geographic Information Systems) software are used to derivate 

the covariates from the DEM or other images or maps. The strength of the 

relationship between the covariates and the soil properties will reflect on the 

predictions uncertainty. 

 

2.1.1 Multiple regression analysis 

 

Multiple regression analysis (MLR) is a general statistical technique 

used to analyze the relationship between a single dependent variable and several 

independent variables (Hair et al., 2014), represented by: 𝑌1 =  𝑋1 + 𝑋2 + ⋯ 𝑋𝑛 , 

where 𝑌 and 𝑋 are metric variables. 

In digital soil mapping, the MLR is used to predict the soil properties 

based on several covariates derived from a DEM, landforms, soil maps, geology 

maps and others. Discrete variables, as units in soil maps, might be codified on 

numeric variables to allow the regression analysis. 

The methodology consists of extracting statistical parameters by 

correlating the environmental attributes with the representative samples. The 

regression produces a multivariate equation with coefficients for each 
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independent variable. The equation can be applied to estimate the dependent 

variable, e.g. soil organic carbon, extrapolating the results to the whole research 

area, allowing to produce a soil property map. 

An approach commonly used is the stepwise MLR. In this method, the 

model includes the variables strongly correlated and does not include the 

variables with weak correlation. The regression is elaborated step by step, 

including the most important variables. In the first step, the independent variable 

(environmental covariate) with the highest correlation with the dependent variable 

(soil property) will be selected. The other variables are inserted at each step, if it 

is significant to explain the variance (Hair et al., 2014).  

Models using a MLR need data with distribution close to normality, as 

it is an underlying assumption of the linear models. However, an alternative is a 

Generalized Linear Model (GLM), that can deal with non-normal distributions 

(Lane, 2002; McBratney et al., 2003), modifying the model rather than 

transforming the data to a normality condition. 

Among the studies applying MLR in soil science, García et al. (2016) 

used a multiple linear regression to estimate the soil moisture in a flat area in 

Argentina, using images from radar and meteorological data as input variables. 

This study showed the simplicity of elaborating a model applying hydrological 

principles to SAR images, obtaining acceptable results (R2 = 0.6). Lentzsch et al. 

(2005) compared multiple regression and neural network to assess soil microbial 

biomass in sites located in Brandenburg, Germany. He concluded that both 

model are promising tools for soil microbial biomass prediction at landscape scale 

but the models are specific for the respective region. Using models from other 

regions or applying the elaborated model in other area, it can lead to significant 

different validation. Nunes et al. (2012) used a stepwise multiple regression to 

estimate the soil nitrate concentration, in Southern Portugal. The model improved 

when data were used grouped by clusters, mainly where water and temperature 

were not limiting factors for nitrification. A poorest performance was observed in 

soils under canopy areas. Qiu et al. (2010) predict soil moisture in a plateau 

China, using multiple-linear regressions. The results showed better adjust when 

using a generalized multiple linear regression and a stepwise method was most 

effective, when using few variables. Zornoza et al. (2007) evaluated soil quality 

using multiple linear regression, based on different soil physical, chemical and 
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biochemical properties in forest sites, Spain. The multiple linear regression 

showed to be a good tool, due the predictions reflect the balance among soil 

properties. 

 

2.1.2 Random Forest 

 

Random Forest uses classification trees to determine the relation 

between independent and dependent variables. A classification tree comprises 

leaf nodes, corresponding to an output variable, and branches, which have a set 

of rules. Ensemble methods work with many classifiers and aggregate their 

results, tending to be more accurate than base classifiers (Han et al., 2012). 

Random Forest is an ensemble method and grows many classification trees, with 

the growth of each tree often governed by random vectors. Breiman (2001) 

defines random forest as a classifier consisting of a collection of tree-structured 

classifiers {ℎ(𝒙, 𝛩𝑘), 𝑘 = 1, … } where the ℎ(𝒙, 𝛩𝑘) is a classifier, 𝛩𝑘 are 

independent identically distributed random vectors and each tree casts a unit vote 

for the most popular class at input 𝒙.  

In random forest, according to Breiman (2001), bagging is used in 

tandem with random feature selection. Bagging uses a bootstrap method, in 

which the training subsets are randomly selected from the training data (Han et 

al., 2012). At each time of selection, the data may be selected again and re-added 

to other training subsets. In that random selection with replacement, the same 

data may occur more than once and some data may not be included in the training 

subsets. Then, a classifier model is built over each training subset, reffered as 

bagging. When predicting, each classifier return its prediction, which counts as 

one vote. The response is chosen based on the most voted among the classifiers. 

When applying to continuous variables, bagging takes the average value of each 

prediction (Han et al., 2012). In random forest, an additional layer of randomness 

is added to bagging (Liaw & Wiener, 2002). This randomness acts during the split 

of the tree nodes. Attributes are randomly choosen to split each node, differently 

from classification trees, which used all the input attributes. 

In Random Forest, trees are grown without pruning (Breiman, 2001). 

The data portion used as training subset is known as the “inbag” data, whereas 

the rest is called the “out-of-bag” data (Ließ et al., 2012). The error and 
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uncertainty depends primarily on the correlation between any two trees in the 

forest and the strength of the individual classifiers. If the correlation is high, the 

error rate will increase. In case of large strength of each individual tree, the forest 

error rate will decrease. The output presents better validation when the forest 

maintain the strength of individual classifiers without increasing their correlation 

(Breiman, 2001; Han et al., 2012).  

Two input methods can be distinguished when elaborating a Random 

Forest. The Forest-RI has a random input selection, where attributes are 

randomly selected as candidates for split at the node. The Forest-RC uses 

random linear combination of the input variables. Instead of randomly selecting a 

subset of the attributes, it creates new attributes (or features) that are a linear 

combination of the existing attributes (Han et al., 2012).  

The Random Forest is considered relatively resistant to overfitting, 

with relative robustness with respect to noise features, deals with categorical and 

continuous predictors and it does not require data standardization of 

normalization, since it is relatively insensitive to value range (Breiman, 2001; Liaw 

& Wiener, 2002; Gambill et al., 2016). Despite giving measures for variable 

importance, the disadvantage is related to the limited interpretability, due the 

relationship between the predictors and the responses cannot be examined 

individually for each tree in the forest (Grimm et al., 2008; Chagas et al., 2016). 

Also, the model is usually only effective within the range in covariate values 

exhibited by the training data (Hengl et al., 2015). 

When using the package randomForest in R (R Core Team, 2014), 

three parameters must be defined: the number of trees in the forest “ntree”(the 

standard number is 500), the minimum amount of data per terminal node 

“nodesize” (the standard is five for each terminal node) and the number of 

variables used per tree “mtry” (the standard is one third of the total number of 

predictor variables) (Liaw & Wiener, 2002; Chagas et al., 2016). The size of the 

subset of variables used to grow each tree (mtry) is a sensitive parameter, defining 

the strength of each individual tree in the forest and the correlation between any 

two trees in the forest. Increasing the size, the strength of each individual tree is 

increasing, however the correlation between trees increases also. Tree strength 

improves model performance, while correlation amongst trees weakens it (Ließ 

et al., 2012). 
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Chagas et al. (2016) estimated soil surface texture in a semiarid region 

in Brazil using random forest and multiple linear regression. Products derived 

from remote sensing were used as environmental covariates. Random forest 

showed the best estimations for sand and clay and multiple linear regression 

showed better performance to predict silt. Grimm et al. (2008) used random forest 

to predict the spatial distribution of soil organic carbon (SOC) by 4 depths, in an 

island, Panama. The random forest presented good performance, showing no 

sensitivity to overfitting or noise features. Hengl et al. (2015) mapped soil 

properties of Africa. Random forest and linear regression were compared as 

prediction methods. The random forest performs better than linear regression. To 

increase accuracy, the random forest model needed quality-controlled point as 

input data and took considerably more computation time. Ließ et al. (2012) 

provided a spatial prediction of soil texture in the southern Ecuadorian Andes, 

using random forest and regression tree, and the random forest showed the best 

performance. Wiesmeier et al. (2011) found good results using random forest to 

spatially predict stocks of soil organic carbon, total carbon, total nitrogen and total 

sulphur, in a semiarid catchment in Northern China.  

 

2.1.3 Model Trees 

 

Model Trees has been developed as the M5 model and its extension 

Cubist. In a Model Tree, a tree is grown where the output leaves contain linear 

regression models. Also, there are intermediate linear models at each step of the 

tree. A prediction is made using the linear regression model at the leaves, 

considering the prediction from the linear model in the previous node (Quinlan, 

1992). The tree comprises a set of rules, which initially are paths from the top of 

the tree to the bottom. Rules are eliminated via pruning and/or combined for 

simplification (Kuhn et al., 2012).  

Model Trees predict continuous value rather than discrete class 

(Quinlan, 1992; Minasny & Mcbratney, 2008). In a similar method called 

regression tree, the predictions have discrete values as output. Model Trees, 

instead, presents a linear regression model at the leaves. Different linear models 

are able to capture local linearity in the predictor variable space, this leading to 

smaller trees and better prediction accuracy when compared with regression 
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trees (Quinlan, 1993; Akpa et al., 2016). Model trees have advantages over 

regression trees in both compactness and prediction accuracy, attributable to the 

ability of model trees to exploit local linearity in the data (Quinlan, 1992). 

The process starts using a linear least-squares regression and has a 

set of rules when it ends, each rule associated to a multivariate linear model 

(Quinlan, 1992; Minasny & Mcbratney, 2008). The linear regression model at 

each terminal node is used to predictions. Cubist model also provides the relative 

importance of each variable in the model (Kuhn et al., 2012; Peng et al., 2015). 

The Cubist model can also use committees where iterative model trees are 

created in sequence. The first tree follows the main procedure. Subsequent trees 

are created using adjusted versions to the training set outcome. (Kuhn et al., 

2012). 

Akpa et al. (2016) estimated the SOC concentration for Nigeria using 

random forest, cubist and boosted regression tree (BRT). Random forest and 

Cubist exhibited similar and better performance than BRT. Minasny & McBratney 

(2008) compared Cubist, partial least-square regression and regression tree to 

predict soil properties from diffuse infrared reflectance spectra. The authors 

concluded that Cubist provided greater accuracy, with simpler and more 

parsimonious performance. The Cubist model still produces comprehensible 

equations, an optimal variable selection, and respects the upper and lower limits 

of the data. Similar studies, using Cubist to model soil properties from spectral 

data, were carried out by Peng et al. (2015) and Viscarra Rossel et al. (2016) to 

estimate soil organic carbon. 

 

2.1.4 Neural networks 

 

Artificial neural networks (ANNs) are a standard technique in the range 

of artificial intelligence and data mining, designed to learn rules from examples 

(Zell, 1994; Behrens et al., 2005). It consists of connected processing elements, 

called neurons, each having weighted inputs, transfer functions and output 

(Agatonovic-Kustrin & Beresford, 2000; Schmidhuber, 2015). An ANN is formed 

by hundreds of single units and a simple processing units communicate by 

sending signals to each other over a large number of weighted connections 

(Agatonovic-Kustrin & Beresford, 2000; Kröse & Van Der Smagt, 1996). 
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ANN is able to learn and generalize from experimental data. This 

ability allows this computational system to learn constitutive relationships of 

materials directly from the result of experiments (Tiwari et al., 2015). An ANN first 

develops a memory associating input patterns with outputs through training on 

examples and then can produce an output when given an input pattern (Zhu, 

2000).  

Each unit of an ANN receives inputs from neighbors or external 

sources and uses this to compute an output signal which is propagated to other 

units. The system is inherently parallel in the sense that many units can carry out 

their computations at the same time (Kröse & Van Der Smagt, 1996). The inputs 

multiplied by the connection weights (adjusted) are first summed (combined) and 

then passed through a transfer function to produce the output for that neuron. 

The activation function is the weighted sum of the neuron’s input (Agatonovic-

Kustrin & Beresford, 2000). 

A neural network is trained to map a set of input data by iterative 

adjustment of the weights. The ANN reads the input and output values in the 

training data set and changes the value of the weighted links to reduce the 

difference between the predicted and target values, using the backward 

propagation of the error (Agatonovic-Kustrin & Beresford, 2000). The error in 

prediction is minimized across many training cycles until network reaches 

specified level of accuracy. If a network is left to train for too long, however, it will 

overtrain and will lose the ability to generalize (Agatonovic-Kustrin & Beresford, 

2000). When the system reaches an ideal condition, the weighted links between 

simple units are saved and then can be used to make predictions using a new 

input data. 

Agatonovic-Kustrin & Beresford (2000) reported significant processes 

involving ANN. Regarding the inputs, artificial neurons can receive two types, 

either excitatory or inhibitory. Excitatory inputs cause the summing mechanism 

of the next neuron to add while the inhibitory inputs cause it to subtract. Feedback 

is another type of connection where the output of one layer routes back to the 

input of a previous layer, or to same layer. Different types of architecture may be 

identified according to the absence or presence of feedback connection in a 

network (Agatonovic-Kustrin & Beresford, 2000). 
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There are two approaches to training the ANN, the supervised and the 

unsupervised. Supervised learning depends on the inputs and outputs of the 

training sets. In unsupervised training, the network is provided with inputs but not 

with desired outputs. The system itself must then decide what features it will use 

to group the input data. The most often used ANN is a fully connected, supervised 

network with backpropagation learning rule (Agatonovic-Kustrin & Beresford, 

2000). The package neuralnet is often used in R to develop ANN’s (Günther & 

Fritsch, 2010). 

Aitkenhead and Coull (2016) used a neural network model to map soil 

organic matter, bulk density and soil organic carbon content at different soil 

depths across Scotland. Tiwari et al. (2015) used soil spectra data and ANN to 

predict soil organic carbon. The authors conclude that ANN model was a potential 

tool in predicting SOC distribution in agricultural field using hyperspectral remote 

sensing data at different scales. Zhu (2000) applied neural network for providing 

information on the detailed spatial variation of soil properties for hydroecological 

modeling, in a watershed in western Montana, US. The approach revealed 

greater spatial detail and had higher quality than that derived from the 

conventional soil map. 

 

2.1.5 Geostatistics 

 

Geostatistics consists in a set of statistical methods considering the 

spatial dependence between georeferenced databases, used to make 

predictions and data interpolation. It is a subset of statistics specialized in 

analysis and interpretation of geographically referenced data (Goovaerts, 1997; 

Hengl, 2009). A data spatial continuity is considered, which is not seen in the 

most of regression techniques. The basic assumption is that two data close to 

each other are more likely to have similar values than two data that are far apart 

(Isaaks & Srivastava, 1989).  

Geostatistics considers 𝑍(𝑠) as random variables that assumes 

different values 𝑍 depending on position in a region 𝑆. The set of variables 𝑍(𝑠) in 

the whole area 𝑆 is considered as a random function (Isaaks & Srivastava, 1989). 

A random function 𝑍(𝑠) is said to be first-order stationary if its expected value is 

the same at all locations throughout the study region, corresponding to the mean. 
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In that hypothesis, the distribution of a random function is constant to the whole 

area (Trangmar et al., 1985): 

𝐸[𝑍(𝑠)] =  𝐸[𝑍(𝑠+ℎ)] = 𝑚 

Where ℎ is the vector of separation between sample locations and  𝑚 

is the mean of the samples. 

The second-order stationary applies if the spatial covariance 𝐶(ℎ) of 

each 𝑍(𝑠) and 𝑍(𝑠 + ℎ) pair is the same (independent of position) throughout the 

study region and depends on h (Trangmar et al., 1985): 

𝐶(ℎ) = 𝐸[𝑍(𝑠) − 𝑚][𝑍(𝑠 + ℎ) − 𝑚] 

As ℎ gets larger, 𝐶(ℎ) decreases and the spatial covariance decays. 

For the second-order stationary hypothesis, the variance of the increment 𝑍(𝑠) −

𝑍(𝑠 + ℎ) is finite and independent of position within the region, for all vectors of ℎ 

(Trangmar et al., 1985): 

𝑉𝐴𝑅[𝑍(𝑠) − 𝑍(𝑠 + ℎ)] = 𝐸[𝑍(𝑥) − 𝑍(𝑥 + ℎ)]2 = 2𝑦(ℎ) 

The result 2𝑦(ℎ) dividing by two yields the semi-variance statistic 𝑦(ℎ). 

Kriging is a technique of making optimal, unbiased estimates of 

regionalized variables at unsampled locations using the structural properties of 

the semi-variogram and the initial set of data values (Trangmar et al., 1985). A 

useful feature of kriging is that an error term (estimation variance) is calculated 

for each estimated value, providing a measure of the reliability of the interpolation 

(Trangmar et al., 1985). The simplest forms of kriging involve estimation of point 

values (punctual kriging) or areas (block kriging) and assume that the sample 

data are normally distributed and stationary (Henley, 1981; Trangmar et al., 

1985). 

The types of kriging can be simple kriging, ordinary kriging, kriging with 

a trend model, block kriging, factorial kriging, dual kriging (Goovaerts, 1997). 

Kriging is based on proximity of the samples and the ordinary kriging 

is the standard method. As described by Lark (2012), the ordinary kriging assume 

an intrinsic stationarity requiring that: 

𝐸[𝑍(𝑠) − 𝑍(𝑠+ℎ)] = 0 

Where 𝑍(𝑠) is a random variable at location s and h is a lag vector. If 

the data exhibit a strong trend the Universal kriging offer a solution, but is 

necessary to model the covariance of the residual process (Lark, 2012). 

The predictions are based on the model (Hengl, 2009): 
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𝑍(𝑠) = 𝜇 + 𝜀′(𝑠) 

Where 𝜇 is the constant stationary function and 𝜀′(𝑠) is the spatially 

correlated stochastic part of variation. The predictions are made as (Hengl, 2009): 

𝑍𝑂𝐾(𝑠0) = ∑ 𝑤𝑖(𝑠0)

𝑛

𝑖=1

. 𝑧(𝑠𝑖) =  𝜆0
𝑇. 𝐳 

Where 𝜆0 is the vector of kriging weights (𝑤𝑖), 𝐳 is the vector of 𝑛 

observations at primary locations. To estimate the weights, reflecting the spatial 

autocorrelation structure, it implemented the semivariograms. The semi-variance 

𝑦(ℎ) describes the spatially dependent component of the random function 𝑍. It is 

equal to half the expected squared distance between sample values separated 

by a given distance ℎ (Isaaks & Srivastava, 1989; Trangmar et al., 1985): 

𝑦(ℎ) =
1

2
𝐸[𝑍(𝑠) − 𝑍(𝑠 + ℎ)]2 

The semi-variance at a given lag ℎ is estimated as the average of the 

squared differences between all observations separated by the lag (Trangmar et 

al., 1985): 

𝑦(ℎ) =
1

2𝑁(ℎ)
∑[𝑍(𝑠𝑖) − 𝑍(𝑠𝑖 + ℎ)]2

𝑁

𝑖=1

 

Where there are 𝑁(ℎ) pairs of observations. The semi-variogram for a 

given direction is usually displayed as a plot of semi-variance 𝑦(ℎ) versus 

distance ℎ. 

The range of dependence (sill) is the approximately constant value 

raised by the shape of the semi-variogram representing the semi-variance 

increasing with distance between sample locations (Trangmar et al., 1985). The 

sill approximates the sample variance 𝜎2 for stationary data. Samples separated 

by distances closer than the range are spatially related. The range also defines 

the maximum radius from which neighboring samples are drawn for interpolation 

by kriging (Trangmar et al., 1985). 

The non-zero semi-variances occurred as ℎ tends to zero is called 

nugget effect. The sum of the nugget variance 𝐶0 and the spatial covariance 𝐶 

approximately equals the sill or sample variance 𝜎2 for stationary data (Trangmar 

et al., 1985). 
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The semi-variogram can be modelled by a spherical, exponential, 

Gaussian, linear function and in all directions (omnidirectional) or in a specific 

direction, analyzing its anisotropy (Isaaks & Srivastava, 1989; Goovaerts, 1997).  

Grego et al. (2006) used geostatistical techniques to assess the 

variability for soil moisture content at depths of 20, 60 and 90cm, in an area 

cultivated under no tillage system, in Brazil. The higher spatial dependency was 

found close to 60 cm depth, with a range of 90 to 110 m.  Snepvangers et al. 

(2003) compared a spatial-temporal ordinary kriging with a spatio-temporal 

kriging with external drift (net-precipitation was used as secondary information) 

to interpolate soil water content in a grassland in Southern Netherlands. The 

technique using a secondary information had a clear advantage, resulting in a 

decrease in prediction uncertainty and in a more realistic behavior. Souza et al. 

(2010) assessed the spatial variability of soil physical attributes and soil organic 

matter in an area under agriculture of sugarcane. 

 

2.1.6 Regression-kriging 

 

Regression-kriging (RK) is a technique for spatial data, which adds 

together the regression value of the variables and the kriging value of the 

residuals of the regression (Sun et al., 2012) 

The methodology of regression-kriging in digital soil mapping firstly 

uses a regression technique (correlating input covariates derived from terrain with 

an output variable) to make prediction to the entire area. The errors are then 

computed by the difference between predicted and observed values. The errors 

might preserve other relation not used in regression, a spatial dependence. A 

geostatistical approach is used to compute the spatial correlation between errors. 

Then the error results from geostatistical approach is summed to previous results 

from regression. This technique is often named regression-kriging. The model 

‘scorpan’ can be used to predict the soil properties of interest using environmental 

variables (McBratney et al., 2003), by regression techniques, and kriging can be 

used on the residuals. 

The components of spatial variation can be modeled separately 

(Hengl, 2009): 
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𝑧̂(𝑠0) = 𝑚̂(𝑠0) + 𝑒̂(𝑠0) = ∑ 𝛽̂𝑘 .  𝑞𝑘(𝑠0) + ∑ 𝜆𝑖 .  𝑒(𝑠𝑖)

𝑛

𝑖=1

𝑝

𝑘=0

 

Where 𝑚̂(𝑠0) is the fitted regression model, 𝑒̂(𝑠0) is the interpolated 

residual, 𝛽̂𝑘 are estimated model coefficients (𝛽̂0 is the estimated 

intercept), 𝑞𝑘(𝑠0) are the values of the variables at the target location, 𝜆𝑖 are 

kriging weights determined by the spatial dependence structure of the residual 

and where 𝑒(𝑠𝑖) is the residual at location 𝑠𝑖. The regression coefficients 𝛽̂𝑘 can 

be estimated from the sample by some fitting method, e.g. ordinary least squares 

(OLS) or Generalized Least Squares (HENGL, 2009). The regression component 

can also be one of the methods presented here previously as Random Forest, 

ANN, Model Trees or others. Once the part of variation from a regression has 

been estimated, the residual can be interpolated with kriging and added back to 

the values estimated by regression. 

Goovaerts (1997) refers to the same technique as simple kriging with 

varying local means. The known stationary mean 𝑚 may be replaced by known 

varying means 𝑚𝑆𝐾
∗ (𝑢), leading to the simple kriging with varying local means. 

Different estimates of the primary local mean can be used, depending on the 

secondary information available. In the case of a secondary continuous attribute 

𝑦, the primary local mean can be a function (linear or not) of the secondary 

attribute value at 𝑢: 

𝑚𝑆𝐾
∗ (𝑢) = 𝑓(𝑦(𝑢)) 

The function 𝑓(𝑦(𝑢)) can be a multiple linear regression or other. 

Goovaerts (1997) also describes another similar approach, a kriging 

with an external drift, when the mean is modeled as a linear function of a smoothly 

varying secondary (external) variable 𝑦(𝑢). However, unlike the simple kriging 

with varying local means, the mean 𝑚(𝑢) is not estimated through a calibration 

or regression process prior to the kriging of 𝑧. 

 Andrade and Mendonça-Santos (2016) predicted soil fertility in 

regions of Rio de Janeiro State, Brazil, using a multiple linear regression and a 

kriging of the residuals. The model indicated minimum CEC variation between 

the areas studied. Adhikari and Hartemink (2015) mapped topsoil SOC content 

in an area of Wisconsin, USA, using Cubist and residual kriging. A large number 

of variograms were simulated and the parameters were estimated using a 

restricted maximum likelihood. Bonfatti et al. (2016) compared different methods 
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to predict soil carbon content by five depths, in a valley area of Rio Grande do 

Sul State, Brazil. The method presented better results when using a multiple 

linear regression. A residual kriging was applied to previous model to improve the 

soil carbon prediction. Dorji et al. (2014) used Cubist and residual kriging to 

estimate soil organic carbon stocks by different depths under different land use 

and land cover in a montane ecosystem of Bhutan. The regression-kriging 

method is, according to the authors, an approach robust, quick and easy to 

produce soil property maps by using less data points of the target variable and 

several environmental covariates. Ge et al. (2011) used regression-kriging to 

relate soil properties to remote sensing images in a cotton field in Mississipi, USA. 

A stepwise multiple linear regression was used and the results presented higher 

accuracy when incorporating the spatial correlation of regression residuals, 

approximately improve 50% when predicting soil sodium concentration. 

Vanwalleghem et al. (2010) used a regression kriging approach to predict soil 

horizon thickness in loess-derived soils in natural forest areas in Central Belgium. 

The high spatial randomness in most horizons depth resulted in poor predictions, 

except for the upper eluvial E horizon. 

 

2.2 Mechanistic models 

 

Mechanistic models, when applied in soil mapping, search for physical 

explanation about the components and process involved in pedogenesis. 

Mechanistic models intend to explain why and how the phenomenon occurs, in 

general or specific cases, and involve representing and reasoning about nature 

(Bechtel, 2005). It is based on scientific considerations, rather than statistical 

convenience (Bretó et al., 2009; Bunge, 2004). Despite less common than an 

empirical approach, current studies in soil mapping has given attention to 

mechanistic models due to permit a real understanding about the soil formation 

and how it interacts with the landscape evolution. The models complement the 

currently studies based on empirical approaches (Minasny et al., 2015). 

The complexity of the mechanistic models lies in the number of 

components and processes involved in pedogenesis, being impossible to model 

all the elements and interactions. The models need to have strong assumptions, 

to deal with the randomness and to disregard the elements with minor influences. 
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When generalizing the equations, it’s important to identify similarities and 

differences between mechanisms operative in different circumstances, not just 

applying the same law to different conditions (Bechtel, 2005). Herein, we will give 

a brief explanation about the main process involved in mechanistic models of soil 

properties. Chapter 4 has an example of a mechanistic model applied to estimate 

soil thickness. 

 

2.2.1 Cumulative and non-cumulative soils 

 

The elements of pedogenesis might be originated form the process 

occurring in the place where the soil occurs or might have influence on the 

material transported from upslope areas. Considering the landforms, a 

mechanistic model need to be able to differentiate each condition and to choose 

the more appropriate method to model the soil attribute on each position on 

landscape. 

Material accumulation on depressions close to streams is often 

noticed on landscapes and reproduced by models of landscape evolution. The 

downslope sections receive constantly sediments from upslope, transported 

mainly by gravity or runoff, and equations applied to models can simulate erosion 

and depositions, on uplands and lowlands. However not all deposit thickness, 

generally greater on lowlands, can be considered completely as soil thickness. 

Soil profiles can vary its characteristics depending on how fast is the deposition 

or erosion, including the soil thickness originated by pedogenical process 

(Birkeland, 1999). 

The soils formed by sediments depositions and pedogenical process 

occurring concomitantly are considered cumulative soils (Birkeland, 1999; 

Nikiforoff, 1949; Schaetzl and Anderson, 2005). Their features are partly 

sedimentologic and partly pedogenic. In such soils, the A horizon evolves 

accumulating parent material deposited and can eventually become a B horizon, 

as sediments continue being deposited on surface while soil formation is going 

on. 

Some positions in topography are favorable to cumulative soil profile 

formation. They are especially common in colluvial and fan deposits at the base 

of hillslopes (Birkeland, 1999). The properties of this soils are not consistent with 
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those in the surrounding area. Overthickened A horizon are common, due either 

to deposition of organic-matter-rich material from upslope, to organic-matter 

accumulation at the site while sediment is accumulating, or to a combination of 

both processes. It also may contain more clay to a greater depth than adjacent 

noncumulative soils. This occurs because the clay deposit from upslope areas 

and the clay formation or translocated in the profile (Birkeland, 1999). 

The differentiation between cumulative and non-cumulative soils is 

important to model several soil properties, considering the influence from the 

other areas in landscape. The soil depth, for example, is influenced not only by 

the time of soil formation, but also by the amount and fastness of sediment 

deposition. 

 

2.2.2 Time of soil formation 

 

The time or soil age influences the degree of rock and mineral 

decomposition and the amount of soil formed. Young or immature soils have 

properties more similar to parent material and old or mature soils had more time 

to form new minerals and to lose the main characteristics of original rocks. The 

magnitude of any soil property is related to time (Jenny, 1941). A mechanistic 

model needs to consider the time of soil formation to estimate how is the current 

conditions and distribution of soil properties. Some properties, like organic matter 

content, form rather rapidly, whereas others, like high clay contents, take a much 

longer time (Birkeland, 1999). 

Yaalon (1971) grouped the soil properties according the time 

necessary to reach a steady-state. The first group is of a relatively rapidly 

adjusting features, which rapidly (< 102 to 103 years) approach dynamic 

equilibrium with their environment, as the organic matter, nitrogen content, acidity 

or some types of structure. The soil properties might alter rapidly if the 

environmental condition change. The second group is of slowly adjusting 

features, which approach the steady state at a very slow rate (> 103 to 104 years), 

as a pedoturbation in a vertisol, redox processes in a pseudogley, the formation 

and destruction of clay coatings in an argillic horizon, the balance between 

weathering and erosion on a catenary slope. The development of soil property is 

slow and resistant to alterations. The third group is of self-terminating process, 
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including irreversible reactions, as the transformation of primary minerals and 

other weathering processes which involve the loss of material, e.g., color 

development of B horizon (Bockheim ,1980), oxic, petrocalcic, placic and 

petrogypsic horizons, plinthite, laterite, clay mineralogy and strongly develop 

argillic and natric horizon (Schaetzl and Anderson, 2005).  

Birkeland (1999) compared soils and horizons formation time. A 

horizon qualified as diagnostic epipedons, probably require less than 5 kyr to 

form. Cambic horizon form rapidly and by 10 kyr should have good expression. 

Calcic (Bk) horizons might form as rapidly as the cambic horizon, and many 

environments would have them by 100 kyr. Argillic (Bt) horizons probably take 

between 100 kyr and 1 Myr. Kandic horizons would take longer than argillic 

horizons to form in a particular environment, because a longer duration of 

leaching is required to meet the key properties. Petrocalcic horizons of the K 

horizon variety take 100+ kyr to form. Oxic horizons take the longest to form from 

the average parent material, and they are put close to 1 Myr (Birkeland, 1999).  

Regarding the soil classes, Ultisols might be formed on deposits and 

landscapes of more than 100 kyr, Oxisols 1 Myr or more, Entisols perhaps in a 

century. Histosols and Vertisols between 1 and 5 kyr. Inceptisols could form in 

that time, or slightly longer. Both Mollisols and Aridisols would require variable 

times to form because they include both cambic and argillic horizons; those with 

cambic horizons probably could form in 5 kyr and those with argillic horizon about 

10 kyr. Alfisols, because an argillic horizon is required, probably also require 

about 10 kyr in wet climates and perhaps the same time in dust-influenced dry 

climates (Birkeland, 1999).  

For a mechanistic model to have a reasonable soil properties 

predictions, it needs consider the time enough to soil or horizon formation. When 

it considers shorter times, a steady state might not be reached, making unrealistic 

predictions. Longer time are preferable, however it increases the model 

computation time, which imposes a limit. 
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2.2.3 Landscape and soil evolution models 

 

Simulated models, based on physical knowledge, can model the 

erosion and deposition occurring in landscapes and to estimate future scenarios. 

A Landscape Evolution Model (LEM) can determine the elevation changes based 

on differences in sediment erosion and deposition over time. The LEM has wide 

use in Earth science, as point out by Willgoose (2005), and has being used as 

experimental tools to understand (a) the spatial organization of runoff generation 

and channel networks, (b) the remote sensing of erosion process parameters 

from digital elevation models, (c) the linking climate and tectonic processes with 

detailed stratigraphy, (d) spatial distribution of soils and vegetation and (e) the 

impact of continental-scale erosion and deposition on basin development and 

large-scale crustal dynamics feedbacks. In modern LEM’s, there are spatial 

distribution and involvement of hillslope, channel and tectonic processes 

(Willgoose, 2005).  

The landscape evolution influences soil evolution. The aggrading or 

degrading of material will change the thickness of sediment available to soil 

formation. So, the soil depth depends, between other factors, on the soil position 

in landscape. Soils in upland areas tends to be different than soils in bottom 

valleys or hills. Soils which sediment depositions and pedogenical process 

occurring concomitantly are considered cumulative soils (Birkeland, 1999; 

Nikiforoff, 1949; Schaetzl and Anderson, 2005). On stable surfaces, traditional 

pedogenic processes are operative and are less influenced by additions of 

material that is called topdown pedogenesis (Almond and Tonkin, 1999). 

Simultaneously to the aggradation and degradation of sediments, 

there is a weathering of bedrock and thickening of sediment layer, which will be 

subject to pedogenic processes. It can be modelled by soil production functions. 

The Soil Production Function (SPF) is the functional dependence of bedrock 

conversion to soil on the overlying soil depth (Heimsath et al., 2000, 1997). The 

soil production rates decline exponentially with increasing soil depth, varying 

primarily according to lithology and climate zones.  

There is a strong link between LEM and SPF. The spatial and 

magnitude variability of erosion, which model the landscape, will be influenced 

by differences in soil texture and soil organic carbon content in the course of soil 
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formation (Minasny et al., 2015), as well soils with different development will lead 

to the variation of vegetation and shaping the landscape form. For soil persisting 

it must be replenished at a rate equal to or greater than that of erosion. The rate 

is higher on superficial soils and declines with increasing soil mantle thickness 

(Heimsath et al., 1997). If local soil depth is constant over time (steady state 

condition), the soil production rate equals the erosion rate, which equals the 

lowering rate of the land surface. 

It’s important to consider the steady state condition to model soil depth 

and landscape. We can found in literature distinct concepts of steady state for 

soils and steady state for landscape. In a steady state soil thickness, the variation 

of soil depth is zero, and the soil production rate equals the erosion rate 

(Heimsath et al., 2000). In landscape, topographic and denudational steady-state 

is defined as a delicate balance of erosion and (constant) rock uplift such that a 

statistically invariant topography and constant denudation rate area maintained 

(Whipple, 2001). As initially low-relief landscapes are uplifted, erosion rates 

steadily increase over time in response to steepening of river profiles and 

adjacent hillslopes, further enhanced by orographic precipitation. Whipple (2001) 

point out that a steady-state topography and denudation are likely to prevail 

during periods of climatic stability, but rapid climatic fluctuation in the Quaternary 

appear to preclude the attainment of steady-state condition in modern orogens. 

Few models have integrated landscape and soil formation, making 

possible evaluate its interaction, and the most have worked with hypothetical 

landscape (Minasny and McBratney, 2001; Saco et al., 2006; Temme and 

Vanwalleghem, 2015). Saco et al. (2006) used the SIBERIA model combined with 

soil production rate, evaluating the use of spatially varied soil moisture. Results 

were consistent with Heimsath et al. (1997) showing exponential decline in soil 

production rate with soil depth. The effect of spatial variability driven by 

subsurface water availability was explored. The LORICA model (Temme and 

Vanwalleghem, 2015) was built based on the landscape evolution LAPSUS and 

the soil formation MILESD. First results show soil-landscape interactions, where 

the surface changes in the landscape depend on soil development, and soil 

changes depend on landscape location.  

Models using real landscapes have been driven mainly by its 

geomorphological and hydrological charateristics. The mARM model used a soil 
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grading, topographic and meteorological characteristics in Ranger Uranium Mine 

(Australia) and simulate temporal and spatial varying soil erosion and armour 

development (Cohen et al., 2010, 2009). Vanwalleghem et al. (2013) used the 

model MILESD on an area in Australia. The model includes physical and 

chemical weathering, clay migration and neoformation, bioturbation and carbon 

cycling. The results showed the importance of considering the soil-forming 

processes interacting with soil redistribution by erosion and deposition. This 

model predicts trends in total soil thickness along a catena and predicted soil 

texture and bulk density with errors in the order of 10%. Nicótina et al. (2011) 

included surface hidrology in the model, for an area in Idaho (USA) and found 

trend in soil depth distribution and a scatter graphic between modeled and 

observed soil depth. Catani et al. (2010), studying an area in Italy, obtained good 

results do predict soil thickness using an empirical geomorphology-based model 

(Geomorphologically Indexed Soil Thickness – GIST) dealing with curvature, 

position along the hillslope profile and slope gradient. 

 

2.3 Summary points 

 

Important methods to digital mapping of soil properties were presented 

in this study. There are several approaches and derivations, and it’s important to 

know how the models are implemented, aiming to choose the most appropriated. 

The potential of each method becomes clear as the environmental covariates or 

physical equations can be used to predict soil properties, inferring properties in 

places not sampled. Table 1 shows studies using the models presented. 

There is no general best method for predictions, based on validations 

in several studies. Regarding empirical models, regression-kriging has been 

showed as a preferred method, producing results more consistent with the spatial 

dynamics of soil properties. Some empirical methods have limitations relating to 

overfitting and this should be verified to avoid interpretation errors. A good 

practice is to use an independent set of representative samples to validate the 

models. Mechanistic models use complementary equations and the challenge is 

to discover the correct equations and how it would be implemented in a complex 

model. In practice, it is impossible to model all the natural phenomena occurring 

in landscape and the technique needs to evaluate the most important processes. 
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Generally, empirical models may present better results when the samples are 

dense and representative in the study area. If it is not the case, mechanistic 

models may produce a more appropriate response to the predictions of soil 

properties, besides providing pedogenic knowledge by each soil property. 
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Table 1. Studies using empirical and mechanistic models in soil science. 

Model Method Estimated soil characteristic Reference 

Empirical Multiple Linear Regression Soil moisture García et al. (2016) 

  Soil microbial biomass Lentzsch et al. (2005) 

  Soil nitrate concentration Nunes et al. (2012) 

  Soil moisture Qiu et al. (2010) 

  Soil quality Zornoza et al. (2007) 

 Random Forest Soil texture Chagas et al. (2016) 

  Soil organic carbon Grimm et al. (2008) 

  Soil organic carbon, pH, sand, silt and clay fractions, 
bulk density, cation-exchange capacity, total nitrogen, 
exchangeable acidity, Al content and exchangeable 
bases 
 

Hengl et al. (2015) 

  Soil texture Ließ et al. (2012) 

  Soil carbon stocks, total soil carbon, total soil 
nitrogen, total soil sulphur 

Wiesmeier et al. (2011) 

 Model Trees Soil organic carbon concentration Akpa et al. (2016) 

  Soil properties from diffuse infrared reflectance Minasny & McBratney (2008) 

  Soil properties from spectral data Peng et al. (2015) 

  Soil properties from spectral data Viscarra Rossell et al. (2016) 

 Neural Network Soil organic matter, soil bulk density and soil organic 
carbon content 
 

Aitkenhead & Coull (2016) 

  Soil organic carbon Tiwari et al. (2015) 

  Soil similarity and soil A horizon depth Zhu (2000)  

 Geostatistics Soil moisture Grego et al. (2006) 

  Soil water content Snepvangers et al. (2003) 

  Soil physical attributes and soil organic matter Souza et al. (2010) 
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Table 1. Continuation... 

 Regression-kriging Soil fertility Andrade & Mendonça-Santos (2016) 

  Soil organic carbon content Adhikari & Hartemink (2015) 

  Soil carbon content Bonfatti et al. (2016) 

  Soil organic carbon stocks Dorji et al. (2014) 

  Relating soil properties to remote sensing images Ge et al. (2011) 

  Soil horizon thickness Vanwalleghem et al. (2010) 

Mechanistic SIBERIA model combined 
with SPF 
 

Soil production rate and soil thickness Saco et al. (2006) 

 SPF and equations of 
geomorphological 
processes 
 

Soil production rate and soil thickness  Heimsath et al. (1997) 

 LORICA model Soil erosion and deposition, physical and chemical 
weathering, fine clay, soil thickness, bioturbated 
mass and organic matter input 
 

Temme and Vanwalleghem (2015) 

 mARM model Soil erosion and armour development Cohen et al. (2010, 2009) 

 MILESD Soil thickness, soil texture and soil bulk density Vanwalleghem et al. (2013) 

 SPF and equations of 
geomorphological 
processes 
 

Soil thickness Nicótina et al. (2011) 

 GIST Soil thickness Catani et al. (2010) 

    

 



 
 

1. Adapted from article published in Geoderma Journal. 
http://dx.doi.org/10.1016/j.geoderma.2015.07.016.  0016-7061/© 2016 Published by Elsevier B.V. 

 

3. CAPÍTULO II – ESTUDO 1: DIGITAL MAPPING OF SOIL CARBON IN 

A VITICULTURAL REGION OF SOUTHERN BRAZIL (1) 

 

 

3.1 Introduction 

 

Assessing the amount and distribution of soil organic carbon (SOC) 

levels is important as it provides information about soil fertility, rates of 

sequestration of carbon, recovery of degraded soil, or the impact of land use 

changes. Mapping the SOC concentration and stocks is challenging because of 

the considerable variation and dynamics. Spatial and temporal SOC changes are 

affected by natural and anthropic factors including management practices and 

land use changes.  

Several recent studies have predicted and mapped SOC (Adhikari et 

al., 2014; Padarian et al., 2012; Kirsten et al., 2015; Malone et al., 2009; 

Mendonça-Santos et al., 2010; Ross et al., 2013; Zhang and Shao, 2014) and 

the estimation is based on relation between covariates (land use, soil type, slope, 

aspect, etc.) and SOC levels. Different covariates were found in models to explain 

SOC distribution. Thompson and Kolka (2005) found that more than 71% of SOC 

variation could be explained by slope, aspect, curvature, topographic wetness 

index and overland flow distance. Wiesmeier et al. (2014) found that the most 

important factors to predict SOC stocks were land use, soil type, soil moisture 

and climate. Adhikari et al. (2014) predicting SOC concentration, at different soil 

depths, reported that the importance of variables differed by depth. Minasny et 

al. (2013) synthesized a large number of digital SOC mapping studies and 

concluded that different covariates could explain the variation of SOC depending 

on the complexity of the landscape. 

http://dx.doi.org/10.1016/j.geoderma.2015.07.016
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The majority of SOC inventory assessments to date focused the 0-20 

cm or 0-30 cm surface layers, whereas considerable amounts of SOC may be 

present deeper in the soil profile (Lal, 2005; Rumpel and Kögel-Knabner, 2011; 

Minasny et al., 2013; Boddey et al., 2010). Sisti et al. (2004) studied SOC stocks 

down to 100 cm depth with zero tillage and conventional tillage and found, in 

rotations with vetch planted as a winter green-manure crop, significantly higher 

soil carbon and nitrogen concentrations under zero tillage, with most of the 

differences occurring at 30-85 cm depth. Angers & Eriksen-Hamel (2008) showed 

different interpretation of SOC stocks when considering different depths, in no till 

and full-inversion tillage. Full-inversion tillage could accumulate more carbon at 

the bottom of the plow layer, but the SOC does not completely offset the gain 

under no till in the surface horizon. The authors highlight the importance of taking 

into account the whole profile to understand the distribution of SOC stocks. 

Land use has major impacts on SOC concentration and stocks. 

However, these effects are also affected by soil class and depth (Hartemink and 

McSweeney, 2014; Nieder & Benbi, 2008). Changes in land use impacts the SOC 

levels and modifies soil characteristics. Several studies explained the changes of 

SOC with land use change. Conant et al. (2001), reviewing 115 studies, found 

that conversion from native land (mostly rain forest) to pasture increased soil C 

content for nearly 70% of the studies. Guo & Gifford (2002), compiling 74 

publications, found that SOC stocks declined after land use changed from pasture 

to plantation (-10%), native forest to plantation (-13%), native forest to crop (-

42%), and pasture to crop (-59%). However, the SOC stocks increased when the 

native forest was converted to pasture (+8%), crop to pasture (+19%), crop to 

plantation (+18%), and crop to secondary forest (+53%). Cerri & Andreux (1990) 

showed that C levels after 50 years of sugarcane cultivation, in São Paulo, Brazil, 

were 46% of the levels under primary forest.  

Although there is a considerable body of research on the digital 

mapping of SOC in temperate regions, few studies have been conducted in the 

tropical and subtropical areas. Examples include Berhongoray et al (2013) 

estimating SOC stocks in Argentine Pampas, Cheng et al. (2004) predicting SOC 

concentration in a subtropical area in China, Vasques et al. (2010) estimating 

SOC stocks in a subtropical watershed in Florida. Digital soil mapping has been 

used in Brazil (Giasson et al., 2006; Mendonça-Santos & Santos, 2007) and 
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examples of SOC predictions include the studies by Mendonça-Santos et al. 

(2010) whom used regression-kriging for evaluate the SOC stocks in Rio de 

Janeiro State, and Souza et al. (2014) using regression-kriging to predict SOC 

and clay content in Rio Doce Basin (Minas Gerais State). There have been other 

studies (e.g., Cerri et al., 2007; Tornquist et al., 2009b) where ecosystem models 

such as Century or Rothamsed C Model were applied to estimate SOC dynamics 

in the upper soil layers from different areas in Brazil.  

The present study aimed to analyze the distribution of SOC in the 

grape growing region of Vale dos Vinhedos, in Rio Grande do Sul State, Brazil. 

The objectives were: (i) to compare different methods to predict SOC content, (ii) 

to quantify and understand the spatial variation of SOC concentration by depth 

through digital soil mapping, and to assess the uncertainty, (iii) to quantify and 

map SOC stocks, and (iv) to estimate SOC changes due to land use change. 

 

3.2 Materials and methods 

 

3.2.1 Study area 

 

The study was conducted in the Vale dos Vinhedos (Vineyard Valley) 

which is a wine production region in northeastern Rio Grande do Sul State (Fig. 

1). The study area covered 8,118 hectares. The climate is classified as Cfb, 

subtropical with a mild summer, mean annual temperatures of 17.2°C and 1,777 

mm annual rainfall (EMBRAPA, 2017). The dominant lithology is effusive rocks 

mostly from the Mesozoic Era (IBGE, 1986). Lower sequence comprises mostly 

basalts and diabase dikes, whereas the upper sequence has predominantly acid 

effusive rocks such as rhyolite and dacites. 

Average soil depth is 150 cm (range 25 to > 250 cm) and many soils 

are stony and rocky (average 4.5% of fragments > 20 mm in diameter). According 

the Soil Taxonomy map, in the study area, Inceptisols cover about 44%, Ultisols 

29% and Mollisols almost 15% (Fig.2). Mollisols are mostly present at lower 

elevations close to valley bottoms in the northern part of the study area.   
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Figure 1. Study area (Vale dos Vinhedos ) in Rio Grande do Sul, Brazil (8,118 ha) and 

location of the 163 pedons and 10 bulk density sampling points  

 

Soils in the western part of the study area are mainly Argissolos 

(Ultisols and Alfisols), Chernossolos (Mollisols), and Neossolos (Entisols and 

Mollisols). The eastern part has more rugged terrain and the dominant soils are 

Neossolos (Entisols) and Cambissolos (Inceptisols), with association of 

Argissolos (Ultisols and Alfisols), Latossolos (Oxisols) and Nitossolos (Oxisols 

and Ultisols) (Flores et al., 2012). Forest (44%) and Vineyard (31%) are the 

dominant land use in the study area, according the land use classification map 

(Fig. 2).  

 

  
Figure 2. Land use and Soil Taxonomy map of Vale dos Vinhedos in Rio Grande do Sul, 

Brazil. Percentages of different land use and soil order classes in parentheses. 
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3.2.2 Soil and environmental data  

 

The soil data were obtained from the soil survey project “Os Solos do 

Vale dos Vinhedos” (Flores et al., 2012). Sample points were selected along 

predefined paths representing different landscape units (Flores et al., 2012). 

Sampling was done with 163 total pedons, comprising 580 soil horizons. The soils 

were analyzed following Brazilian standard methods (Santos et al., 2006), SOC 

analysis by Walkley-Black wet oxidation. The soil pedons distribution by soil order 

classes and land use is in Table 2. 

 

Table 2. Distributions of soil pedons by soil order classes and land use. 

Soil Order 
Arable 
Crops 

Fallow Forest Pasture 
Planted 
Forest 

Vineyard 

Alfisol 0 0 0 2 0 4 

Entisol 0 1 6 1 1 7 

Inceptisol 3 4 7 2 2 46 

Mollisol 1 2 1 0 0 13 

Oxisol 0 0 1 0 0 0 

Ultisol 2 9 4 1 2 41 

 

Additionally, in 2014, samples were obtained from 10 pedons (34 

horizons) for an estimate of soil bulk density of the Flores et al. (2012) soil survey, 

allocated by contrasting land uses (vineyard, forest/planted forest, pasture, 

arable crops, and fallow) and soil classes.  The 10 measured bulk density were 

used to evaluate three pedotransfer functions, which were chosen based on 

studies that include data from subtropical soils. Table 3 lists measured bulk 

density. Once the bulk density was calculated, the values were splined to derive 

bulk density for the 5 GlobalSoilMap standard depths. These values were then 

attributed to each map unit of Flores et al. (2012) soil map (scale 1:10.000) 

considering the reference soil profiles, extrapolating then to the whole study area. 

On SOC concentration and soil depth predictions the following data 

layers from Flores et al. (2012) were used: 5x5 m grid resolution DEM, a soil map 

(scale 1:10,000) and orthorectified aerial imagery. The DEM was upscaled to 15 

m grid cell size. 
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Table 3. Bulk density (t/m3) for different land use and soil depths (cm), obtained 
from field measurements (10 soil pits). 
 
 

Land Use Depth 1 Depth 2 Depth 3 Depth 4 

Vineyard 1.17 (11 cm) 1.20 (20 cm) 1.22 (35 cm) - 

Vineyard 1.14 (7 cm) 1.17 (16 cm) - - 

Vineyard 1.13 (9 cm) 1.21 (34 cm) 1.22 (60 cm) 1.25 (81 cm) 

Vineyard 1.16 (13 cm) 1.35 (35 cm) 1.17 (60 cm) - 

Forest 0.97 (25 cm) 1.07 (44 cm) 1.13 (63 cm) 1.23 (85 cm) 

Forest 1.02 (20 cm) 1.08 (45 cm) 1.28 (75 cm) - 

Planted 
Forest 

1.09 (15 cm) 1.27 (50 cm) 1.40 (82 cm) 1.33 (124 cm) 

Pasture 1.15 (10 cm) 1.16 (33 cm) 1.25 (51 cm) - 

Arable Crops 1.10 (7 cm) 1.55 (30 cm) 1.44 (45 cm) 1.28 (73 cm) 

Fallow 1.29 (40 cm) 1.33 (59 cm) 1.21 (94 cm) 1.16 (118 cm) 

  
 

The original soil legend of the Flores et al. (2012) survey, published 

according to the Brazilian soil classification (Embrapa, 2013), was converted to 

Soil Taxonomy (Soil Survey Staff, 2014) using pedon data (clay content, pH, 

thickness, carbon content, texture, color, clay skins and drainage) and additional 

guidance from the correlation table proposed by Anjos et al. (2012).  

 A land use map was made using the orthorectified mosaic of aerial 

images from November 2005 (Flores et al., 2012). Initially, a supervised 

classification was performed after the images were filtered 3 times (3x3, 5x5, 7x7) 

using the mean. The supervised classification identified land uses for 

approximately 50% of the area particularly in the forested areas. Land use in the 

other half area was delimited manually. The final land use map contains 8 classes 

namely vineyard, forest, planted forest, pasture, arable crops, fallow, building and 

water bodies. Building and water bodies were masked (Fig. 2). 

 A set of terrain attributes was derived from the DEM including Slope, 

Aspect, Valley Depth, Topographic Wetness Index, Overland Distance to 

Channel Network and others.  A map with 13 landform classes was made in 

LandMapR software using the DEM (MacMillan, 2003). The covariates used for 

predicting the SOC levels and soil depth are presented in Table 4. 
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Table 4. Variables used in the prediction of SOC content (g/kg) and soil depth of the study area in Vale dos Vinhedos in Rio Grande do Sul, Brazil 

Variables Data descriptions Type Mean (Min-Max) Soil carbon Soil depth 

Digital Elevation Model – 15m Elevation above mean sea level Numeric 541.49 (206.15 -723.05) X  

Coordinate X UTM Latitude Numeric 445052 (438242 -451863) X  

Coordinate Y UTM Longitude Numeric 
6770978 (6765083 -
6776873) 

X  

Slope Local hill slope gradient Numeric 13.85 (0 - 81.01) X X 

Aspect Slope aspect Numeric 180 (0 - 360) X X 

Analytical Hillshading 
Angle between the surface and the incoming light 
beams 

Numeric 0.93 (0 - 2.74) X X 

TWI Topographic Wetness Index Numeric 3.12 (0.27 - 8.76) X X 

LS Factor Slope length factor Numeric 3.71 (0 - 95.9) X X 

Vertical Distance to Channel Network Altitude above channel network Numeric 26.86 (0 - 259.84) X X 

Valley Depth Relative position of the valley Numeric 24.48 (0.36-275.18) X X 

Slope Height 
Vertical distance from the base of the slope to the 
crest 

Numeric 24.91 (0.03 - 309.36) X X 

Normalized Height Height position within a reference area Numeric 0.49 (0 - 1) X X 

Mid Slope Position Cover the warmer zones of slopes Numeric 0.52 (0 - 1) X  

Flow Direction Direction of the flow Numeric 35.06 (1 - 255) X X 

MRVBF Identifies the depositional areas Numeric 0.21 (0 - 4.92) X X 

Overland Flow Distance to Channel Network Distance from non-channel cells to channel cells Numeric 204.24 (0 - 1385) X X 

Direct Insolation Potential incoming solar radiation Numeric 3.29 (0 - 5.71) X  

Soil Order Soil order map Categorical 6 classes X X 

Land Use  Land use map Categorical 6 classes X  

Convexity Terrain surface convexity Numeric 0.51 (0.26 - 0.78)  X 

Topographic Position Index (TPI) Compare elevation of each cell to the neighborhood Numeric -0.05 (-11.14  –  21.97)  X 

Mass Balance Index (MBI) Balance between soil mass deposited and eroded Numeric 0.16 (-0.81 - 1.61)  X 

Plan Curvature Curvature in a horizontal plane Numeric 0 (-0.16  –  0.31)  X 

Vector  Ruggedness Measure (VRM) Measures terrain ruggedness Numeric 0.01 (0 - 0.12)  X 

LandMapR Landform classification Categorical 12 classes  X 
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3.2.3 Prediction models 

 

Following GlobalSoilMap specification (Arrouays et al., 2014) until 1 m 

depth, equal area splines were used to harmonize the SOC concentration and 

bulk density data for 5 depth intervals: 0-5, 5-15, 15-30, 30-60, and 60-100 cm. 

The smoothing parameter lambda chosen was 0.1 (Malone et al., 2009). 

The splined data were randomly splitted into 75% (122 pedons) for 

training the model, and 25% (41 pedons) for validation. The training data was 

used to predict SOC concentrations and all the pedons were used to predict soil 

depth. Four different regression models were tested: Multiple Linear Regression 

(MLR), Stepwise Multiple Linear Regression (SMLR), Cubist, and Random 

Forest.  

In MLR, each independent variable is weighted by the regression to 

ensure maximal prediction from the set of independent variables (Hair et al., 

2009). The weights denote relative contribution of the independent variables and 

facilitate to know the influence of each variable. However, correlation among 

independent variables need to be considered. In SMLR, each variable is 

considered to be included prior to developing the equation. The independent 

variable with the greatest contribution is added first, followed by the variables 

selected based on their incremental contribution over the variables already in the 

equation (Hair et al., 2009). The Cubist model is based on the M5 algorithm of 

Quinlan (1992). The M5 algorithm builds tree-based models, which may have 

multivariate linear models at their leaves (Quinlan, 1992). It first partitions the 

data into subsets within which their characteristics are similar with respect to the 

target variable and the covariates. There are several rules arranged in hierarchy. 

The Random Forest is an ensemble learning method for classification (and 

regression) that operate by constructing a multitude of decision trees at training 

time which are later aggregated to give one single prediction for each observation 

in a data set. For regression, the prediction is the average of the individual tree 

outputs (Breiman, 2001; Malone, 2013).  

The soil depth map had values ranges between 0 to 250 cm. The map 

was sliced into 5 layers: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm, creating 

5 sets of thickness data. The thickness data were used to calculate SOC stocks, 

by each depth intervals.  



34 
 

 

The gravel and stone contents were obtained from the 163 pedons 

(Flores et al., 2012) and the distribution by depth was estimated by equal area 

splines. The values were extrapolated to the entire area through reference 

profiles of soil map units (Flores et al., 2012).  

 To calculate SOC stocks in t/ha, SOC concentrations in mass 

fraction were multiplied by bulk density previously calculated and mapped 

(section 2.2) and thickness for each depth, and corrected for gravel and stone 

contents, according to equation: 

 

𝑆𝑂𝐶 [
𝑡𝑜𝑛

ℎ𝑎
] = [

𝑆𝑂𝐶[
𝑔

𝑘𝑔
] ×𝐵𝐷[

𝑔

𝑐𝑚3]×𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠[𝑐𝑚]

10
] × (1 −

𝑔𝑟𝑎𝑣𝑒𝑙𝑠[%]

100
)     Equation (4) 

 

 To compare SOC stocks in soils under different land use and soil 

types, the results needed to be corrected by mass, avoiding carbon stock 

variation due to bulk density changes. The cumulative mass approach should be 

preferred as the basis for carbon stock accounting on a fixed mass per unit area 

(Minasny et al., 2013). The approach from Gifford and Roderick (2003) was used 

to calculate the cumulative mass and SOC stocks down to 1 m profile.  This 

approach corrects SOC stocks using a reference cumulative mass. Soil mass of 

the forest areas were chosen as reference, as represent mass of soils under 

natural vegetation, and were calculated by the measured bulk density splined and 

the respective thickness. The reference mass by interval depth were 4.95 g/cm2 

for 0-5cm, 9.9 g/cm2 for 5-15cm, 15.15 g/cm2 for 15-30cm, 33.6 g/cm2 for 30-60 

cm and 47.6 g/cm2 for 60-100 cm. For the whole area, the soil mass for each 

depth was calculated by the bulk density maps and the thickness layers derived 

from the soil depth map. Then, the reference soil mass, the soil mass for each 

depth of the entire study area, and the previously calculated SOC stocks were 

each one cumulatively summed.  

The cumulative corrected SOC stocks to the entire area, for each 

depth, were calculated through the equation applied to each pixel: 

 

𝑐𝑠(𝑡) = 𝑐𝑠(𝑧𝑎) +
𝑐𝑠(𝑧𝑏)−𝑐𝑠(𝑧𝑎)

𝑚𝑠(𝑧𝑏)−𝑚𝑠(𝑧𝑎)
(𝑚𝑠(𝑡) − 𝑚𝑠(𝑧𝑎))                  Equation (5) 
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Where 𝑐𝑠(𝑡) is the value of cumulative SOC stocks corrected by mass; 

𝑐𝑠(𝑧𝑎) and 𝑚𝑠(𝑧𝑎) are the value of cumulative SOC stocks and mass, 

respectively, from the lower boundary of the layer above it;  𝑐𝑠(𝑧𝑏) and 𝑚𝑠(𝑧𝑏) are 

the cumulative SOC stocks and mass of the lower boundary of the current layer; 

𝑚𝑠(𝑡) is the cumulative soil mass from the lower depth of the reference layer. 

 The SOC stocks for each interval depth was calculated by 

subtracting the cumulative SOC stocks of the lower and upper limit from 

respective layer. 

.  

 

3.2.4 Prediction evaluation 

 

The SOC concentration models were validated with 25% of the data, 

and the soil depth model with the whole dataset, using 4 statistical parameters: 

RMSE, ME, R2 and CCC. The R2 is the coefficient of determination of linear 

regression, between the observed values and predicted values. RMSE 

correspond to root mean square error, ME to the mean error, and CCC to the 

Lin’s Concordance Correlation Coefficient. The R2 was obtained directly from the 

model in R, whereas other parameters were calculated as follows: 

 

ME =  
1

n
∑  ẑ(xi) − n

i=1 z(xi)                                                 Equation (6) 

RMSE =  √
1

n
∑ [z(xi) −  ẑ(xi)]2n

i=1                                         Equation (7) 

CCC =  
2∗ρ∗ σẑ(xi)∗σ z(xi)

σ
ẑ(xi)
2 + σ

 z(xi)
2 +(ẑ(xi)̅̅ ̅̅ ̅̅ ̅−z(xi)̅̅ ̅̅ ̅̅ ̅)2                                            Equation (8) 

  

Where n is the number of the validation sample points, z(xi) is the 

observed value, ẑ(xi) is the predicted value, σ z(xi)
2  and  σẑ(xi)

2  are the variances, 

and ρ is the correlation coefficient between the predictions and observations. The 

impact of each variable was measured by the absolute value of t-statistics for 

each model parameter obtained through MLR.   
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3.2.5 Uncertainty and probability maps 

 

Estimating uncertainty is complex considering all the sources of 

uncertainty. There are a number of approaches to estimate the uncertainty and 

Malone et al. (2011) and Shrestha and Solomatine (2006) suggest the empirical 

approach. In this approach, the residuals between modelled outputs and 

corresponding observed data are used to formulate prediction intervals (PI’s). 

The uncertainty is expressed in the form of two quantiles of the underlying 

distribution of model error (residuals). The PI takes into account all sources of 

uncertainty and circumvents attempts to separate out the contribution of each 

source of uncertainty (Malone et al., 2011; Shrestha and Solomatine, 2006; 

Solomatine and Shrestha, 2009). The methodology is independent of the 

prediction model structure, as it requires only the model outputs. 

We used the empirical approach estimating PI’s through the residuals 

of SOC predictions. Between several methods for modeling the distribution of 

residuals, we chose sequential Gaussian geostatistical simulations because it is 

more related to the spatial method used for SOC prediction.  

Firstly, the residuals from MLR prediction of SOC, at each 5 standard 

depth, were simulated with 100 iterations and then the outputs were added back 

to the predicted SOC concentration. For each predicting pixel, we considered the 

two percentiles, lower 5% and upper 95%, covering the 90% PI, as suggested in 

GlobalSoilMap specifications (Arrouays et al., 2014). Lower and upper limits were 

mapped (Fig.5.) and the uncertainty models were evaluated on the 25% 

validation dataset (Fig.9.). 

 With the 100 values of SOC concentration, we applied Eq. 4 for 

produced SOC stocks and Eq. 5 to correct by cumulative mass. The results were 

used to produce maps of probability of total SOC stock (0 – 100 cm) that exceed 

a threshold of 184 t C/ha. The value of 184 t C/ha is based on the averaged SOC 

stocks under forest for the entire study area. Areas with high probability of 

exceeding this limit are likely to have the same SOC stocks as under forest. The 

number of times that pixels values exceeded the threshold, between 100, was 

counting and recording for producing the maps. The following probabilities were 

considered for mapping: 20%, 40%, 60% and 80%. 
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3.2.6. SOC changes 

 

SOC changes due to land use changes were estimated using 

Projected Natural Vegetation Soil Carbon (PNVSC) approach (Waring et al., 

2014). PNVSC is considered a projected SOC that could be present today if the 

area was under natural vegetation.  

The PNVSC maps were elaborated re-applying the equations 

produced by MLR models for SOC concentration (section 3.2.3), nevertheless 

with the coefficients for land use types other than forest set to zero.  The produced 

maps are hypothetically representing soil carbon which could be observed today 

if the whole study area remained under natural vegetation. The predicted SOC 

concentration can now to be compared with PNVSC by Eq. 9 to estimate SOC 

changes due to land use change (e.g. Adhikari and Hartemink, 2015): 

 

𝑆𝑂𝐶𝑐ℎ𝑎𝑛𝑔𝑒𝑠 = 𝑆𝑂𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 – 𝑃𝑁𝑉𝑆𝐶                                   Equation (9) 

 

Negative SOC change indicates that the soil has less SOC compared 

to the projected natural vegetation (forest) whereas positive SOC change indicate 

that the soils have accumulated SOC. 

 

3.3 Results 

 

3.3.1 SOC prediction and model comparison 

 

While comparing four prediction methods using the training data, 

Cubist and Random Forest showed a high R2 (>0.92) and CCC (>0.8) for SOC 

prediction at all depths, compared to MLR and SMLR with lower values (R2 <0.51 

and CCC<0.64).  Similarly, both Cubist and Random Forest had lower RMSE 

(<6.4 g/kg) than MLR and SMLR (RMSE >6.7), when comparing all the soil 

depths. 

 However, when using the validation samples (25% of pedons), MLR 

had a higher R2 and CCC and a lower RMSE than the other models (Fig. 3b). 

Comparing the distribution of observed and predicted values (Fig. 3a), MLR had 

less spread of points. The MLR model suffered from the higher bias (ME) 
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compared to all other methods.  RMSE did not differ much between methods with 

Cubist showing the highest RMSE at all depths.  

Based on R2 and CCC values, and considering the RMSE not so different 

between methods, MLR was the best model to estimate the SOC concentration. 

The high bias indicates that MLR might overestimate the predicted values and, 

therefore, it should be considered when interpreting the results. Based on these 

findings, we assumed that MLR could be the appropriate method for SOC 

concentration and soil depth prediction.  

After the predictions were made by the MLR models, the distribution 

of prediction residuals and their spatial dependence was analyzed and plotted 

(Fig. 4). Spatially, the residuals were poorly auto-correlated for the top three 

depths (0-5, 5-15, and 15-30 cm), whereas a better spatial structure was 

observed below 30 cm soil depth. Residuals of soil depth prediction were 

normally distributed with no spatial auto-correlation as suggested by the pure 

nugget effect of the variogram.   

 

a) MLR - Validation 

 

MLR Stepwise - Validation 

 
 Cubist - Validation 

 

Random Forest - Validation 

 
Figure 3. a) Example of distribution of predicted x observed values, depth 30 to 60cm  
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b) R2 – Pred x Obs, Validation 

 

 
 

CCC – Pred x Obs, Validation 
 

 

 RMSE – Pred x Obs, Validation 
 

 

ME – Pred x Obs, Validation 
 

 
Figure 3.  b) validation of SOC concentration prediction for all depth intervals, by 4 

different methods.   

 

3.3.2. Evaluation of MLR model for SOC and soil depth prediction 

 

Descriptive statistics of training data, validation data, and the 

estimates are shown in Table 5. The mean SOC concentration for the validation 

are slightly lower than for training data. The estimated data have higher mean, 

median and maximum values than the training data which suggests that the MLR 

model can overestimate SOC concentration. The bias of MLR is depicted in Fig 

.3b. and in Table 6, showing higher values at 0-5 cm soil depth and decreasing 

until depth 60-100 cm. For the soil depth, the mean of estimated data was similar 

to training data. 

Validation results of the MLR model is shown in Table 6. The R2 

between predicted and measured values differed by depth and was highest at 

30-60 cm, with value of 0.44, and CCC of 0.49. For all other depths, R2 was 

between 0.33 and 0.34, and values of CCC were between 0.38 and 0.43. The 
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RMSE and ME decreased with increasing soil depth. When the residuals were 

added to the MLR predictions, the R2 and CCC increased and RMSE and ME 

decreased (Table 6).  

For the soil depth prediction model, CCC of 0.59, R2 of 0.43, and 

RMSE of about 34.8 cm were observed. The high values of R2 and CCC were 

probably due to the use of same samples for model training and validation. 

0 – 5cm 

 

5 – 15cm 

 

15 – 30cm 

 
 

30 – 60cm 

 

60 – 100cm 

 

Depth 

 
 
 

0 – 5cm 

 

5 – 15cm 

 

15 – 30cm 

 
 

30 – 60cm 

 

60 – 10cm 

 

Depth 

 
Figure 4. Histograms and variograms of residuals (observed – predicted), from SOC 

concentration and depth predictions. 



 
 

 

4
1

 

Table 5. Descriptive statistics of training, validation, and estimated SOC content 

   Training Data Validation Data Estimates 

   n = 122 points n = 44 points n = 312790 pixels 

SOC Content 0 – 5cm Mean 27.5 24.7 31.5 

  Median 23.8 22.7 31.1 

  Min 4.6 7.0 0 

  Max 93.5 61.0 103.8 

      

 5 – 15cm Mean 27.5 24.8 31.6 

  Median 23.5 23.0 31.2 

  Min 4.7 7.0 0 

  Max 95.3 61.6 108.6 

      

 15 – 30cm Mean 23.3 21.9 26.5 

  Median 19.9 20.7 25.9 

  Min 4.6 7.0 0 

  Max 90.3 59.6 176 

      

 30 – 60cm Mean 12.2 10.7 13.1 

  Median 10.1 9.4 12.5 

  Min 0 0 0 

  Max 59.5 40.9 60.1 

      

 60 – 100cm Mean 7.7 6.4 9.1 

  Median 6.1 5.9 8.6 

  Min 0 0 0 

  Max 59.5 26.2 59.5 

      

   n = 163 points n = 163 points n = 312790 pixels 

Soil depth  Mean 147.1 156.3 148.7 

  Median 150 150 150 

  Min 35 25 0 

  Max 250 250 250 
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Table 6.  Validation of the Multiple Linear Regression and Regression Kriging for 

predicting SOC content (g/kg).  

 

Soil 
Depth 

Multiple Linear Regression  Regression Kriging 

R2 Ƚ RMSE Ƚ ME Ƚ ccc Ƚ  R2 Ƚ RMSE Ƚ ME Ƚ ccc Ƚ 

0 - 5 0.33 13.23 4.89 0.38  0.34 12.82 4.09 0.39 

5 - 15 0.33 13.36 4.80 0.38  0.33 13.00 3.97 0.39 

15 - 30 0.34 12.37 3.76 0.43  0.35 12.00 3.10 0.45 

30 - 60 0.44 6.62 3.04 0.49  0.48 5.80 2.44 0.58 

60 - 100 0.34 4.77 2.26 0.41  0.41 4.44 1.87 0.52 

Depth Ƚ Ƚ 0.43 34.78 0 0.59  - - - - 
Ƚ R2 = Coefficient of Determination, RMSE = Root Mean Square Error, ME = Mean Error, CCC = 

Lin’s Concordance Correlation Coefficient. 
Ƚ Ƚ Depth model used the whole data samples, and the validation was made based on leave one 

cross out. 

 

3.3.3. Spatial predictions and variable importance 

 

In general, SOC levels differed by depth, soil order and by land use 

type. SOC concentration decreased below 15 cm depth (Table 7 and Fig. 5). The 

mean values (Table 7) vary between 5.8 g C/kg, from vineyard areas in Alfisols 

at 60-100 cm depth, to 43.9 g C/kg, from pasture areas in Entisols at 15-30 cm 

depth. Entisols have the highest mean SOC concentration, 39.1 g C/kg at 5-15cm 

depth and Alfisols the lowest, 7.1 g C/kg at depth 60-100cm (Table 7). Similarly, 

forest has the highest mean SOC concentration, 36.1 g C/kg at 5-15cm depth, 

and arable crops the lowest, 6.7 g C/kg, at depth 60-100cm.  

The importance of the variables for SOC concentration prediction 

differed by depth. The relative importance of the 15 main variables in SOC 

concentration and the soil depth model is presented in Fig. 5. Up to 30 cm soil 

depth, the most important variable was Soil Order (Entisols), coordinate X, Aspect 

and DEM. Below that soil depth the important variables were: Overland Flow 

Distance to Channel Network, Aspect, Soil Order (Entisols and Oxisols), 

coordinate Y, and Normalized Height. Overall, the Entisols soil order was a good 

predictor. 

Descriptive statistics of soil depth data and its prediction are shown in 

Table 5, and the predicted map in Fig. 7. Soils shallower than 70 cm occupied 

1% of area (81 ha) and most of them were Entisols (65%) and Mollisols (33%). 

Soils deeper than 200 cm occupied 5% of area (439 ha) and most of them were 

Ultisols (54%) and Mollisols (20%). Soils between 70 and 200 cm occupied the 
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largest area (94%) and most of them were Inceptisols (43%), Ultisols (28%), and 

Mollisols (16%). The deepest soils were Ultisols (169 cm), followed by Oxisols 

(158 cm), Inceptisols (150 cm), Alfisols (142 cm), Mollisols (134 cm) and Entisols 

(110 cm). Soil depth increased in the northern part of the study area and it varied 

mainly with slope as shallower soils were found on steeper slopes. Pedotransfer 

function estimated bulk density for all the pedons, with average of 1.17 g/cm3 (0-

5 cm), 1.18 g/cm3 (5-15 cm), 1.19 g/cm3 (15-30cm), 1.26 g/cm3 (30-60cm) and 

1.27 g/cm3 (60-100 cm). The values ranged between 0.54 – 1.4 g/cm3 (0-5 cm), 

0.56 – 1.4 g/cm3 (5-15 cm), 1.19 – 1.4 g/cm3 (15-30 cm), 1.26 – 1.47 g/cm3 (30-

60 cm) and 1.27 – 1.47 g/cm3 (60-100 cm). 

Table 8 lists pedotransfer functions and validation using root mean 

square error (RMSE). Based on the lower value of RMSE (0.11), the simplified 

equation of Benites et al. (2007) - equation (2) in Table 8 - was chosen to 

extrapolate the bulk density for the whole dataset, producing 163 bulk density 

estimates. This function was developed from a large compilation of pedons from 

the Brazilian soil survey databased maintained by EMBRAPA (Empresa 

Brasileira de Pesquisa Agropecuária) that include pedons in Rio Grande do Sul 

State (Tornquist, 2009a; Benites et al.,2007).  
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Table 7. Predicted SOC content (g/kg) by soil order and land use types, from the study area in Vale dos 

Vinhedos in Rio Grande do Sul, Brazil 

Soil Order Land Use 0 – 5 cm 5 – 15 cm 15 – 30 cm 
30 – 60 

cm 
60 – 100 

cm 

Alfisol Arable Crops 26.1 (±1.4) 26.0 (±1.4) 19.3 (±2.2) 10.2 (±2.4) 7.8 (±1.6) 
 Fallow 27.2 (±5.1) 26.7 (±5.2) 17.5 (±5.8) 10.5 (±5.2) 7.9 (±4.2) 
 Forest 28.1 (±5.4) 27.9 (±5.5) 18.8 (±5.7) 8.7 (±4.8) 8.5 (±4.2) 
 Pasture 18.8 (±6.2) 19.0 (±6.1) 18.3 (±5.7) 12.0 (±5.0) 9.2 (±4.6) 
 Planted Forest - - - - - 
 Vineyard 20.5 (±5.3) 20.2 (±5.4) 13.7 (±5.5) 7.9 (±4.5) 5.8 (±3.8) 
       

Entisol Arable Crops 41.3 (±0.7) 41.7 (±0.7) 36.1 (±0.7) 16.2 (±1.2) 13.0 (±1.0) 
 Fallow 37.9 (±8.7) 38.0 (±8.9) 33.1 (±9.1) 17.3 (±5.0) 11.0 (±4.3) 
 Forest 43.1 (±8.7) 43.7 (±8.9) 40.9 (±10.4) 16.9 (±6.4) 11.9 (±5.4) 
 Pasture 39.5 (±8.2) 40.4 (±8.3) 43.9 (±8.2) 24.7 (±4.5) 15.4 (±3.7) 
 Planted Forest 30.8 (±5.3) 31.2 (±5.4) 31.1 (±5.6) 16.8 (±6.9) 9.2 (±5.5) 
 Vineyard 31.5 (±6.9) 31.7 (±7.1) 29.1 (±7.8) 13.8 (±5.3) 7.9 (±4.2) 
       

Inceptisol Arable Crops 29.2 (±4.9) 29.3 (±5.0) 24.8 (±5.5) 13.4 (±4.9) 7.8 (±3.8) 
 Fallow 33.6 (±6.3) 33.2 (±6.3) 25.1 (±6.4) 13.8 (±5.7) 8.9 (±5.8) 
 Forest 37.0 (±7.0) 37.0 (±7.1) 29.7 (±7.0) 14.2 (±6.1) 11.8 (±6.0) 
 Pasture 33.2 (±6.4) 33.7 (±6.4) 34.2 (±6.3) 21.8 (±5.3) 15.3 (±4.6) 
 Planted Forest 24.9 (±4.1) 25.0 (±4.2) 23.4 (±4.2) 17.6 (±4.2) 12.0 (±4.3) 
 Vineyard 27.4 (±7.0) 27.3 (±7.1) 21.9 (±6.9) 12.2 (±5.6) 7.8 (±4.9) 
       

Mollisol Arable Crops 27.5 (±9.3) 27.5 (±9.4) 22.0 (±8.4) 10.6 (±4.5) 5.7 (±3.5) 
 Fallow 33.7 (±7.4) 33.4 (±7.7) 25.2 (±8.8) 12.9 (±5.0) 6.8 (±4.0) 
 Forest 37.0 (±8.5) 37.3 (±8.7) 31.4 (±9.0) 11.1 (±5.3) 7.5 (±3.7) 
 Pasture 32.4 (±11.3) 32.6 (±11.5) 31.4 (±10) 17.3 (±3.0) 9.8 (±2.4) 
 Planted Forest 19.7 (±3.2) 19.9 (±3.2) 19.8 (±4.1) 12.6 (±3.3) 7.3 (±2.5) 
 Vineyard 29.4 (±8.9) 29.3 (±9.1) 23.5 (±9.3) 11.7 (±5.4) 6.4 (±3.8) 
       

Oxisol Arable Crops 32.1 (±4.8) 32.2 (±5.0) 33.4 (±5.5) 28.8 (±3.6) 9.1 (±2.8) 
 Fallow 38.6 (±3.3) 38.3 (±3.5) 34.9 (±4.7) 29.8 (±3.0) 13.5 (±2.2) 
 Forest 40.2 (±6.9) 40.1 (±6.9) 37.1 (±6.1) 28.5 (±4.7) 12.2 (±3.6) 
 Pasture 34.2 (±4.6) 34.4 (±4.7) 39.9 (±4.9) 34.6 (±3.7) 13.4 (±3.3) 
 Planted Forest - - - - - 
 Vineyard 33.5 (±4.7) 33.5 (±4.7) 33.7 (±4.4) 29.9 (±3.3) 11.8 (±2.7) 
       

Ultisol Arable Crops 21.6 (±6.7) 21.8 (±6.7) 19.6 (±6.1) 11.9 (±5.1) 5.6 (±3.4) 
 Fallow 27.7 (±5.8) 27.5 (±5.9) 22.4 (±6.4) 13.5 (±4.4) 8.6 (±3.8) 
 Forest 30.8 (±7.1) 31.0 (±7.3) 26.3 (±7.8) 12.5 (±5.2) 9.8 (±4.6) 
 Pasture 25.5 (±6.9) 26.1 (±7.0) 29.0 (±6.6) 19.5 (±3.7) 12.5 (±3.0) 
 Planted Forest 17.5 (±3.7) 17.7 (±3.7) 19.5 (±3.6) 16.1 (±3.2) 9.9 (±2.6) 
 Vineyard 21.6 (±6.9) 21.7 (±7.1) 19.3 (±7.4) 11.3 (±4.7) 6.8 (±3.9) 
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Figure 5. Prediction of SOC content (g/kg) and lower (5%) and upper limit (95%) for five soil depths 

of Vale dos Vinhedos in Rio Grande do Sul, Brazil.
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Table 8. Pedotransfer functions to estimate soil bulk density. 
 

*Pedotranfer functions Reference RMSE 

 

 (1)   𝑝𝑚 = 1.35 + 0.0045 ∗ 𝑠𝑎𝑛𝑑 + 6 ∗ 10−5 ∗ (44.7 − 𝑠𝑎𝑛𝑑)2 + 0.060 ∗ log 𝑑𝑒𝑝𝑡ℎ 

        𝑝𝑏 =  
100

(
𝑂𝑀(%)

𝑝𝑂𝑀
)+(

100−𝑂𝑀(%)

𝑝𝑚
)
  

 
Tranter et al (2007) 

 
0.16 

(2)    𝑝𝑏 = 1.5688 − 0.0005 ∗ 𝑐𝑙𝑎𝑦 − 0.009 ∗ 𝑂𝐶 Benites et al. (2007) 0.11 

(3)   30 – 30cm: 𝑝𝑏 = 1.5544 − 0.0004 ∗ 𝑐𝑙𝑎𝑦 − 0.01 ∗ 𝑂𝐶 + 0.0067 ∗ 𝑆𝐵 

        30 – 100cm: 𝑝𝑏 = 1.5674 − 0.0005 ∗ 𝑐𝑙𝑎𝑦 − 0.006 ∗ 𝑂𝐶 + 0.0076 ∗ 𝑆𝐵 

 

Benites et al. (2007) 0.13 

*𝑝𝑏 = bulk density (g/cm3); 𝑝𝑚: mineral bulk density (g/cm3);  𝑝𝑂𝑀  = organic matter bulk density = 0.224 g/cm3;  𝑠𝑎𝑛𝑑 (dag/kg);  𝑑𝑒𝑝𝑡ℎ (cm).   

   𝑂𝐶(g/kg): organic carbon; 𝑆𝐵 (cmolc/kg)- sum of basic cations (Ca2+,Mg2+ and K+); 𝑐𝑙𝑎𝑦 (g/kg). 
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Figure 8 shows SOC stock maps for each 5 depth, and the total stock for 0-100 

cm. Overall, it appeared that the spatial distribution of SOC stocks was similar to SOC 

concentration. Values were higher on the valley banks and bottom valley, which were under 

forest and with reduced agricultural use. Total SOC stocks were highest in Oxisols (230 - 

280 t C/ha) and lower in Alfisols (104 - 143 t C/ha), as in Table 9. Soils under pasture areas 

had the highest SOC stocks (139 - 280 t C/ha) and soils under planted forest areas the lowest 

SOC stocks (116 - 174 t C/ha). Oxisols under pasture areas had the highest SOC stocks 

(280 t C/ha) and Alfisols under vineyard the lowest (104 t C/ha).  

 

Table 9. Calculated SOC Stocks (t C/ha) by soil order and land use types for the study area in Vale dos 

Vinhedos in Rio Grande do Sul, Brazil 

Soil Order Land Use 0 – 5 cm 5 – 15 cm 15 – 30 cm 30 – 60 cm 60 – 100 cm 
Total 

 0-100cm 

Alfisol Arable Crops 13 (±1) 25 (±2) 30 (±3) 40 (±7) 34 (±9) 143 (±18) 
 Fallow 12 (±2) 23 (±4) 26 (±7) 39 (±17) 38 (±19) 137 (±46) 
 Forest 11 (±3) 23 (±5) 27 (±7) 36 (±14) 39 (±19) 135 (±43) 
 Pasture 8 (±3) 16 (±6) 25 (±9) 45 (±15) 45 (±19) 139 (±50) 
 Planted Forest - - - - - - 
 Vineyard 9 (±2) 17 (±5) 20 (±7) 30 (±14) 29 (±18) 104 (±40) 
        
Entisol Arable Crops 17 (±1) 34 (±3) 45 (±4) 46 (±10) 54 (±10) 197 (±15) 
 Fallow 14 (±4) 28 (±8) 40 (±10) 51 (±16) 37 (±18) 170 (±39) 
 Forest 16 (±4) 33 (±8) 51 (±15) 58 (±28) 36 (±20) 194 (±57) 
 Pasture 14 (±4) 28 (±8) 49 (±12) 71 (±28) 50 (±23) 212 (±54) 
 Planted Forest 12 (±3) 24 (±6) 37 (±9) 47 (±30) 28 (±22) 147 (±60) 
 Vineyard 12 (±3) 23 (±6) 35 (±9) 42 (±22) 28 (±18) 140 (±44) 
        
Inceptisol Arable Crops 13 (±3) 26 (±6) 35 (±9) 47 (±15) 40 (±18) 160 (±44) 
 Fallow 14 (±3) 29 (±7) 35 (±9) 48 (±18) 43 (±27) 170 (±55) 
 Forest 15 (±4) 31 (±8) 40 (±10) 51 (±19) 52 (±26) 189 (±56) 
 Pasture 14 (±4) 29 (±8) 46 (±10) 73 (±18) 72 (±22) 235 (±55) 
 Planted Forest 11 (±3) 22 (±5) 32 (±8) 55 (±16) 54 (±18) 174 (±43) 
 Vineyard 11 (±3) 23 (±7) 30 (±9) 42 (±17) 38 (±21) 144 (±49) 
        
Mollisol Arable Crops 11 (±3) 22 (±6) 27 (±9) 29 (±12) 22 (±13) 111 (±38) 
 Fallow 12 (±3) 24 (±6) 29 (±9) 42 (±18) 30 (±19) 137 (±44) 
 Forest 11 (±4) 22 (±9) 30 (±11) 45 (±17) 36 (±17) 144 (±43) 
 Pasture 11 (±3) 23 (±6) 34 (±8) 51 (±12) 36 (±18) 155 (±36) 
 Planted Forest 7 (±2) 14 (±5) 21 (±7) 42 (±10) 33 (±11) 116 (±27) 
 Vineyard 11 (±4) 21 (±8) 27 (±12) 38 (±18) 27 (±16) 124 (±49) 
        
Oxisol Arable Crops 16 (±2) 32 (±5) 50 (±8) 95 (±12) 37 (±14) 230 (±38) 
 Fallow 19 (±2) 38 (±3) 53 (±7) 100 (±10) 59 (±10) 268 (±30) 
 Forest 20 (±3) 40 (±7) 56 (±9) 95 (±15) 53 (±18) 263 (±49) 
 Pasture 17 (±3) 33 (±5) 59 (±9) 113 (±14) 58 (±15) 280 (±40) 
 Planted Forest - - - - - - 
 Vineyard 17 (±2) 33 (±5) 51 (±7) 100 (±11) 51 (±13) 251 (±33) 
        
Ultisol Arable Crops 10 (±3) 21 (±6) 29 (±8) 43 (±16) 31 (±16) 135 (±44) 
 Fallow 13 (±3) 26 (±6) 34 (±9) 50 (±14) 44 (±18) 167 (±44) 
 Forest 14 (±3) 28 (±7) 38 (±10) 49 (±16) 47 (±21) 176 (±50) 
 Pasture 12 (±3) 24 (±6) 41 (±9) 70 (±13) 64 (±14) 212 (±39) 
 Planted Forest 8 (±2) 17 (±4) 28 (±6) 56 (±10) 53 (±13) 162 (±29) 
 Vineyard 10 (±3) 20 (±6) 28 (±10) 42 (±16) 36 (±19) 136 (±47) 
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Figure 6. Relative importance of the 15 variables used for predicting SOC content at each soil depth. The importance is calculated 

based on the absolute value of the t-statistics for each model parameter (see Table 4 for a description of the variables).
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Figure 7. Soil depth map produced using a regression-kriging method, in Vale dos 

Vinhedos, Rio Grande do Sul State, Brazil. 
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5 – 15cm 
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0-100 cm (sum of 5 depths) 

 
 

Figure 8. Estimation of SOC stocks (t C/ha) of the study area in Vale dos Vinhedos in 
Rio Grande do Sul, Brazil. 
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3.3.4. Uncertainty and probability maps 

 

For uncertainty of SOC concentrations prediction, calculated by 

empirical approach and mapped (Fig.5.), the averages for the lower limit of 

prediction decreased from 10.5 g C/kg at 0-5 cm soil depth to 1.5 g C/kg at 60-

100 cm depth. The means for upper prediction limit decreased from 53.8 g C/kg 

at 0-5 cm soil depth to 19.4 g C/kg at 60-100 cm soil depth. A similar trend was 

found for the difference in the lower and upper limits. 

The uncertainty values of nine sample points, from the validation 

dataset (25% of pedons), are shown in Fig. 9.  The blue line represents estimated 

value, and red lines represent the low (left) and the upper limit (right) for the 5 

depths. Bars represent the splined SOC values, harmonized by depth of 

GlobalSoilMap. The prediction intervals are higher in upper layers than in lower 

layers. Of the 41 validation samples the following number were within prediction 

intervals: 36 for 0-5 cm depth, 34 for 5-15 cm depth, 34 for 15-30 cm depth, 38 

for 30-60 cm depth, and 39 for 60 – 100 cm soil depth. More than 90% of the 

validation samples were within the prediction intervals derived from residuals with 

higher spatial covariance (30-60 cm and 60-100 cm).  

 

Figure 9.  Examples of uncertainty prediction intervals, for SOC levels, of 9 independent 

validation points.   Predicted SOC values are shown in blue, and the lower (5%) and 

upper limit (95%) in red. Bars represent the values from splines. 
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For SOC stocks, the probability maps (Fig.10.) show areas where the 

SOC stock exceeds the threshold value at 20, 40, 60 and 80% probabilities. The 

probability for SOC stocks exceeding the limit is highest in the valley bottoms and 

in the eastern part of study area. There is an 80% probability of SOC stocks to 

exceed 184 t C/ha in about 13% (1029 ha) of the area. 

20% 

 

40% 

 

60% 

 

80% 

 
 
Figure 10. Maps of different probabilities that the soil contain at least 184 ton SOC/ha in 
Vale dos Vinhedos in Rio Grande do Sul, Brazil 

 

 

3.3.5. SOC changes 

 

The mean values of SOC predictions and PNVSC values are given in 

Table 10 where the data were aggregated by soil order and land use. Areas 

where SOC has been lost as compared to the same soils under forest are given 

in bold. SOC has been lost at 0-5 and 5-15 cm soil depth for all soil orders and 
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land use types (except forest which was used as a reference). This loss is also 

observed at 15-30 cm and 60-100 cm depth, except for Oxisols and pasture. At 

30-60 cm soil depth SOC levels has been increased in all soil orders and land 

use types. The maps of PNVSC and SOC changes are given in Fig. 11.  

 

3.4 Discussion 

 

This study predicted SOC concentration and SOC stocks in a 

subtropical area under different land use and a range of soil orders. The impact 

of land use on SOC was evaluated by comparing the SOC concentration under 

current use with a projected SOC that could be present today if the area was 

under natural vegetation.  In this discussion, we shall focus on the methods of 

prediction, the effect of the variables used for prediction, predictions of SOC 

concentrations and stocks, uncertainty and probability maps and the distribution 

of SOC under different land uses and soil types. 

 

3.4.1. Prediction model 

 

The different methods tested for regression showed that model 

evaluation is more reliable when using a separate validation dataset. Predicted 

values might be very similar to observed values, when considering the training 

model. This model may overfit the data and the performance can be poor using 

validation data. Minasny and McBratney (2013), observing the behavior of a 

random forest model, concluded that it can easily overfit the data. In our study, 

the Cubist and Random Forest models seem to overfit the data, whereas MLR 

produced estimation closer to validation data.  

SOC concentrations were predicted based on Regression Kriging 

Model (MLR and kriging of residuals). The prediction showed the variation in SOC 

concentration spatially and by depth, land use and soil order. The model 

explained only part of the variation and when comparing the estimated mean, 

median and maximum values, our estimation from the model produced slightly 

higher SOC concentration than training data. This can be explained by the biased 

estimate when using a non-probability sample to calibrate the model or also some 

regions of the feature space to be over or under –represented in the training data.
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Figure 11. Maps of Projected Natural Vegetation Soil Carbon (PNVSC) and changes in SOC in 
Vale dos Vinhedos in Rio Grande do Sul, Brazil.
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Table 10. Predicted SOC content and Projected Natural Vegetation Soil Carbon (PNVSC), by soil order and land use. Figures in bold indicate 

that SOC was lost based on the PNVSC approach (SOC content predicted – PNVSC). 

SOC  and PNVSC (g/kg) - mean values (± standard deviation) 

Soil Order 0 – 5cm PNVSC 5 – 15cm PNVSC 15 – 30cm PNVSC 30 – 60cm PNVSC 60 – 100cm PNVSC 

Alfisol 
24.2 (±6.5) 27.0 (±5.0) 23.9 (±6.6) 26.8 (±5.0) 16.2 (±6.1) 17.6 (±3.8) 8.4 (±4.7) 7.2 (±2.8) 7.1 (±4.2) 7.3 (±2.7) 

Entisol 38.7 (±9.7) 42.1 (±6.6) 39.1 (±10.0) 42.6 (±6.7) 36.4 (±11) 38.5 (±5.9) 15.9 (±6.2) 15.5 (±4.8) 10.5 (±5.3) 10.8 (±4.0) 
Inceptisol 32.3 (±8.3) 35.9 (±6.4) 32.2 (±8.4) 35.9 (±6.5) 26.0 (±7.9) 28.0 (±5.2) 13.5 (±6.0) 12.6 (±4.7) 9.9 (±5.8) 10.3 (±4.6) 
Mollisol 35.0 (±9.2) 36.6 (±6.0) 35.2 (±9.4) 36.8 (±6.1) 29.3 (±9.7) 29.9 (±5.3) 11.4 (±5.3) 11.0 (±3.5) 7.3 (±3.8) 7.8 (±2.6) 
Oxisol 35.1 (±6.1) 38.2 (±3.1) 35.1 (±6.1) 38.1 (±3.1) 35.7 (±5.7) 35.5 (±4.0) 30.3 (±4.4) 26.9 (±3.0) 11.8 (±3.3) 11.7 (±1.8) 
Ultisol 26.4 (±8.1) 29.7 (±5.8) 26.5 (±8.2) 29.9 (±5.8) 23.0 (±8.1) 24.8 (±4.9) 12.4 (±5.1) 11.3 (±3.5) 8.5 (±4.4) 8.9 (±3.0) 

Land Use 

Arable Crops 25.4 (±7.8) 29.5 (±4.3) 25.5 (±7.9) 29.5 (±4.3) 23.3 (±8.1) 24.4 (±3.7) 15.2 (±8.1) 13.9 (±3.1) 6.7 (±3.7) 9.1 (±2.0) 
Fallow 30.9 (±7.2) 32.2 (±3.9) 30.7 (±7.3) 32.3 (±3.9) 24.2 (±7.4) 25.9 (±3.5) 13.7 (±5.1) 11.8 (±3.1) 8.6 (±4.7) 9.3 (±3.0) 
Forest 35.9 (±6.5) 35.9 (±6.5) 36.1 (±7.0) 36.1 (±7.0) 30.2 (±7.2) 30.2 (±7.2) 13.1 (±5.2) 13.1 (±5.2) 10.1 (±4.7) 10.1 (±4.7) 
Pasture 30.1 (±8.5) 32.8 (±4.2) 30.5 (±8.6) 32.8 (±4.2) 32.3 (±8.1) 26.3 (±3.8) 21.1 (±5.8) 12.7 (±2.8) 13.3 (±4.1) 9.5 (±2.1) 
Planted Forest 23.8 (±6.0) 36.6 (±2.5) 23.9 (±6.1) 36.6 (±2.5) 23.5 (±5.6) 29.5 (±2.4) 16.9 (±4.6) 14.2 (±2.6) 10.8 (±4.3) 11.7 (±2.6) 
Vineyard 

26.0 (±7.9) 33.9 (±4.8) 26.0 (±8.0) 33.9 (±4.9) 21.8 (±8.0) 26.6 (±4.5) 12.0 (±5.5) 11.4 (±3.9) 7.4 (±4.4) 8.9 (±3.3) 
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The values of validation parameters such as R2 and CCC were higher 

for 30-60 cm soil depth and were lower at other depth intervals. The validation 

results, on Table 6, are comparable to most recent studies predicting SOC. For 

example, on temperate areas, Adhikari et al. (2014) found the model could 

explain 43% of variation in validation data, whereas Malone et al. (2009) found 

R2 values of validation points ranging between 20% and 27%. Other studies 

present similar results (Brogniez et al., 2014; Collard et al., 2014; Forges et al., 

2014; Wiesmeier et al., 2014). 

The soil depth model could explain 43% of the variation, using all data 

for estimation and validation. The soil depth map followed the topographic 

variation, showing the deeper soils in valley bottom. The calculated bulk density 

varied between 0.54 and 1.47 g/cm3 and were similar to the values found by 

Tornquist et al. (2009a), between 0.4 and 1.4 g/cm3. 

 

3.4.2. Importance of predictor variables 

 

The relative importance of each variable was evaluated by absolute t-

values. The t-value is model dependent, which means that if two or more 

variables are correlated with SOC concentration, and also correlated with each 

other, then only one of these intercorrelated variables may appear with a high t-

value.  

We noted that variable importance differed by soil depth. Up to 30 cm 

soil depth, the covariates Soil Order, coordinate X, Aspect and DEM were good 

predictors. Soil Order (Entisols) contributed mainly due to its consistent higher 

SOC values (Table 7). There was a decrease in SOC concentration towards the 

west (Fig. 5) and hence coordinate X was important to identify this variation in 

east-west direction. There was a higher SOC concentration in the soils of the 

north in the valley bottom, and coordinate Y identifies this variation. In correlation 

analysis, it was noted that Y has a correlation of -0.47 with X, which is fairly high 

compared to other covariates. Both coordinates could explain the spatial variation 

of SOC concentration, although only X showed high t-value, and to separate 

individual effect in prediction is not straightforward (Hair et al., 2009). The north-

facing slopes receive more solar radiation, and as a result possibly enhanced 

SOC decomposition and lower SOC levels. This effect can be seen at slightly 
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higher SOC values in the northeast (slope south-facing) compared to the 

southwest (slope north-facing). This variation could be identified by the Aspect 

covariate. 

At lower elevation (200 – 350 m in the study area), temperatures 

increase and likely the soils contain less carbon due to higher rates of 

decomposition. However, the elevation was a proxy for deposited material and 

areas at lower elevation had deeper soils with more SOC. There was a relatively 

high and negative correlation (-0.55) between DEM and Valley Depth. Only the 

covariate DEM is showed with high t-value, but both explain the SOC variation 

related with elevation. 

For the layers below 30 cm soil depth the covariates Overland Flow 

Distance, Aspect, Soil Order, coordinate Y, and Normalized Height were 

important predictors for SOC concentration. Overland flow distance to channel 

network indicate that the SOC concentration is higher closer to channel network, 

possibly because of organic material deposits under dense vegetation. Libohova 

et al. (2014) found that areas with water accumulation for longer time periods 

stored 50-68% more total SOC compared to drier areas.  Noticeable influence of 

soil orders covariates (Entisol, Oxisol or Inceptisol) in SOC prediction was found 

up to 60 cm depth but not below this depth. The coordinate Y is consistent with 

the valley bottom in north direction. The Normalized Height indicates the height 

relatively to the highest and lowest position within an area (Dietrich and Böhner, 

2008) and this covariate correlates with Overland Flow Distance to Channel 

Network (0.63). 

For prediction of soil depth, Soil Order (Entisol, Mollisol and Ultisol) 

and Valley Depth proved good predictors. The Entisols are shallower soils (mean 

depth 110 cm) and Mollisols and Ultisols are the deeper soils. Although Oxisols 

are also deep soils, it had no significant impact on the soil depth model possibly 

because of the limited number of samples.  

 

3.4.3. SOC concentration and stocks 

 

The SOC concentration predicted for soils under forest and pasture 

differed by depth. In the upper layers, soils under forest had higher values 

whereas soils under pasture had more SOC with depth (Table 7 and Table 10). 
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Forest has larger amounts of litter and organic material, which is incorporated 

into the soil. Aboveground input and relatively low rates of decomposition 

generally increases topsoil SOC levels compared to grasslands (Don et al., 2011; 

Guo and Gifford, 2002; Jobbágy and Jackson, 2000). For pasture, deep roots 

contribute to the accumulation of SOC with depth (Guo and Gifford, 2002).  

Soils under arable crops and vineyard had the lowest SOC 

concentration and stocks as a result of reduced organic matter input and 

enhanced decomposition (Elliott, 1986; Sanford, 2014; Schrumpf et al., 2013), 

but SOC levels could improve with careful soil management (Lal, 2006). Soil 

erosion may decrease SOC stocks in agricultural systems (Don et al., 2011) 

whereas leaving the land fallow may increase SOC levels depending on the 

length of the fallow.  Hartemink (1998) found, in Papua New Guinea, that SOC 

concentration changed from 51 g C/kg to 36 g C/kg after 17 years of sugarcane 

cultivation. 

Planted forests in Vale dos Vinhedos are mostly pinus or eucalyptus, 

and the soils generally had a low SOC concentration and SOC stocks. It is known 

that coniferous and broadleaf trees can have different carbon accumulation (Guo 

and Gifford, 2002) but we were not able to distinguish these forest types. Planted 

broadleaf trees accumulate SOC levels comparable to natural forests. SOC 

stocks under plantation forest could be restored to the original level under native 

forest, but it may requires several decades (Guo and Gifford, 2002; O’Brien and 

Jastrow, 2013). As planted forests are harvested there may be considerable soil 

erosion and loss of topsoil carbon (Hartemink, 2003). 

The SOC concentration and stocks differed by soil order. Until 30 cm 

soil depth, Entisols have a higher SOC concentration but with depth Oxisols have 

the highest SOC concentration. Most Entisols (58%) are under forest which 

explains some of the higher SOC concentrations. Oxisols are deeper soils and 

have possibility of long-term accumulation of SOC with depth. Many of the 

Oxisols are under pasture (16%), whereas other soil orders have less than 3% of 

their area under pasture. Pasture has generally higher SOC accumulation with 

depth. Alfisols are mostly under vineyard which can explains their lower SOC 

levels. About two-third of the Mollisols are under forest, accumulating more SOC 

in upper layers. Most of the Inceptisols are under forest (39%) and vineyard 

(35%).  
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SOC stocks were calculated and corrected based on equivalent soil 

mass (Gifford and Roderick, 2003; Lee et al., 2009; Ellert and Bettany, 1995). We 

found corrected SOC stocks varying from 104 t C/ha in vineyards in Alfisols to 

280 t C/ha in pasture areas in Oxisols, with an average of 161 t C/ha. Results of 

SOC stocks for 100 cm depth (Table 9, Fig. 7) are comparable to other studies 

(Table 11). This can be attributed to the relatively high SOC concentrations. 

About 16% of the SOC concentration values between 60 and 100 cm depth 

exceeded 10 g C/kg, and considering 40 cm thickness it explains the relative high 

SOC stocks with depths. Environmental conditions in the study area favor SOC 

accumulation, due the high precipitation and relatively low temperature. SOC 

stocks average for soils under arable crops is 163 t C/ha, for fallow is 175 t C/ha, 

for pasture is 205 t C/ha, vineyard is 150 t C/ha, for planted forest is 149 t C/ha 

and 184 t C/ha for soils under forest. Other studies in Brazil found similar values 

such the studies by Boddey et al. (2010), Sisti et al. (2004) and Jantalia et al. 

(2007) (Table 11). 

 Tornquist et al. (2009a) found in Rio Grande do Sul State, for SOC 

stocks to 30 cm soil depth of non-sandy and non-wet soils, mean values of 77 t 

C/ha for Alfisols, 66 t C/ha for Entisols, 83 t C/ha for Inceptisols, 76 t C/ha for 

Mollisols, 77 t C/ha for Oxisols and 48 t C/ha for Ultisols. These stocks are 

comparable to the current study in Vale dos Vinhedos, based on equivalent soil 

mass, of 57 t C/ha for Alfisols, 85 t C/ha for Entisols, 76 t C/ha for Inceptisols, 60 

t C/ha for Mollisols, 106 t C/ha for Oxisols and 67 t C/ha for Ultisols.  Bernoux et 

al. (2002) found for non-sandy or non-wet soils, in areas with mixed forest,  SOC 

stocks (0-30 cm) between 61 to 128 t C/ha. These values are comparable to 84 

t C/ha found in forest areas in Vale dos Vinhedos at the same depth based on 

the equivalent soil mass.  Wasige et al (2014), studying SOC in Rwanda until 50 

cm depth, found under forest, stocks ranged 295 t C/ha in Cambisols to 487 t 

C/ha in Histosols. These values were not corrected by mass and are higher than 

the 115 t C/ha found in Vale dos Vinhedos (Table 9), for forest until 60 cm depth, 

corrected by mass. For agriculture areas (main crops are tea, coffee, maize and 

banana), the values were between 114 t C/ha in Acrisols (Ultisols) to 169 t C/ha 

in Ferralsols (Oxisols). These SOC stocks are similar to found in arable crops 

(126.3 t C/ha) and vineyard (115 t C/ha) areas in our study up to 60 cm soil depth. 
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Table 11. SOC stocks (t/ha) under different land use and in different soils. 

 

3.4.4 Uncertainty and probability maps 

 

It was found that 88% of validation values are within the prediction 

intervals. Malone et al. (2011) found similar result using an empirical uncertainty 

method based in distribution of prediction errors. However, for depth with higher 

spatial covariance of residuals (30-60 cm and 60 – 100 cm) more than 90% of 

the values were within the prediction intervals. Our results suggest that the 

methodology adopted to calculate uncertainty depends of the spatial covariance 

of the residuals. The limited accuracy may be related to variation in environmental 

Location 
 

Land Use, Soil Type 
 

Depth SOC 
stocks 
(t C/ha) 

Reference 
 

Brazil - Distrito 
Federal 

Tillage – 6 treatments 100 cm 171  
Jantalia et al. 
(2007) 

Brazil - Rio Grande 
do Sul 

3 different crop rotation in: 
Zero till  
Conventional tillage 

 
100 cm 

 
175.2  
163.8  

Sisti et al. (2004) 

Brazil - Rio Grande 
do Sul 

Rotations with intercropped or 
cover-crop legumes in: 
Zero Till 
Conventional tillage 

 
 
100 cm 

 
 
154 - 172  
132 - 163  

 
Boddey et al. 
(2010) 

Brazil – Rio Grande 
do Sul 

Alfisols 
Entisols 
Inceptisols 
Mollisols 
Oxisols 
Ultisols 

30 cm 77 
66 
83 
76 
77 
48 

Tornquist et al. 
(2009a) 

Brazil  Mixed Ombrophyllous forest 30 cm 61 - 128 
Bernoux et al. 
(2002) 

Brazil - Amazon 
Forest on Arenosol 
Forest on Histosol 

100 cm 40  
724  

Batjes and 
Dijkshoorn (1999) 

Spain – Canalda 
river basin 
 
 

Cropland (mainly cereals and 
potatoes)  
Forest 
Grazing 

100 cm 
63  
116  
89  

Simó et al. (2014) 

USA - 100 cm 345  Wills et al. (2014) 

USA 
Forest 
Pasture 
Crops (82 row crops) 

100 cm 76.8  
74.9  
107  

Bliss et al. (2014) 

China 
 
 

Forestland 
Grassland  
Farmland 

100 cm 143.3  
82.4  
92.2  

Yu et al. (2007) 

Rwanda – Rukarara 
river catchment 

Forest 
Agriculture (tea, coffee, maize 
and banana)  

50 cm 
295 - 487 
114 - 169 

Wasige et al. 
(2014) 
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conditions between the training and validation data, lower spatial relation found 

in the most of interval depths, and errors in measures of the training or validation 

samples.  

The SOC stocks probability maps (Fig. 10) reflect SOC stocks 

exceeding 184 t C/ha. Such areas are found in valley bottoms due the sediment 

accumulation and reduced drainage, and in Entisols, Mollisols under forest 

because of higher production of organic material and lower rates of 

decomposition. The low probability values are mostly in soils under vineyard or 

arable crops (mainly Inceptisols and Ultisols). The maps show that only about 

13% of the area has 80% of probability for exceeding the 184 t C/ha. These areas 

may have the same or more SOC than the soils under original land use. The 20% 

probability map shows that non-colored areas have 80% of probability to be able 

to stock more SOC. About 42% of soils of study area (3,374 ha) could sequester 

more carbon if occupied by natural forest. 

 

3.4.5. SOC changes 

 

The PNVSC analysis showed that the topsoils could accumulate more 

SOC if they were under forest (Table 10) because of increased organic material 

addition and reduced decomposition. Below 15 cm depth, soils under pasture 

have a higher capacity to accumulate SOC which is commonly found (Guo and 

Gifford, 2002; Lacoste et al., 2014; Nieder and Benbi, 2008.At interval depth 30-

60 cm, regardless of soil type or land use, the soil accumulates more carbon than 

if the soil was under forest. A possible explanation is that there is storage in 

carbon in that depth after carbon being translocated from upper layers. 

 

3.5 Conclusions 

 

From this research the following can be concluded: 

- The concordance of observed SOC values and SOC content 

estimated using Multiple Linear Regression was higher than the results estimated 

by Stepwise Multiple Linear Regression, Random Forest and Cubist. 

- Forest accumulates more carbon in upper layers and pasture 

accumulates more carbon with depth.  
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- Oxisols and Entisols accumulate larger contents of SOC. Lower 

values for SOC were found in Alfisols, Ultisols, arable crops, vineyard and planted 

forest. 

- The SOC stocks (down to 100 cm) were on average 166 t C/ha but 

varied between 107 t C/ha in vineyards on Alfisols, to 324 t C/ha in fallow areas 

on Oxisols.  

- The uncertainty intervals had better estimations where regression 

residuals showed higher spatial dependency (30-60 cm and 60-100 cm depth).  

- The PNVSC was able to estimate SOC changes due to land use 

change. The analysis showed that estimated SOC in current land use is less than 

the projected SOC under natural vegetation.



 
 

 

4. CAPITULO III – ESTUDO 2: A MECHANISTIC MODEL TO PREDICT 

SOIL THICKNESS IN A VALLEY AREA OF RIO GRANDE DO SUL, 

BRAZIL 

 
4.1 Introduction 

 

Physically-based models of landscape-scale erosion and deposition 

have largely advanced in the last decades. Landscape Evolution Models (LEMs) 

can simulate elevation changes based on differences caused by erosion and 

deposition, and have been validated in a wide range of environments. LEMs have 

been widely used in the Earth Sciences (Willgoose, 2005) as an experimental 

tool to investigate processes of landscape evolution. LEMs can also be used to 

study the spatial distribution of soils and vegetation (Saco et al., 2007).  

Soil properties that control landscape evolution dynamics and the 

spatial variability and magnitude of erosion include soil texture, soil organic 

carbon content or surface stone cover (Minasny et al., 2015). Conversely, 

landscape evolution influences soil development, as erosion or deposition 

changes the thickness across the landscape. In an eroding landscape, the 

bedrock-saprolite contact is closer to the surface accelerating soil production, 

which deepens the bedrock-saprolite contact. The accelerated soil production 

could be due to the action of bioturbation or by the uprooting of bedrock material 

(e.g. Phillips and Marion, 2006), due to more intense chemical weathering as 

surface horizons are flushed by infiltrating rainwater (Maher, 2010). It could also 

be due to more active physical weathering as a result of frost cracking (Anderson 

et al., 2013).  

Few models have integrated landscape and soil formation and most 

studies work with a hypothetical landscape and validation of soil-landscape 

models with limited field data (Minasny et al., 2015). Saco et al. (2006) used the
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SIBERIA model, combined with a soil production rate, to evaluate the use of 

spatially varied soil moisture. Results were comparable to Heimsath et al. (1997) 

who showed an exponential decline in soil production rate with soil thickness. The 

LORICA model (Temme and Vanwalleghem, 2015) was built based on the 

landscape evolution LAPSUS and the soil formation MILESD (Vanwalleghem et 

al., 2013); it demonstrated soil landscape interactions, but the model was not 

validated with field data. Vanwalleghem et al. (2013) used MILESD on a test area 

within the Werrikimble National Park in NSW, Australia. The model included 

physical and chemical weathering, clay migration, neoformation, bioturbation and 

carbon cycling. The results showed the importance of the soil-forming processes 

interacting with erosion and deposition. The model predicted trends in total soil 

thickness along a catena, which were comparable to field observations. Soil 

thickness, texture and bulk density were predicted with errors in the order of 10%.  

An important assumption in these studies is that soil production and 

transport are in steady-state (Heimsath et al., 1997). Heimsath et al. (2001) notes 

that deviations from such steady-state lead to an incorrect modelling of the 

exposure history. Therefore, most studies have been carried out in diffusion-

dominated convex ridges (noses), hereby avoiding places dominated by 

landslides or other perturbations such as tree falls. Little or no research has been 

carried out in complex landscapes that include actively eroding areas and bottom 

valleys, influenced by sediment deposition. In lower-lying areas soil thickness 

increases and soil production is expected to be low according to the assumed 

exponential dependency between soil production and depth.  

The objectives of this study were to assess the potential of a combined 

soil and landscape evolution model to (i) predict soil thickness and (ii) to estimate 

the trends of soil thickness variation over time, under different landscape 

positons. Different scenarios were developed and tested and the results were 

validated using measured soil thickness data in the region of Vale dos Vinhedos 

in Rio Grande do Sul State, Brazil. The study was conducted in two steps. Firstly, 

we evaluated four different combined soil production – landscape evolution 

models to predict soil thickness, considering soil wetness varying spatially using 

a topographic wetness index. In the second step, soil thickness evolution was 

analyzed, by using the predicted soil thickness as input in a LEM.  
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4.2 Materials and methods 

 

4.2.1 Study area and soil data 

 

The study was conducted in the Vale dos Vinhedos (Vineyard Valley) 

which is a wine production region in northeastern Rio Grande do Sul State (Fig. 

12). The area covers 8,118 ha (29⁰08’15”S to 29⁰14’26”S, and 51⁰29’48”W to 

51⁰37’55”W). The climate is classified as Cfb: subtropical with a mild summer, 

mean annual temperatures of 17.2°C and 1,736 mm annual rainfall (Embrapa, 

2017). The dominant lithology is effusive rocks mostly from the Mesozoic Era 

(IBGE, 1986).  

The geology is part of Bacia do Paraná, Formação Serra Geral, and is 

divided in two units: Unit of Gramado, in lowlands and Unit of Caxias, in uplands. 

The Unit of Gramado has basalt as a predominant parent material. Rhyodacite is 

predominant in the Unit of Caxias. The rocks are from Cretaceous, with 

approximately 132 Myr, and resulted from a succession of volcanic flows.  

The topography is formed by steep and jagged edges, by a drainage 

system with high capacity of vertical erosion. Some upland areas are preserved 

and are a testimony of older geology. The relief was carved by the drainage 

system, sectioning the sequential volcanic flows, and forming stepped structural 

terraces. 

The geology map available is at a scale 1:750,000 (CPRM, 2006) and 

the DEM had 5mx5m resolution. The DEM was upscaled to 15m grid cell size. A 

land use map (Bonfatti et al., 2016) in scale 1:10,000 are available. A map with 

13 landform classes was elaborated using the DEM and the software LandMapR 

(MacMillan, 2003). The soil database consists of 163 pedons, with 32 soil 

properties and elemental concentrations (Flores et al., 2012). 

The average soil thickness (depth to bedrock) is 150 cm (range 25 to 

> 250 cm) and many soils are stony and rocky (average 4.5% of fragments > 20 

mm in diameter). In the study area, Inceptisols cover about 44%, Ultisols 29% 

and Mollisols almost 15%. Mollisols are mostly present at lower elevations close 

to valley bottoms in the northern part of the study area.  Soils in the western part 

of the study area, classified using the Brazilian Soil Classification System 

(SiBCS), are mainly Argissolos (Ultisols and Alfisols), Chernossolos (Mollisols), 
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and Neossolos (Entisols and Mollisols). The eastern part has more rugged terrain 

and the dominant soils are Neossolos (Entisols) and Cambissolos (Inceptisols), 

with association of Argissolos (Ultisols and Alfisols), Latossolos (Oxisols) and 

Nitossolos (Oxisols and Ultisols) (Flores et al., 2012).  

Forest (44%) and Vineyard (31%) are the dominant land use in the 

study area. Deciduous forest is the main vegetation in plateau rugged areas, and 

Araucaria forest in flatter areas (IBGE, 1986). A soil thickness map was produced 

by regression-kriging (Bonfatti et al., 2016) (Fig. 12). 

 

Digital Elevation Model and pedon samples 
(Flores et al., 2012) 

 

Soil Depth Map elaborated by regression-
kriging (Bonfatti et al., 2016) 

 

 
 
 

 
 
 

Figure 12. Study area (Vale dos Vinhedos) in Rio Grande do Sul, Brazil (8118 ha). 

Location of 163 pedons in a DEM (Flores et al., 2012) and a soil depth map produced by 

regression kriging (Bonfatti et al., 2016). 

 

4.2.2 The mass continuity equation 

 

The basis of LEM is the mass continuity equation (Carson and Kirkby, 

1972; Dietrich et al., 1995; Heimsath et al., 2001b): 

𝜌𝑠

𝜕ℎ

𝜕𝑡
=  𝜌𝑟

𝜕𝑒

𝜕𝑡
− ∇𝑞𝑠                (1) 

Where ℎ is the soil thickness, 𝑒 is the elevation of the bedrock-soil 

interface, 𝜌𝑠 is the soil density, 𝜌𝑟 is the density of the rock, 𝑞𝑠 is the flow of 

material and ∇ is the vector of partial derivatives. 
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In this equation, the variation in mass of soil thickness depends on the 

balance between the mass of soil produced (variation of bedrock elevation) minus 

the mass lost by erosion (or summed by deposition). Dividing by 𝜌𝑠, we adjusted 

the equation from mass to depth continuity (m): 

 

𝜕ℎ

𝜕𝑡
=  (

𝜌𝑟

𝜌𝑠
)

𝜕𝑒

𝜕𝑡
−  

∇𝑞𝑠

𝜌𝑠
                (2) 

 

The parameter 𝜕𝑒/𝜕𝑡  is equivalent to the soil production rate and the 

𝑞𝑠 is the erosion/deposition rate. If soil production is higher than erosion, the soil 

thickness ℎ will increase over time, otherwise, the soil thickness will reduce. 

There is a feedback mechanism between erosion and soil production. The 

erosion will approximate the weathering front to the surface, accelerating the soil 

production. When the soil production rate is similar to the erosion rate, the system 

approaches a steady-state, reaching a dynamic equilibrium (Pelletier and 

Rasmussen, 2009; Phillips, 2010). If we consider a stable topography, soil 

thickness will not change over time, thus 𝜕ℎ/𝜕𝑡 = 0. The steady-state soil 

thickness is a practical assumption to predict current soil thickness and used in 

several models (Heimsath et al., 1997; Nicótina et al., 2011; Saco et al., 2006). 

Actually, topography changes continuously and soil erosion differs at each 

condition. Thereby, if topography changes, the soil thickness will change over 

time.  

 

4.2.3 Landscape Evolution Model (LEM) and the Soil Production 

Function (SPF) 

 

The LEM used physical equations to calculate the sediment added or 

eroded to the entire catchment (Table 12). The sediment transport (right-hand 

term in equation 2) was computing by the equation 3 in inter-rills and equation 7 

in concentrated flow areas (Table 12), based on approach of Willgoose & 

Rodriguez-Iturbe (1991). Equation 3 is the continuity equation for sediment 

transport and used parameters obtained by equations 4 to 6 (Table 12). Equation 

4 represents the fluvial sediment transport, dependent on discharge 𝑞 and slope 

𝑆 in the steepest downhill direction. 
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Table 12. Equations used to model landscape evolution and soil production functions. 

Equations Description Reference 

 
𝜕𝑧

𝜕𝑡
=  

1

𝜌𝑠
(

𝜕𝑞𝑠𝑥

𝜕𝑥
+

𝜕𝑞𝑠𝑦

𝜕𝑦
)            (3) 

  
 
𝑞𝑠 = 𝛽1𝑞𝑚1𝑆𝑛1                             (4) 
 

𝑞 =  
𝑄

𝑤
                                           (5) 

 
𝑄 =  𝛽2𝐴𝑚2                                   (6) 
 

 
 
 
 
 
 
Landscape 
evolution 

 
 
 
 
Adapted from 
Willgoose & 
Rodriguez-Iturbe 
(1991) and Saco et 
al. (2006) 

 
𝜕𝑧

𝜕𝑡
=  −∈ 𝑄𝑢𝑆𝑣                        (7)                  

 

 
Stream incision 
law 

 
Chen et al. (2014) 

 
𝑆𝑃𝐹 =  𝑃0𝑒−𝑚𝐻                (8) 
 
 

 
Soil Production 
Function 

 
Heimsath et al. 
(1997) 
 

 
𝑌 = 𝐸 − 𝐷             (9)   
 

𝑆𝐷𝑅 =
𝑌

𝐸
∗ 100            (10)  

 

 
Sediment Yield 
 
Sediment 
Delivery Ratio 

 
 
ASCE (1975) 

𝑧 = elevation from the DEM 

𝑡 = time 

𝑞  = discharge per unit width 

𝜌𝑠 = soil bulk density 

𝑥, 𝑦 = horizontal directions 

𝑞𝑠 = sediment flux, per unit width 

𝑆 = slope 

𝑄 = discharge 

𝐴 = contributing area 

𝑤 = width of the flow, it was used cell size as equivalent 

𝑃0 = rate of weathering of a bare bedrock surface 

𝐻 = soil thickness 

𝐸 = erosion 

𝐷 = deposition 

𝛽1, 𝛽2, 𝑚, 𝑚1, 𝑛1, 𝑚2, ∈, 𝑢, 𝑣= constants 

 

The sediment movement is thus limited by a channel’s potential to 

transport material rather than the ability of the channel to detach material via 

erosional or weathering processes (Chen et al., 2014). The discharge and slope 

are controlled by exponential constants 𝑚1 and 𝑛1. The amount of sediment 
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transport is modulated by the constant 𝛽1. Equation 6 was used to calculate the 

discharge. The upslope contributing area 𝐴 is used as a proxy for the water flow. 

Equation 5 was used to calculate the discharge per unit width 𝑤. The stream 

incision law (Equation 7 in Table 12) was employed to predict erosion in 

concentrated flow areas. It states that the erosion rate in channel increases with 

the flux of water 𝑄 and with the local gradient 𝑆 (Chen et al., 2014; Dietrich and 

Perron, 2006).  

The model runs differently in unconcentrated and concentrated flow 

areas. Sediment transport in unconcentrated flow areas (inter-rills) was 

considered to be transport-limited. Under such conditions, the potential of soil 

detachment is exceeding the sediment transport capacity of overland flow. In this 

case, the equation of channel’s potential to transport material (Equation 4 in Table 

12) is used in Equation 3 to calculate the actual sediment transported in different 

directions. For the concentrated flow areas, a detachment-limited case was 

assumed whereby the transport capacity of overland flow exceeds its detachment 

capacity (Haan et al., 1994; Mitasova et al., 2013). In this case, the actual 

sediment transport is limited by the detachment capacity and it was calculated by 

the stream incision law (equation 7 in Table 12). The transport capacity might not 

be higher for all the stream courses. Sinks or barriers can reduce the transport 

capacity, consequently depositing sediments. This would affect, for example, the 

estimation of sediment delivery ratio. Since the aim of the model was to predict 

soil thickness, and the unconcentrated flow areas cover the major part of the 

study area, we considered this to be negligible. 

The flow potential of transport material (equation 4 and 7) considered 

the discharge (derived from  𝐴 ) and the slope. High slope or discharge areas will 

have higher erosion than plain or low discharge places. However, the vegetation 

reduces erosion, minimizing the variation between different topographies. As 

forest is the dominant natural vegetation in our study area, a maximum sediment 

transport rate was used. As we assumed a soil thickness steady-state in Model 

1 (section 4.2.5), the sediment transport was limited by the maximum rate of soil 

production, even if stream transport capacity or stream incision law was large. 

The system can therefore be kept in a dynamic equilibrium.  In Model 2 (section 

4.2.6), when soil thickness changes over time under a non-steady-state 

condition, the sediment transport was limited by two times the maximum soil 
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production rate. This value was arbitrarily chosen and allows occurrence of 

exposed bedrock without larger departure from the steady-state conditions.  

The SPF (Equation 8 in Table 12) was used to estimate the soil 

production rate, which varies with thickness of soil mantle overlying the bedrock 

(Heimsath et al., 1997; Stockmann et al., 2014). The function contributes to 

understanding the dynamics of bedrock to soil conversion, at different depths. 

When combined with a landscape evolution model, it allows to investigate how 

erosion or deposition influence soil thickness. If a steady-state is assumed, the 

models allows to estimate the current soil thickness. 

The sediment yield (Equation 9) is the sediment outflow from a 

drainage area, and it was calculated as the difference between sediment eroded 

and sediment deposited within the catchment. It is dependent upon the rate of 

total erosion in the contributing basin and the efficiency of transport of the eroded 

materials. Deposition can occur at intermediate locations wherever the entraining 

runoff waters are insufficient to sustain transport (ASCE, 1975). The equation 10 

calculates the sediment delivery ratio, which is the proportion of the sediment 

yield relative to total erosion, which is equivalent to soil loss in the watershed 

(ASCE, 1975; Haan et al., 1994).  

 

4.2.4 Model implementation 

 

Figure 13 shows the model implementation. The model used a digital 

elevation model (DEM) to determine the upslope contributing areas, flow direction 

and SWI (SAGA Wetness Index). The SPF and SWI are used to estimate soil 

production rate. Flow direction is used to estimate the direction of sediment 

transport for each pixel. Upslope contributing areas and slope were used to 

estimate soil erosion. The difference between erosion and sediment was used to 

calculate surface elevation changes.  The model adjusted the soil thickness over 

time in response to sediments added or eroded and the soil production rate 

occurring in each pixel. It produced a new DEM and a new soil thickness map at 

each time step. 
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Figure 13. Diagram showing the model sequence to estimate soil thickness and soil 

thickness change over time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flow accumulation, determined by D8 algorithm (O’Callaghan and 

Mark, 1984), was used to separate unconcentrated flow from concentrated flow 

areas. Values higher than 100,000 in flow accumulation map were assigned to 

concentrated flow areas. Values lower or equal to 100,000 were set as 

unconcentrated flow areas. The flow accumulation using the D infinity algorithm 

(Tarboton, 1997) was used to determine the discharge 𝑄 (Equation 6). 
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Two models were implemented in the R statistical computing software 

to predict soil thickness (Model 1) and to simulate soil thickness changes over 

time (Model 2). Both used landscape evolution and SPF equations (Chen et al., 

2014; Dietrich et al., 2003; Heimsath et al., 1997; Minasny et al., 2015; Saco et 

al., 2006; Stockmann et al., 2011; Willgoose & Rodriguez-Iturbe, 1991).  

Model 1 aimed to predict soil thickness using the current topography. 

The model employed the exponential Soil Production Function (SPF) discussed 

by Heimsath et al. (2000, 1999, 1997), showing the decline of soil production rate 

with depth and a landscape evolution model simulating erosion and deposition 

processes. Erosion rates were calculated following Willgoose & Rodriguez-Iturbe 

(1991) and Saco et al. (2006) (Table 12). In addition, the influence of soil moisture 

accumulation in the landscape was evaluated by calculating a topographic 

wetness index, and investigating how it influences soil production rates. In total, 

four models were tested with different uses of topographic wetness index to 

predict the soil thickness to the catchment.A soil depth steady-state was 

assumed. In which, the soil production rate equals the erosion rate (Heimsath et 

al., 2000). In our study area the assumption is reasonable given the age of the 

surface (132 Myr) and the relatively stable climatic and tectonic conditions. While 

there has been a change in land use, accompanied by increasing erosion rates 

over the last couple of centuries, we assume that the cumulative effect of this 

anthropogenic phase on soil thickness is limited, and current soil profiles depths 

are close to their steady-state condition. Model 2 was elaborated based on 

calculating landscape evolution over time. Different from Model 1, no steady-state 

condition was imposed and both erosion and deposition of sediment were taken 

into account. The evolution of surface elevation and soil thickness were 

calculated from the net change between the erosion within each cell and the 

sediment deposited into each cell from upslope cells. In this case, soil thickness 

may increase even at a low soil production rate. This model allowed to investigate 

soil thickness evolution and to provide a provisional knowledge about areas in 

the landscape where steady-state does not apply and where the soil thickness is 

increasing or decreasing.  
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4.2.5 Model 1 

 

Model 1 estimated the current soil thickness, based on potential 

erosion and under a steady-state condition. The current topographic surface 

conditions, assumed to reflect the long-term landscape and soil thickness steady-

state, were determined by a current DEM and it was used to estimate erosion 

rates. The elaborated model (section 4.2.4) was run over 1 year, predicting 

erosion 𝐸 and total deposition 𝐷 to the whole catchment. The total erosion and 

deposition were used to determine the sediment yield and the sediment delivery 

ratio (Equations 9 and 10 in Table 12). To predict soil thickness, the erosion rates 

𝐸 were assumed to be equal to soil production rates. The SPF were then used 

inversely to calculate the 𝐻 (soil thickness). Different SPFs were used to 

investigate four different scenarios, for the purpose of testing the soil moisture 

influence by distinct spatial functions. 

The modulated SPF varied by a spatial function, as in Saco et al. 

(2006), formulated as: 

𝑆𝑃𝐹 =  𝑃0𝑒−𝑚𝐻(1 + 𝑎 ∗ 𝐹(𝑥, 𝑦)𝑑)   ,      (11) 

 

where 𝑃0 is the rate of weathering of a bare bedrock surface,  𝑚 is the 

depth decay parameter and 𝐻 is the soil thickness. The additional parameters 

are 𝐹(𝑥, 𝑦) representing a spatial varying SPF, 𝑎 and 𝑑 respectively a 

multiplicative and exponential constant of the spatial function. 

At steady-state, 𝑆𝑃𝐹 = 𝐸, thus the equation was adjusted to produce 

the values of 𝐻 (soil thickness): 

𝐻(𝑥, 𝑦) =  
−1

𝑚
ln (

𝐸

𝑃0(1+𝑎∗𝐹(𝑥,𝑦)𝑑)
)           (12) 

Some results yielded negative values of H so the equation needed 

adaptation, as it is a logarithmic equation. Herein, the maximum value of erosion 

was limited to 𝑃0, to avoid negative values of H. It is consistent with the maximum 

sediment transport considered (section 4.2.3). The values of zero erosion were 

changed to a minimum erosion of 10-4 mm/yr. 

In the first scenario tested (Table 13, scenario 1) no spatial function 

was used, i.e., the value of 𝑎 was set to zero and soil production only depends 

on local soil thickness.   
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Table 13. Soil production functions used to predict soil depth (up to BC horizon). 

Function Scenarios 

 𝐻 =  
−1

𝑚
 𝑙𝑛 (

𝐸

𝑃0
)        (13)  

 
1.Soil depth H from Soil Production Function 
 
 

𝐻 =  
−1

𝑚
 𝑙𝑛 (

𝐸

𝑃0(1+𝑎∗𝑆𝑊𝐼̃𝑑)    (14)  

 

 
Soil depth H from Soil Production Function 

using a modified SWI (standardized 𝑆𝑊𝐼̃):  
 
2.a with coefficients 𝑎 = 3 and 𝑑 = 1 
 

2.b with coefficient 𝑎 = 10 and 𝑑 = 5 
 
 

𝐻 =  √𝑆𝑊𝐼 − 𝐶1       (15)  

 
3. Soil depth H from function using only SWI, 
𝐶1 = 1.3 
 

 
𝐻 = Soil thickness 

𝑃0 =  Rate of weathering of a bare bedrock surface 

𝐸 = Erosion 

𝑆𝑊𝐼 = Saga Wetness Index 

𝑆𝑊𝐼̃ = Modified Saga Wetness Index 

𝑚, 𝑎, 𝑑, 𝐶1 = Constants 

 

 

In scenarios 2.a and 2.b, soil moisture was included to modulate the 

soil production. A modified topographic Saga Wetness Index (SWI) was used. 

The SWI was based on a modified catchment area calculation. It predicted, for 

the cells in valley floors with a small vertical distance to a channel a more realistic 

and higher potential soil moisture compared to the standard Topographic 

Wetness Index calculation (Böhner and Selige, 2006). The parameters 𝑎 and 𝑑 

were set to 3 and 1 on scenario 2.a. These values were based on the work of 

Saco et al. (2006). Based on iterative procedure, comparing to the observed H, 

parameters 𝑎 and 𝑑 were adjusted to 10 and 5 in scenario 2.b.  

The SWI was obtained using the package RSAGA and rescaled, 

obtaining a modified SWI (𝑚𝑆𝑊𝐼) (Equation 16). In scenario 3, the SWI was used 

in its usual form. For rescaling the SWI, the average SWI plus the standard 

deviation was set to 1. The average SWI minus the standard deviation was set to 
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0. The minimum value was set to 1x10-5. This calculation of a 𝑚𝑆𝑊𝐼 was 

preferred due to perform better than just setting the maximum to 1 and minimum 

to 0, as in Saco et al. (2006). The equation used was: 

 

𝑚𝑆𝑊𝐼 =
(𝑚𝑎𝑥𝑆𝑊𝐼 − 𝑆𝑊𝐼) ∗ (𝑜𝑛𝑒𝑆𝑊𝐼 − 𝑧𝑒𝑟𝑜𝑆𝑊𝐼)

(𝑚𝑎𝑥𝑆𝑊𝐼 − 𝑚𝑖𝑛𝑆𝑊𝐼) − 𝑜𝑛𝑒𝑆𝑊𝐼
             ,      (16) 

 

where 𝑆𝑊𝐼 = value of SWI corresponding to each pixel;  𝑜𝑛𝑒𝑆𝑊𝐼 = 1;  

𝑧𝑒𝑟𝑜𝑆𝑊𝐼 = 0 𝑚𝑎𝑥𝑆𝑊𝐼 = average (SWI) + standard deviation (SWI)and 𝑚𝑖𝑛𝑆𝑊𝐼 

= average (SWI) – standard deviation (SWI). At each iteration, the only parameter 

that varies is the 𝑆𝑊𝐼. 

In scenario 3 only SWI was used as a predictor. A non-linear 

regression was used to relate 𝑆𝑊𝐼 and 𝐻 (Equation 15). A square root of 𝑆𝑊𝐼 

was chosen based on the validation parameters (section 4.2.8). 

 

4.2.6 Model 2 

 

Model 2 studied soil thickness changes over time without assuming a 

steady-state. The soil thickness predicted in Model 1 was used as initial values 

and the topography varies with sediment added or eroded at each cell by 

sequential iteration. Soil thickness was calculated based on variation caused by 

net sediment transport, added to soil production as in Equation 1. The erosion 

and soil production equations were implemented separately, and no steady-state 

was imposed, so the erosion rates were not necessarily equal to soil production. 

The soil production rate was controlled by the soil thickness at each time step 

using the classical exponential SPF (Equation 11).  

In order to reduce the computational time, a 500 year time step was 

adopted for LEM, iterating up to 100,000 years (Fig. 13). A subroutine was 

elaborated to run SPF with a time step of 100 years.  The changes in soil 

thickness, as compared to the current situation were modeled for 25 kyr, 50 kyr, 

75 kyr and 100 kyr. 
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4.2.7 Model parameterization 

 

Some equations parameters are specific for each condition and need 

to be adjusted as the environment change. Herein, the model parameters were 

chosen to reflect the characteristics of the study area and were taken from the 

literature in areas with similar environment. The parameters are shown in Table 

14 and refer to equations in Table 12. 

𝛽1 (Equation 4) is the erodibility factor (Willgoose, 2005). Peckham 

(2003) named this “transportability” of the surface material, which depends on 

soil type, land use, cohesiveness, vegetation, etc. It was set at 0.0004 per year, 

which produced average erosion close to average rate of soil production. 

The power of 𝑞 and 𝑆 (𝑚1 and 𝑛1 in Equation 4) are taken depending 

on the type of sediment transport modeled and values between 1 and 2 are typical 

for both (Peckham, 2003). Willgoose (2005) and Willgoose & Rodriguez-Iturbe 

(1989) used 𝑚1 = 1.5 and 𝑛1 = 0.7 and the same values were used here.  

The parameter𝛽2 is equivalent to runoff rate and the value was used 

based on coefficient of runoff in forested areas in Brazil, 0.35 (Pruski, 2009). 

Considering the amount of precipitation (1736 mm per year) 𝛽2 was determined 

as 0.6 m yr-1 (35% of precipitation). The constant 𝑚2 was 0.8 based on Willgoose 

(2005) and Willgoose & Rodriguez-Iturbe (1989). 

The parameter for the incision law 𝑢  and 𝑣 was taken based on 

different literatures (Chen et al., 2014; Howard & Kerby, 1983; Kirkby, 1969). 

Values of 2/3 and 2/3 were chosen under the relation m/n = 1, following Seidl & 

Dietrich (1992). The ∈ value was chosen to produce an average erosion in 

concentrated flow areas 6 times higher than in inter-rills, being ∈  = 0.001 m yr-1. 

The soil bulk density 𝜌𝑠 was determined as the average found on study 

area, of 1200 kg/m3 (Bonfatti et al., 2016), considering bulk densities up to 100 

cm depth.  

The parameter 𝑃0 , the rate of weathering of a bare bedrock surface, 

was set to 143 mm kyr-1, based on a study in Australia with similar elevation 

(Heimsath et al., 2001a). The 𝑚 value (4 m-1) was chosen based on values found 

in Heimsath et al (2005, 2001a, 2000) and adjusted to produce soil thickness 

similar to the dataset.  
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Table 14. Variables and parameters used in equations for modeling landscape evolution 

and soil production functions. 

Parameters Description Values 

Landscape evolution   

𝑞𝑠 Sediment flux per unit of width Calculated 

𝛽1 Rate constant for sediment transport 
by year 

0.0004 

𝑞 Discharge per unit width Calculated 

𝑚1 Power of 𝑞 in sediment transport 
equation 

1.5 

𝑆 Slope between the cell and the 
neighbor 

Calculated 

𝑛1 Power of S in sediment transport 
equation 

0.7 

𝑄𝑐 Discharge, in the channel Calculated 

𝑤 Width of channels 15 

𝛽3 Multiplicative constant, relating 
discharge to contributing area 

0.6 

𝐴 Contributing area Raster 

𝑚3 Power constant, relating discharge to 
contributing area 

0.8 

∈ Rate constant for stream incision 0.001 

𝑢 Discharge per unit width in stream 
incision equation 

2/3 

𝑣 Power of S in stream incision 
equation 

2/3 

𝜌𝑠 Soil bulk density 1200 
   

Soil Production Function   

𝑃0 Rate of weathering of a bare bedrock 
surface 

0.000143 

𝑚 Depth decay parameter 4 

 

 

4.2.8 Validation 

 

The Model 1 was validated using the soil thickness values from the 

database of Flores et al. (2012). The predicted values were compared to the 

observed values until the horizon BC or B (in case the BC was absent), down to 

150 cm depth. Soil thickness values from 42 profiles were selected. 

For the validation the following parameters were used: COR 

(coefficient correlation), ME (mean error), RMSE (root mean square error) and 

CCC (Lin’s coefficient). The CCC parameter was used to quantify the proximity 
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of the distribution (observed x predicted soil thickness) from the 1:1 line (Lin, 

1989). The ME, RMSE and CCC (Lin, 1989) was implemented in R software: 

 

ME =  
1

n
∑  ẑ(xi) − 

n

i=1

z(xi)           (16) 

RMSE =  √
1

n
∑[z(xi) −  ẑ(xi)]2

n

i=1

        (17) 

CCC =  
2 ∗ ρ ∗ σẑ(xi) ∗ σ z(xi)

σẑ(xi)
2 + σ z(xi)

2 + (ẑ(xi)̅̅ ̅̅ ̅̅ − z(xi)̅̅ ̅̅ ̅̅ )2
         (18) 

 

Where n is the number of validation sample points, z(xi) is the 

observed value, ẑ(xi) is the predicted value, σ z(xi) and  σẑ(xi) are the standard 

deviation,  σ z(xi)
2  and  σẑ(xi)

2  are the variances, and ρ is the correlation coefficient 

between the predictions and observations. 

 

4.3 Results 

 

4.3.1 Model 1: Soil thickness prediction 

 

Variation in soil depth was evaluated against different topographic 

variables. SWI and Slope correlated well with soil thickness, and were 

investigated as spatial condition to the soil production function (Table 15 and 

Figure 14). SWI had a positive correlation whereas Slope had a negative 

correlation. Thus, SWI was added in the SPF and it improved soil thickness 

prediction significantly. Slope, due to its interrelation with SWI, did not improve 

the model and it was not included. Land use and lithology did not correlate well 

with soil thickness (Figure 14).  
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Table 15. Correlation matrix of soil depth (Flores et al., 2012) and topographic 

covariates. 

 Soil 
depth 

LandUse Geology Slope SWI Aspect Elevation 

Soil 
depth 

1 0.071 0.13 -0.36 0.46 -0.23 -0.0069 

LandUse  1 -0.40 -0.19 0.087 -0.18 0.25 
Geology   1 0.35 -0.13 -0.11 -0.67 
Slope    1 -0.67 0.019 -0.36 
SWI     1 -0.18 0.11 
Aspect      1 0.16 
Elevation       1 

 

 

Land Use Lithology 

 
 
 

 

SWI Slope 

  
  

Figure 14. Distribution of soil depth values by land use, lithology, SWI and Slope. 

 

The soil thickness prediction was evaluated under four scenarios 

(Table 13) and each scenario was validated using the field observations (Fig. 15).  

 



80 
 

 

Scenario 1 Scenario 2.a 

 
 
 

 

Scenario 2.b Scenario 3 

  
 

Figure 15. Distribution of H predicted and H observed, for the four scenarios in Table 

13. 

 

Scenario 1 showed lower correlation and CCC value (Fig. 15). The 

RMSE (35 cm) was similar to scenarios 2.a and 2.b. The mean error was the 

lowest, indicating some underestimation. The observed and predicted soil 

thickness showed a scattered distribution with underprediction. The soil thickness 

map of Scenario 1 (Fig. 16) showed high erosion in the valley bottom and some 

increased thickness in uplands. The areas with high thickness coincided with 

areas with low erosion, not taking in account the moisture accumulation. The 

negative residuals are concentrated northward (close to basin outlet), with some 

sparse points in the uplands. The positive residuals are mainly in uplands. The 

values of predicted thickness were in the range of 0 to 2.6 m, with an average of 

0.47 m. 
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Scenario 1 Scenario 2.a 

 
 
 
 

 

Scenario 2.b Scenario 3 

  

Figure 16. Maps of soil depth produced from the four different scenarios in Table 11. 

The blue and yellow points represent profiles with high residuals (predicted - observed), 

higher than 30 or lower than -100. Negative residual (blue points) indicate 

underestimation and positive residual (yellow points) indicate overestimation. 

 

Scenario 2.a used a spatial function based on mSWI and showed 

higher correlation coefficient (0.39) and CCC (0.36) than Scenario 1. The ME was 

positive, suggesting an overestimation. The distribution of observed and 

predicted thickness (Fig. 15) was more uneven than Scenario 1 or 3, and similar 

to Scenario 2.b. The soil thickness map (Fig. 16) of this scenario showed the 

influence of moisture accumulation from mSWI. Larger predicted thickness is 

observed in upland areas. The negative large residuals are in valley bottoms and 

some in uplands. Values of predicted thickness were in the range of 0 to 3.2 m, 

with an average of 0.65 m. 
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Scenario 2.b presented the highest correlation coefficient (0.49) and 

CCC (0.44). The ME (6 cm) indicated a general overestimation. Comparing 

predicted and observed thickness, the distribution was more similar than other 

scenarios. The soil thickness map showed thicker soils dominating uplands, while 

shallow soils were dominant in the valley bottoms. The residuals had a similar 

pattern to the previous function, with negative values prevailing in the valley 

bottoms and positive values on the uplands. Soil thickness prediction varied from 

0 to 4.3 m, with an average of 0.67 m. 

Scenario 3 used the direct relation between SWI and soil thickness. It 

showed a slightly lower correlation (0.45) and CCC (0.39) than Scenario 2.b. The 

RMSE (28.7 cm) was the lowest and the ME (-3.11) indicated a general 

underestimation. The predicted and observed thickness showed a small range 

distribution. The soil thickness map of Scenario 3 showed less difference 

between valley bottoms and uplands, and also fewer profiles with high residuals. 

This reflects the small range distribution observed in Figure 15. 

The spatial parameter SWI varied according the flow accumulation on 

surface. The mSWI showed values between 1x10-5 and 3.08. Figure 17 shows 

examples of how the soil production function varied as influenced by mSWI. The 

graph showed that the mSWI influence is higher when the interface bedrock-soil 

is closer to surface. As soil mantle increases, the influence of mSWI is reduced. 

The model considers that the predicted soil thickness is the depth where the soil 

production rates is found equivalent to erosion rates. Consequently, soils with 

high SWI will be thicker. 

The landscape evolution model had 22% as sediment delivery ratio. 

The total materials eroded were 0.64 ton/ha, being 0.49 ton/ha/yr deposited and 

0.15 ton/ha/yr lost. In unconcentrated flow areas, the average erosion was 4.77 

x 10-2 mm/yr. In concentrated flow areas, erosion was significantly higher, around 

2.86 x 10-1 mm/yr. 
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Figure 17. Examples of soil production rates as a function of depth, calculated by 

different SPF (Equation 11), in m/kyr. For 5 different profiles (Flores et al., 2012) the 

SPFs without using mSWI (Equation 8 in Table 12) yield the same SPF (dashed line), 

while using mSWI yield different SPFs (solid colored lines) .  

 

4.3.2 Model 2: soil thickness changes over time 

 

The soil thickness evolution (Figure 18) showed a reduction of soil 

thickness in areas close to concentrated flows areas and an increase of soil 

thickness in depositional areas.  This trend gets stronger up to 75 kyr and not so 

much changes after 75 kyr. Soil thickening in valley bottom, due the SPF and 

depositions, is evident in the maps as well the higher erosion in channels and 

streams. The average soil thickness to the whole catchment changed from initial 

67 cm to 92 cm (25 kyr), 98 cm (50 kyr), 101 cm (75 kyr) and 103 cm (100 kyr). 

The sediment addition or erosion rates increases over time for some 

profiles and reduces in others (Fig. 19). Generally the soil thickness seems to 

reach a dynamic equilibrium (e.g. profiles 3, 35, 16,132), nevertheless in some 

profiles, the thickness evolution is very irregular and clearly not in a dynamic 

equilibrium at the end of the simulation (e.g. profile 7 and 40). 
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25ky 50ky 

  

 
75ky 

 
100ky 

  
 

Figure 18. Difference between the soil depth predicted at different times and the initial 

soil depth map (Fig 17, Scenario 2.b). Green color shows increasing in soil depth and 

brown color shows decreasing in soil depth. 

 

The profiles located in upper depressions, convergent back slope and 

foot slope showed higher variations over time. Profiles in divergent back slopes, 

toe slope or back slope showed a smoother and continuous variation in sediment 

transport and soil production rates. The profile 3 (divergent back slope) and 

profile 132 (back slope) revealed a tendency of remaining as shallow soils. Profile 

35, in a convergent back slope, showed a tendency of significantly increasing soil 

thickness. The erosion rate is higher than soil production rate at time 0, but the 

difference reduces with time. Since the condition SPF = E was not imposed in 

Model 2, erosion could be higher than SPF at time 0, although it was arbitrarily 

limited to twice the soil production rate (section 4.2.3). The same was observed 

in profile 40. The profile 16, under a toe slope, was the deeper soil and presented 
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a tendency to keep the larger soil mantle. The sediment addition trends generally 

followed the sediment erosion trends. As the model employed a high time step 

(500y), the continuous behavior of addition or removal of sediments is not 

sufficiently well characterized, showing instead a leaping variation. The soil 

production rates reduce over time, due the thickness accumulation, and seem to 

reach a steady-state for some profiles. The SPF averaged over the entire study 

area was close to 50 mm/kyr at initial years and a steady-state seems to be 

reached around 40kyr, when the SPF assumes an average close to 10 mm/kyr 

and did not change significantly up to 100kyr. 

 
Profile 3 – Upland, Divergent Back Slope 

 

  
 

Profile 7 – Upland, Upper Depression 
 

  

 

Figure 19. Estimated changes of SPF, sediment transport and soil thickness over time, 

using the combined SPF and landscape evolution model at representative profiles. 
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Profile 35 – Upland, Convergent Back Slope 
 

  

 
Profile 40 – Valley Bottom, Foot Slope 

 

  

 
Profile 16 – Valley Bottom, Toe Slope 

 

  

 

Figure 19. Continuation... 
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Profile 132 – Back Slope 
 

  
  

 
Average Area 

 

  
Figure 19. Continuation... 

 

4.4 Discussion 

 

This study used a soil production function coupled with a landscape 

evolution model to predict soil thickness and to analyze its evolution over 100 000 

years. We tested and validated soil thickness maps produced from four different 

soil production functions against field observations.  

 

4.4.1 Model1: Soil thickness prediction 

 

The initial parameterization of the LEM for the current topography 

played a critical role in the quality of soil depth predictions and produced 

reasonable results when compared to literature.   
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The total erosion rate (0.64 ton/ha/yr) was similar to other studies in 

forest areas. Guimarães et al. (2011), using USLE, found erosion rates ranging 

from 0 to 1 ton/ha/yr under natural forest areas in Santa Catarina, South Brazil. 

In soils under agriculture, the erosion rates estimated here are similar to that 

found in areas under no-tillage. Cogo et al. (2003) found in Santo Angelo in Rio 

Grande do Sul State erosion in soils under conventional tillage about 13 ton/ha 

in 1.5 years, under reduced tillage about 4 ton/ha in 1.5 year and soils under no 

till close to 1 ton/ha in 1.5 year. Bertol et al. (2007) found in Santa Catarina State 

erosion rates between 0 and 1 ton/ha /yr for the most agriculture areas with no 

tillage, but much of the erosion was higher than 2 ton/ha/yr under conventional 

tillage. Martins et al. (2003) found in Espírito Santo State in Brazil an average 

erosion of 1.4 ton/ha/yr in planted forest of eucalyptus and 0.1 ton/ha/yr in natural 

forest. LEM represents the erosion dynamics satisfactorily as the published 

erosion rates were comparable to the results from our study; we assumed that 

the natural forest is the predominant vegetation during the time of soil formation. 

A homogeneous land use (natural forest) was used in the models. 

Soils under forests have low erosion rates and currently occupy 44% of the study 

area whereas soils under vineyards currently occupy 31% of the area. If erosion 

were significantly higher in soils under vineyards than in soils under forests, this 

would be reflected in soil thickness. However, we found little correlation between 

land use and soil thickness (Table 15). Studies has shown that vineyards and 

cover crops can significantly reduce erosion (Botton et al., 2010; Oliveira et al., 

2004; Shanks et al., 1998).  

The value of sediment delivery ratio (22%) for the study area (8 118ha) 

is higher compared to that found in other catchments with a similar surface area 

(ASCE, 1975; Haan et al., 1994), where values between 10 and 15% have been 

reported. The model did not consider deposition in areas of concentrated flow or 

might indicate that the time step should be reduced. The sediment carried to 

streams and channels were removed from the system. Actually, sediments 

transported by channels may be deposited in channel sinks, river banks and 

floodplain areas. When considering the events of erosion only in unconcentrated 

flow areas, the SDR drops below 8%. In Brazil, Minella et al. (2014) found in the 

Arvorezinha catchment (119 ha), a SDR close to 15%. An SDR of 18% was found 

for the Conceição River catchment (80,000 ha), Rio Grande do Sul State by 
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Didoné et al. (2015). It seems that SDR decreases with increasing catchment 

size so we expect a SDR below 15% in our study. As pointed out by Minella et 

al. (2014), in making comparisons of SDR by catchment size the range of 

catchment characteristics, including climate, topography, drainage density, 

geology and soils, land use and soil management are important.  

The SWI improved soil production functions. When included, the soil 

thickness prediction improved significantly, as observed by the differences 

between scenarios 2.a, 2.b and 3 when compared to scenario 1 (Fig. 15).  

Scenario 1 showed a scattered distribution of observed and predicted 

soil thickness. Nicótina et al. (2011) applied a similar method to model soil 

thickness and also found a high scatter concluding that the model did not 

represent well the observed soil thickness patterns. In our study, however, we 

were able to improve model performance significantly by considering spatially 

varying SPF according to topographic wetness index. That was observed in 

Scenario 2.b, showing the best performance despite a large RMSE and ME. The 

ME of 10.8 cm is similar to the one found by Catani et al. (2010), of 11 cm. With 

higher coefficients 𝑎 and 𝑑 (Equation 14, Table 13), the function maximized the 

soil thickness variation by the SWI, which a maximization of moisture influence in 

soil formation compared to scenario 2.a. Scenario 3 presented similar values to 

scenario 2.b and the difference is noted when observing the distribution of 

predicted and observed values (Fig. 15). The variation in scenario 2.b is higher 

and the low soil thickness estimation improved, compared to scenario 3. The 

deepest soils presented the higher residuals, contributed to the high RMSE and 

ME. The scenario 3 did not show soil thickness deeper than 125 cm and the 

performance to predict shallow soils was poor. However, the validation was close 

to scenario 2.b emphasizing the importance of SWI in predictions. 

The standardized SWI performed well as a spatial function. There was 

no fixed maximum mSWI values. The range of soil thickness was not limited, 

minimizing the limited range problem related by Saco et al. (2006), when 

attributing 1 as maximum to spatial function. The mSWI allowed to simulate the 

moisture effect on accelerated weathering and forming deeper soil even in pixels 

with high erosion. As observed in Figure 17 when erosion is higher, the soils 

might be shallow or deeper depending on the SWI influence.  
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High negative residuals where found mainly in valley bottoms (Fig. 16), 

indicating underestimations of soil thickness. That area coincides with high flux 

accumulation that would produce cumulative soils due the high deposition. This 

leads to some problem in predicting soil thickness, because high deposition 

would deviate the soil of a steady state condition.  

The valley bottom of the study area has Mollisols (Chernossolos in 

Brazilian System of Soil Classification) as dominant soils (Flores et al., 2012). 

Buol et al. (2011) stated that accumulation of sediments is an important process 

in Mollisols occupying depositional landscape positions. Erosion occurring along 

hillslopes can result in overthickening of the mollic epipedon. Cumulative soils 

with thick A horizon are common due to deposition of organic-matter-rich material 

from upslope, or to organic-matter accumulation at the site while sediment is 

accumulating, or to a combination of both processes (Birkeland, 1999). These 

deposited materials undergo pedogenic processes as they are added and the A 

horizon may continually thicken (Buol et al., 2011; Schaetzl and Anderson, 2005). 

That seems to be occurring in the study area as showing by the reference profiles 

(Flores et al., 2012), in which Mollisols have between 2 and 6% of SOC in A 

horizon and a soil carbon map indicates carbon accumulation in valley bottoms 

(Bonfatti et al., 2016). Moreover, the high organic material contributes to form 

soils with high porosity, reducing the bulk density and the soil would tend to 

become deeper. These effects were not simulated in the SPF. The deposition 

could be predicted by a LEM if we knew the initial topography condition but the 

uncertainty about this initial condition is an important problem in landscape 

evolution studies (Minasny et al., 2015; Peeters et al., 2006). 

The positive residuals (Fig. 16) seem to appear around a line 

separating uplands and valley bottoms. It seems the model was not recognizing 

the high erosion driving soil formation in these landscape locations. The high 

curvatures along this escarpment where the uplands transition into the valley 

bottoms, can lead to an increase in sediment transport, reducing the soil mantle 

and transporting the material to the valley bottoms. The hydrologic model using 

a DEM resolution of 15x15m may not be accurately representing this features. 

The processes involving landscape evolution and soil production are 

complex, whereas model representation is necessarily simplified. Several 

aspects make an accurate prediction of soil thickness difficult. Soils are variable 
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over short distances and the numerous factors causing such variation are 

unknown. We are able to quantify the variation well but a pedological 

understanding is less developed. Human activities are also spatially variable and 

make it difficult to predict impacts, for example by changing local land use and 

changing erosion rate. Some areas close to concentrated flow areas are flooded 

at times which affects weathering and soil production. An adequate delimitation 

and quantification of deposition areas (not considered in SPF), is complex 

especially over long time spans. It would be more correct to use the bedrock DEM 

instead of surface DEM that can yield different results compared to a topographic 

wetness index used throughout a surface (Saco et al., 2006). Finally, in order to 

assess the validity of the assumption of the steady state condition, an evaluation 

of the correct evolution of uplifts and erosion with time is needed.  

Despite these difficulties and uncertainties, the model predicted the 

tendency of soil thickness in the upland areas, with more uncertainty in lowland 

areas, as showed by higher residuals in lowland areas (Fig. 16). 

 

4.4.2 Model 2: soil thickness dynamics over time  

 

It is relevant to estimate the current soil thickness and the tendencies 

to change. Critical or unstable areas, with a probable decrease in soil thickness, 

may be identified as areas that require more attention. The soil evolution model 

(Fig.18) allowed identifying stable areas and areas with tendency of increasing 

or decreasing soil thickness over time.  

As shown in the temporal evolution of representative soil profiles (Fig. 

19), sediment transport did not assume a regular pattern over time. For some 

profiles (7, 40) sediment deposition or erosion rates increase as the landscape 

changes while for other profiles (3, 16, 35, 132) sediment addition or erosion rates 

decreased. Landscape position is explaining this trend as profile 7 and 40 are 

respectively in a depression and foot slope, areas with a tendency to receive 

upslope sediments. In profile 3, the sediment eroded was higher than sediment 

deposited and we could expect a decrease in soil thickness. However, the soil 

production rate was higher in comparison with the net sediment transport (erosion 

rate minus deposition rate), thus the soil thickness kept increasing.  
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In convergent or divergent back slopes, without considering abrupt 

changes on environmental conditions (climate change, tectonics, anthropic 

activities), the soil thickness seems to reach a dynamic equilibrium condition, then 

the soil mantle will not change significantly over time. The same could be 

observed in toe slope profiles in valley bottoms. This would reflect a continuous 

and balanced interaction among the sediment transport and soil production rates. 

Conversely, in foot slope or depressions, the representative profiles suggest a 

complex dynamic and then the soil thickness could present a constant variation, 

without reaching a steady-state. In convergent back slope or toe slope positions, 

the profiles suggest soil thickening. Shallow soils are predicted in non-convergent 

back slopes. 

The changes in soil production rates over time showed a similar 

behavior, generally decreasing and approximating zero. Overall, the study area 

seems to approximate steady state towards the end of the simulation, as the 

produced soil thickness approaches a constant value for different locations in the 

landscape and for the average area. 

This dynamic soil-landscape evolution model offered insight in what 

could happen with the soil thickness in the future. The model demonstrated the 

importance of varying soil production rates, interacting with sediments added or 

removed during soil formation. It is a useful tool to investigate the impacts of 

environmental. 

 

4.5 Conclusions 

 

The following can be concluded from this research: 

- The study showed that using SPF and LEM to predict soil thickness 

is promising. 

- In Model 1, the soil thickness predictions improved using spatially 

varied moisture and the accuracy was higher where the deposition process was 

not dominant.  

- The SWI showed to be an important spatial parameter when 

modelling soil thickness, improving significantly the estimations. 
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- Model 1 predicted the tendency of soil thickness in the upland 

areas, with more uncertainty in lowland areas, due to be difficult to quantify and 

delimit the sediment deposition. 

- In Model 2, areas with tendency of increasing or decreasing soil 

thickness were located at different positions in landscape. Soils in back slopes 

and toe slopes showed a continuous thickness variation over time, leading to a 

steady-state condition. Soils at the foot slopes and depressions showed complex 

behavior and did not seem to reach a steady-state condition over time. 

 

 

 



 
 

 

5. CONSIDERAÇÕES GERAIS 

 

Com base nos estudos realizados, conclui-se que tanto modelos 

empíricos quanto modelos mecanísticos se mostram como importantes 

ferramentas na predição e mapeamento de atributos de solos. O modelo 

empírico produz melhores resultados quando as amostras estão em um número 

suficiente para correlações estatísticas e são representativas do terreno. Uma 

mesma técnica pode ser aplicada na predição e mapeamento de diferentes 

atributos do solo. O modelo mecanístico é mais complexo e procura modelar o 

comportamento dos componentes envolvidos nos processos pedogenéticos. 

Tem base em estudo mais aprofundado dos fenômenos envolvidos e auxilia na 

explicação dos mecanismos naturais atuantes no decorrer do tempo. O modelo 

mecanístico também não requer alta densidade de amostragem de solo, 

bastando um número pequeno para calibrar os parâmetros das equações. Suas 

principais limitações estão relacionadas à sua complexidade física e matemática, 

à impossibilidade de modelar todos os inúmeros processos envolvidos na 

pedogênese e ao tempo computacional para a execução dos modelos. As 

equações e modelos são distintas para cada atributo de solo estudado.  

A escolha do uso de modelos empíricos ou mecanísticos pode ter base na 

densidade e representatividade amostral disponível e no conhecimento dos 

fenômenos envolvidos na formação de cada atributo. 

A validação das predições para profundidade do solo, realizada tanto 

no Estudo 1 quanto no Estudo 2,  apresentou resultados mais favoráveis ao 

modelo empírico, mas essas condições se deram devido à disponibilidade de 

dados de um levantamento detalhado de solos, com alta densidade amostral, 

algo não comum na maioria das regiões Brasil. O modelo mecanístico 

possibilitou predição com um nível de acurácia pouco menor, mas com a 
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possibilidade de ser calibrado com número amostral reduzido, apenas para a 

determinação de parâmetros para as equações. 

O modelo empírico possibilitou estimar as incertezas, através de 

simulação estatística, o que constitui uma informação importante na avaliação 

de carbono orgânico no solo. A estimação da incerteza em modelos 

mecanísticos é mais complexa e envolve uma série de fatores que necessitam 

de estudo mais aprofundado. 

Dentre pontos importantes identificados durante o uso de um modelo 

empírico estão: a incerteza na escolha de um método padrão para regressão, a 

indisponibilidade de dados em escala compatível e a falta de memória 

computacional para lidar com simulações estatísticas utilizando-se de um MDE 

de alta resolução. No Capítulo 1 foram apresentados estudos que utilizam de 

grande variedade de métodos de regressão, aplicados a diferentes propriedades 

ou classes de solo, sob diversas condições de clima e relevo. Não há ainda uma 

conclusão definitiva sobre qual método seria mais indicado para cada situação. 

Uma boa prática é o teste de diferentes métodos na área de estudo, identificando 

o que produz resultados mais próximos aos valores observados, como realizado 

no Capítulo 2. Durante a validação, é de fundamental importância a separação 

das amostras em conjunto de treinamento e conjunto de validação. Alguns 

modelos podem superajustar as estimativas às amostras de treinamento e ter 

uma performance bem diferente quando aplicados ao conjunto de amostras para 

validação. A escolha do método a ser utilizado deve ter como base os resultados 

obtidos a partir das amostras de validação. 

A disponibilidade de dados em escala compatível é imprescindível 

para a obtenção de resultados mais acurados principalmente quando modelos 

empíricos são utilizados. A análise estatística ou geoestatística necessita de um 

número amostral significativo para produzir resultados com maior confiabilidade. 

Um valor geralmente utilizado como referência é o de no mínimo 100 pontos 

amostrais (Hengl, 2009). É importante também que os pontos sejam 

representativos do terreno, estando alocados em diferentes partes da superfície 

para representar sua variabilidade. A densidade de pontos amostrais 

determinará a escala de estudo. Amostragem de baixa densidade tende a reduzir 

a escala de trabalho, sendo necessária maior área para alcançar a quantidade 

mínima de pontos amostrais. A obtenção de mapas geológicos e de classificação 
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e de uso de solo em escalas compatíveis também é limitada. Mapas de uso de 

solo podem ser elaborados a partir de imagens orbitais, mas mapas geológicos 

e de classificação do solo ainda são escassos no Brasil para escalas mais 

detalhadas. 

O uso de MDE de alta resolução ocasionou problemas de 

armazenamento em memória tanto durante sua aplicação em modelos empíricos 

quanto em modelos mecanísticos. Nos modelos empíricos, cada covariável 

gerada ocupou mesmo tamanho para armazenamento que o MDE original. Os 

problemas de armazenamento se tornaram mais críticos ao se implementar as 

100 simulações geoestatísticas, para cada um dos 5 intervalos de profundidade 

do solo estudados, gerando um total de 500 imagens. A solução encontrada foi 

separar o processamento em diferentes lotes, com cada intervalo de 

profundidade correspondendo a um projeto único no software R. No modelo 

mecanístico, o MDE de alta resolução ampliou consideravelmente o tempo para 

processamento durante as iterações do modelo. O Modelo 2 executou os 

procedimentos para um total de 100.000 anos, utilizando um passo de 500 anos, 

num total de 20 iterações, levando aproximadamente 24 horas para finalizar o 

processamento. O modelo poderia reproduzir dados mais próximos da realidade 

se houvesse iterações ano a ano, num total de 100.000 iterações, o que seria 

impraticável devido ao tempo total para processamento e o espaço de memória 

necessário para armazenar os dados de cada pixel por ano. Com o avanço 

tecnológico, esses problemas tendem a ser minimizados. 

O modelo mecanístico para predição de profundidade de solo (Modelo 

1) apresentou dificuldade quanto à quantificação do depósito de sedimentos em 

solos cumulativos, pois a principal equação utilizada comparou taxas de erosão 

à taxa de produção de solos. A taxa de deposição de sedimentos poderia ser 

estimada caso houvesse disponível um MDE de um momento passado no qual 

se pudesse modelar o início de um processo deposicional e como evoluiu até o 

presente. Para obtenção de um MDE de um tempo passado o uso de equações 

dos modelos de evolução de paisagem de forma inversa seria uma possibilidade, 

mas ainda não há estudos conclusivos sobre a aplicabilidade dessa metodologia. 

Estudos nessa área são necessários para estimar quantitativamente a 

contribuição do depósito de sedimentos na formação da espessura do solo. 
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